
What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study

Saugata Ghose† Abdullah Giray Yağlıkçı⋆† Raghav Gupta† Donghyuk Lee‡

Kais Kudrolli† William X. Liu† Hasan Hassan⋆ Kevin K. Chang†

Niladrish Chatterjee‡ Aditya Agrawal‡ Mike O’Connor‡� Onur Mutlu⋆†

†Carnegie Mellon University ⋆ETH Zürich ‡NVIDIA Research �The University of Texas at Austin

ABSTRACT
Main memory (DRAM) consumes as much as half of the total sy-
stem power in a computer today, due to the increasing demand
for memory capacity and bandwidth. There is a growing need to
understand and analyze DRAM power consumption, which can be
used to research new DRAM architectures and systems that con-
sume less power. A major obstacle against such research is the lack
of detailed and accurate information on the power consumption
behavior of modern DRAM devices. Researchers have long relied
on DRAM power models that are predominantly based off of a set
of standardized current measurements provided by DRAM ven-
dors, called IDD values. Unfortunately, we find that state-of-the-art
DRAM power models are often highly inaccurate, as these models
do not reflect the actual power consumed by real DRAM devices.

To build an accurate model and provide insights into DRAM
power consumption, we perform the first comprehensive experi-
mental characterization of the power consumed by modern real-
world DRAMmodules. Our extensive characterization of 50 DDR3L
DRAM modules from three major vendors yields four key new
observations about DRAM power consumption that prior models
cannot capture: (1) across all IDD values that we measure, the cur-
rent consumed by real DRAM modules varies significantly from the
current specified by the vendors; (2) DRAM power consumption
strongly depends on the data value that is read or written; (3) there
is significant structural variation, where the same banks and rows
across multiple DRAM modules from the same model consume
more power than other banks or rows; and (4) over successive
process technology generations, DRAM power consumption has
not decreased by as much as vendor specifications have indicated.
Because state-of-the-art DRAM power models do not account for
any of these four key characteristics, they are highly inaccurate
compared to the actual, measured power consumption of 50 real
DDR3L modules.

Based on our detailed analysis and characterization data, we
develop the Variation-Aware model of Memory Power Informed by
Real Experiments (VAMPIRE). VAMPIRE is a new, accurate power
consumption model for DRAM that takes into account (1) module-
to-module and intra-module variations, and (2) power consumption
variation due to data value dependency. We show that VAMPIRE
has a mean absolute percentage error of only 6.8% compared to
actual measured DRAM power. VAMPIRE enables a wide range of
studies that were not possible using prior DRAM power models. As

an example, we use VAMPIRE to evaluate the energy efficiency of
three different encodings that can be used to store data in DRAM.
We find that a new power-aware data encoding mechanism can
reduce total DRAM energy consumption by an average of 12.2%,
across a wide range of applications. We plan to open-source both
VAMPIRE and our extensive raw data collected during our experi-
mental characterization.

CCS CONCEPTS
•Hardware→ Dynamic memory; Power estimation and op-
timization; Board- and system-level test; • Computing met-
hodologies → Model development and analysis; • Computer sys-
tems organization → Architectures;

KEYWORDS
DRAM; memory systems; energy; power consumption; power mo-
deling; experimental characterization; data encoding; low-power
design

ACM Reference Format:
S. Ghose et al. 2018. What Your DRAM Power Models Are Not Telling
You: Lessons from a Detailed Experimental Study. In Proc. ACM Meas. Anal.
Comput. Syst.

1 INTRODUCTION
As processor power consumption has been reduced via many techni-
ques designed over multiple decades, main memory, which is built
using the dynamic random access memory (DRAM) technology,
has now become a significant source of power consumption in
modern computer systems. This is because the amount of DRAM
in a computer has been increasing over the years, to keep up with
the growing demand for memory capacity and bandwidth in mo-
dern applications [50, 104, 117, 155]. In a contemporary system,
DRAM power consumption accounts for as much as 46% of the
total system power [38, 48, 56, 93, 104, 122, 157, 163]. In response,
vendors have developed several low-power and low-voltage vari-
ants of DRAM (e.g., DDR3L [61], LPDDR3 [63] and LPDDR4 [64]),
and there has been some research on reducing the power con-
sumed by modern DRAM architectures (e.g., [8, 9, 28, 31, 37, 40–
42, 44, 49, 74, 75, 77, 88, 98, 99, 105, 119, 121, 139]). However, as
DRAM consumes a growing fraction of the total system power, a
much greater effort is necessary to invent new low-power solutions.

1

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

One major hindrance towards further research is the relative
lack of information available on the low-level power consumption
behavior of modern DRAM devices. It has historically been difficult
to collect accurate power consumption data from real DRAM devi-
ces, as computer systems (1) do not offer fine-grained control over
commands being issued to DRAM, instead exposing only high-level
operations such as loads and stores; and (2) often lack dedicated
monitors that track the power consumed by DRAM. As a result, for
many years, researchers have instead relied on current specificati-
ons that vendors provide for each DRAM part, which are known
as IDD values [111]. A vendor determines IDD values by using a
standardized set of benchmarks that are meant to represent com-
mon high-level DRAM operations, such as reading one cache line of
data from DRAM, or refreshing data (i.e., restoring the charge lost
from DRAM cells due to charge leakage). State-of-the-art DRAM
power models (e.g., [25, 27, 65, 111]), which researchers currently
use to perform DRAM power studies, and which are used by many
popular simulators (e.g., [6, 11, 83, 120, 131]), are predominantly
based on these IDD values.

We find that state-of-the-art DRAM power models are often
highly inaccurate when compared with the power consumed by
real DRAM chips. This is because existing DRAM power models
(1) are based off of the worst-case power consumption of devices, as
vendor specifications list the current consumed by the most power-
hungry device sold; (2) do not capture variations in DRAM power
consumption due to different data value patterns; and (3) do not
account for any variation across different devices or within a device.
Because existing DRAM power models do not capture these charac-
teristics, it is often difficult for researchers to accurately (1) identify
sources of inefficiency within DRAM; and (2) evaluate the effective-
ness of memory energy saving techniques, including new hardware
designs and new software mechanisms. Our goal in this work is
to rigorously measure and analyze the power consumption of real
DRAM devices, and to use our analysis to develop an accurate and
detailed DRAM power model, which can be useful for a wide variety
of purposes.

To this end, we perform the first extensive characterization of
the power consumed by real DRAM devices. To overcome prior
obstacles to collecting real power measurements from DRAM, we
significantly extend the SoftMC FPGA-based DRAM testing infra-
structure [53, 134] to work with high-precision current measure-
ment equipment, which we describe in detail in Section 3. Our
testing infrastructure allows us to execute precise test procedures
to characterize the effects of (1) intra-chip and inter-chip variation
and (2) data dependency on the power consumed by DRAM. We
collect detailed power measurement data from 50 DDR3L DRAM
modules, comprising of 200 chips, which were manufactured by
three major vendors (A, B, and C). Our testing infrastructure al-
lows us to make four key new observations about DRAM power
consumption that prior models cannot capture:
(1) Across all IDD values that we measure, the current consumed

by real DRAM modules varies significantly from the current
specified by the vendors (Section 4). For example, to read one
cache line of data from DRAM, the measured current of mo-
dules from Vendor A is lower than the current specified in the
datasheet by an average of 54.1% (up to 61.6%).

(2) DRAM power consumption strongly depends on the data value
that is read or written (Section 5). Reading a cache line where
all bits are ones uses an average of 39.2% (up to 91.6%) more
power than reading a cache line where all bits are zeroes.

(3) There is significant structural variation, where the current va-
ries based on which bank or row is selected in a DRAMmodule
(Section 6). For example, in modules from Vendor C, the idle
current consumed when one of the eight banks is active (i.e.,
open) can vary by an average of 15.4% (up to 23.6%) depending
on the bank.

(4) Across successive process technology generations, the actual
power reduction of DRAM is much lower than the savings
indicated by the vendor-specified IDD values in the datasheets
(Section 7). Across five key IDD values, the measured savings of
modules from Vendor A are lower than indicated by an average
of 48.0% (up to 66.7%).

Because state-of-the-art DRAM power models [25, 27, 65, 111] do
not adequately capture these four key characteristics, their pre-
dicted DRAM power is highly inaccurate compared to the actual
measured DRAM power of 50 real DDR3L modules. We perform
a validation of two state-of-the-art models, DRAMPower [25, 27]
and the Micron power model [111], using our FPGA-based current
measurement platform, and find that the mean absolute percent
error compared to real DRAM power measurements is 32.4% for
DRAMPower and 160.6% for the Micron power model.

Building upon our new insights and characterization data, we
develop the Variation-Aware model of Memory Power Informed by
Real Experiments (VAMPIRE). VAMPIRE is a new power model for
DRAM, which captures important characteristics such as module-
to-module and intra-module variations, and power consumption
variation due to data value dependency (Section 9). We show that
VAMPIRE is highly accurate: it has a mean absolute percentage
error of only 6.8% compared to actual measured DRAM power.

VAMPIRE enables a wide range of studies that were not possible
using prior DRAM power models. For example, we use VAMPIRE
to evaluate the impact of different data encoding mechanisms on
DRAM power consumption (Section 10). We find that a new power-
aware data encoding technique can reduce DRAM energy by an
average of 12.2% (up to 28.6%) across a wide range of applications.

We plan to open-source both VAMPIRE and our extensive raw
data collected during our experimental characterization [135]. We
hope that our findings and our new power model model will inspire
new research directions, new ideas, and rigorous evaluations in
power- and energy-aware DRAM design.

We make the following contributions in this work:
• We conduct a detailed and accurate experimental characteriza-
tion of the power consumed by 50 real, state-of-the-art DDR3L
DRAM modules from three major DRAM vendors, comprising
200 DRAM chips. To our knowledge, our characterization is the
first to (1) report real power consumption across a wide variety
of tests on a large number of DRAM modules from three major
DRAM vendors, (2) comprehensively demonstrate the inter-
vendor and intra-vendor module-to-module variation of DRAM
power consumption, (3) study the impact of data dependency
and structural variation on DRAM power consumption, and

2

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

(4) examine power consumption trends over multiple product
generations.

• We make four major new observations based on our measu-
rements, showing that DRAM power consumption (1) varies
significantly from the values provided by DRAMvendors, (2) de-
pends on the data value that is read or written, (3) varies based
on which bank and which row are used, (4) has not decrea-
sed as much as vendor specifications indicate over successive
generations.

• We build VAMPIRE, a new DRAM power consumption model
based on our new insights and characterization data. VAMPIRE
provides significantly greater accuracy than existing power
models, and enables studies that were previously not easily
possible. We plan to release our power model and our charac-
terization data online [135].

2 BACKGROUND
In this section, we first provide necessary DRAM background. We
discuss the hierarchical organization of a modern memory system
in Section 2.1. We discuss the fundamental operations performed on
DRAM in Section 2.2. For a detailed overview of DRAM operation,
we refer the reader to our prior works [28–32, 52, 53, 80, 82–84, 87–
92, 97, 137–140].

2.1 DRAM Organization
Figure 1a shows the basic overview of a DRAM-based memory
system. The memory system is organized in a hierarchical manner.
The highest level in the hierarchy is amemory channel. Each channel
consists of its own bus to the host device, and has a dedicated
memory controller that interfaces between the DRAM and the host.
A channel can connect to one or more dual inline memory modules
(DIMMs). Each DIMM contains multiple DRAM chips. A DRAM
row typically spans across several chips, which requires these chips
to perform all operations in lockstep with each other. Each group
of chips operating in lockstep is known as a rank.

Processor
Core Core

Memory
Controller

DRAM Module
Rank
. . .Chip Chip

memory
channel

(a) Memory system hierarchy

Row Buffer

DRAM cell

wordline

bitline

Ro
w

 D
ec

od
er

(b) DRAM array structure

Figure 1: High-level overview of DRAM organization.

Inside each rank, there are several banks, where each bank can in-
dependently process DRAM commands sent by thememory control-
ler. While each of the banks within a memory channel can operate
concurrently, banks share a single memory bus, and, thus, the con-
troller must coordinate the operations across multiple banks in or-
der to avoid interference on the bus. The ability to operate multiple
banks concurrently is known as bank-level parallelism [81, 86, 116].
DDR3 DRAM typically contains eight banks in each rank [60].

Each bank contains a two-dimensional array of DRAM cells, as
shown in Figure 1b, where each cell stores a single bit of data in a

capacitor. Within the array, cells can be selected one row at a time,
and the access transistors of the cells in one row are connected
together using a wordline. Each bank contains a row buffer, which
consists of a row of sense amplifiers that are used to temporarily
buffer the data from a single row in the array during read and write
operations. Cells within the array are connected using vertical
wires, known as bitlines, to the sense amplifiers.

A typical row in a DRAM module, which spans across all of the
DRAM chips within a rank, is 8 kB wide, and holds 128 64-byte
cache lines of data. For example, in a DDR3 DRAM module with
four x16 chips per rank, each chip contains a 2 kB portion of the
8 kB row. Each chip holds a piece of each cache line within the row.

2.2 DRAM Operations
In order to access and update data storedwithin DRAM, thememory
controller issues a series of commands across the memory channel
to the DRAM chips. Figure 2 shows the four fundamental DRAM
commands: activate, read, write, and precharge. We describe each of
these commands below.

Ro
w

 D
ec

od
er

Row Buffer

(a) Activate
Ro

w
 D

ec
od

er

Row Buffer

(b) Read/write

Row BufferRo
w

 D
ec

od
er

set to VDD/2

(c) Precharge

Figure 2: Overview of fundamental DRAM commands.

Activate. To start processing a request, the controller issues a
command to activate the row (i.e., open the row to perform reads
and writes) within each DRAM chip that contains a part of the
desired cache line, as shown in Figure 2a. Initially, each bitline is
set to half of VDD , the full supply voltage of the DRAM module.
When an activate command is issued, a row decoder turns on one of
the wordlines on the array, based on the row address of the request.
This activates the row of DRAM cells that are connected to the
wordline that is turned on. Each DRAM cell in the activated row
starts sharing its charge with the bitline that the cell is attached to,
perturbing the bitline voltage by a small amount. Once the bitline
voltage changes by more than a set threshold, the sense amplifier
connected to the bitline detects this charge, and amplifies the bitline
voltage to either VDD (if the DRAM cell connected to the bitline
holds a data value ‘1’) or to 0V (if the DRAM cell connected to the
bitline holds a data value ‘0’). A latch in the row buffer is enabled
to hold the full voltage value.

When a row is activated, the charge sharing process between
the cell and the bitline drains charge from the cells in the selected
row (i.e., destroys the contents of the cells). This change in cell
charge can lead to data corruption if the cell charge is not restored
to correspond to the cell’s original data value. To avoid such data
corruption, the DRAM chip automatically restores the charge within

3

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

the cell back to its starting voltage once the sense amplifier detects
the change in the bitline voltage.

Read/Write. Once an activated row is latched into the row buffer,
the controller sends read and write commands to the row buffer,
as shown in Figure 2b. Each read/write command operates on one
column of data at a time in each chip of a single rank. Across
the entire rank, the width of data operated on by a read/write
command (i.e., column width × # chips) is the same width as a
processor cache line (64 B). Figure 3 shows the peripheral circuitry
in a DRAM module that is used by the read and write commands.
We walk through the four steps of an example read command as its
requested data moves through the peripheral circuitry of one x16
DRAM chip. First, the read command uses the column select logic
(❶ in Figure 3) to select the 128-bit column (which is one part of the
cache line) that the request wants to read. Second, the column is
sent over the global bitline to the bank select logic (❷), which is set
by the read command to select the bank that contains the requested
cache line. Third, the column is then sent over the peripheral bus to
the I/O drivers (❸). The 128-bit column is split up into eight 16-bit
data bursts. Across all four x16 chips in our example module, 64 bits
of data are sent per data burst. The I/O drivers send the data bursts
one at a time across the memory channel, where each wire of the
memory channel has its own dedicated I/O driver. In double data
rate (DDR) DRAM, a burst can be sent on every positive or negative
DRAM clock edge, allowing the entire cache line to be transmitted
in four DRAM clock cycles. Fourth, the bursts are received by the
I/O drivers that sit inside the memory controller at the processor
(❹). The memory controller reassembles the bursts into a 64-byte
cache line, and sends the data to the processor caches. For a write
operation, the process is similar, but in the reverse direction: the
I/O drivers on the memory controller side send the data across the
memory channel.

Precharge. Once the read and write operations to the row are
complete, the controller issues a precharge command, to prepare the
array for commands to a different row, as shown in Figure 2c. During
precharge, the latches in the row buffer are disabled, disconnecting
the DRAM cells from the peripheral circuitry, and the voltage of

the bitlines is set to half of VDD . Note that a precharge command
can be issued by the controller only after the DRAM cells in the
activated row are fully restored.

DRAM Refresh. A key issue in DRAM is that charge leaks from
a DRAM cell, as this charge is stored in a capacitor. When a row
has not been accessed for a long time, the amount of charge that
leaks out of the cell can be large enough to lead to data corruption.
To avoid data loss due to excessive charge leakage, the memory
controller periodically issues refresh commands, which activate the
row, restore the charge, and precharge the bank. In DDR3 DRAM, re-
fresh is typically performed on each row every 64ms [60, 98]. More
detail about DRAM refresh can be found in our recent works [29, 74–
77, 79, 97, 98, 121, 128].

3 EXPERIMENTAL METHODOLOGY
To develop a thorough understanding of the factors that affect
DRAM power consumption, we perform an extensive experimen-
tal characterization and analysis of the power consumption of real
modern DRAM chips. Each operation described in Section 2.2 consu-
mes a different amount of current. We can directly correlate current
to power and energy in DRAM, as (1) DRAM operates at a constant
voltage in modern systems; and (2) DRAM operations take a fixed
amount of time to complete, which is dictated by a series of timing
parameters provided by DRAM vendors for each model. Therefore,
we provide current measurements in our characterization.

In this section, we describe our methodology for measuring the
current consumed by real DRAM modules. In Section 4, we show
how real-world current measurements differ significantly from
the vendor-specified values that form the basis of existing DRAM
power models. In Sections 5 and 6, we study several factors that
existing power models neglect to account for, which significantly
affect DRAM current consumption. In Section 7, we show current
consumption trends over several generations of DRAM. We use our
measurements to develop VAMPIRE, a new DRAM power model,
in Section 9. We plan to open-source our power model, along with
all of our raw measurement data [135].

DRAM Chip 0
Bank 0 Bank 7

. . .

. . .global
bitline

peripheral bus

Processor Chip

Memory Controller

Row Buffer

Column Select

Row Buffer

Column Select

Bank Select

I/O DriversI/O Drivers

memory channel

2 kB

128 b

128 b

64 b (from all chips; 16 b each
assuming four chips)

1

2

3
4

Core
(with private

caches)
. . . Core

(with private
caches)

Shared Last-Level Cache

Figure 3: Overview of peripheral circuitry and I/O in a four-chip DRAMmodule.

4

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

3.1 Current Measurement Infrastructure
Collecting real power measurements from DRAM has historically
been a challenging problem, because in a real system, we do not
have the ability to determine or control the sequence of commands
that are sent to DRAM, making it difficult to correlate commands
with measured power. To work around these obstacles, we construct
a custom FPGA-based infrastructure that allows us to (1) precisely
control the commands that are issued to the DRAM chips, and
(2) accurately measure the current drawn only by the module under
test.

Our infrastructure makes use of a significantly-modified ver-
sion of SoftMC [53, 134], an open-source programmable memory
control infrastructure, and allows us to transparently send custo-
mized sequences of commands to DRAM chips in order to reliably
measure current. One of our major modifications adds support to
loop continuously over a fixed set of DRAM commands, which the
base SoftMC code does not currently support. We do this because
even high-end current measuring equipment can read the average
current only on the order of every hundreds of microseconds [72],
whereas DRAM commands take on the order of tens of nanoseconds.
With our command loop support, we repeatedly perform the same
microbenchmark of DRAM commands back-to-back, providing us
with enough time to accurately measure the current. Our looping
functionality ensures that required periodic maintenance operati-
ons such as ZQ synchronization [161] are issued correctly to the
DRAM chips. As these maintenance operations can alter the state of
the DRAM row buffer, we issue them only between loop iterations.
We guarantee that maintenance operations do not take more than
0.3% of the total microbenchmark execution time, and thus have
a negligible impact on our current measurements. Another of our
major modifications adds support for power-down modes, which
are an important technique employed in modern DRAM chips to
reduce idle power, but are not supported by the base SoftMC code.
This requires us to develop new API calls and DRAM commands
to start and stop the power-down modes. We plan to incorporate
these modifications into the open-source release of SoftMC [134].

Figure 4 shows a photo of the current measurement hardware
used for one test setup in our infrastructure, which extends upon
the base infrastructure used for SoftMC [53]. We program SoftMC
on a Xilinx ML605 [160], a Virtex-6 [159] FPGA board, which is
connected to a host PC and contains an SO-DIMM (small outline
dual in-line memory module) [62] socket. To measure the current
consumed by each DRAM module that we test, we attach a module
to a JET-5467A current-sensing extender board [109]. We remove
the shunt resistor provided on the extender, and add in a 5-coil wire.
We then insert the coil into a Keysight 34134A high-precision DC
current probe [72], which is coupled to a Keysight 34461A high-
precision multimeter [73]. The current-sensing extender is then
inserted into the SO-DIMM socket on the FPGA board. To validate
the accuracy of our infrastructure, we (1) use independent power
supplies to confirm the accuracy of the current measurements that
are read from each DC current probe, (2) perform electrical con-
nectivity tests to verify against the DDR3 SO-DIMM standard [62]
that all power pins on our tested DRAM modules are connected
through the extender board’s coiled wire, and (3) read back data

JET-5467A
Extender Board

DDR3L
SO-DIMM

Xilinx Virtex-6
FPGA

Keysight
34461A

Multimeter

Figure 4: Our experimental infrastructure connected to an
FPGA to measure DRAM current.

from the DRAM modules to verify that each FPGA sends the cor-
rect DRAM commands to the module that is attached to the FPGA
board.

We write custom DRAM command microbenchmarks to perform
each of our tests (see Sections 4 through 7), controlling three factors:
(1) the command sequence issued to DRAM, (2) the data that is read
or written, and (3) the latency of each command. We execute one
microbenchmark at a time by launching the microbenchmark on
the host PC, which sends the DRAM command loop to the SoftMC
controller on the FPGA, and we connect the multimeter to the
host to sample current measurements while the microbenchmark
iterates over the loop. For each test that we execute, we perform
ten runs of the test per DRAMmodule. During each run, we sample
the current while the microbenchmark performs the command
loop, ensuring that we capture at least ten current samples for
each run, and determine the current reading for the overall run
by averaging each sample together. We then average the current
measured over the ten runs to represent the current consumed by
the DRAM module under test. In other words, we collect at least
100 samples per test for each module.

Unless otherwise stated, all DRAM modules are tested at an
ambient temperature of 20 ± 1 ◦C. We examine the effects of high
ambient temperature (70 ± 1 ◦C) using a custom-build heat cham-
ber, where we use a controller connected to a heater to regulate
the temperature [31, 32, 79, 92, 97, 121]. We discuss high ambient
temperature results in Section 6.2.

3.2 DRAMModules Tested
We characterize power consumption on 50 DDR3L [61] DRAM
modules, which (1) are comprised of 200 DRAM chips, and (2) use
the SO-DIMM form factor [62]. Table 1 shows a summary of the
modules that we test. These modules are sourced from three major
DRAM vendors. Each of our modules contains a single rank, and
has a 2GB capacity. The modules support a channel frequency of up
to 1600MT/s,1 but all of our tests are conducted at 800MT/s, due
1In double data rate (DDR) DRAM, the channel frequency is typically expressed as
megatransfers per second (MT/s), where one transfer sends a single 64-bit burst of data

5

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

Table 1: Selected properties of the tested DDR3L DRAMmodules.

Vendor Total Number Timing (ns) Assembly Supply Max. Channel
of Chips (tRCD/tRP/tRAS) Year Voltage Frequency (MT/s)

A (14 SO-DIMMs) 56 13.75/13.75/35 2015-16 1.35V 1600
B (13 SO-DIMMs) 52 13.75/13.75/35 2014-15 1.35V 1600
C (23 SO-DIMMs) 112 13.75/13.75/35 2015 1.35V 1600

to limitations on the maximum frequency at which our FPGA can
operate. In order to anonymize the vendors, we simply refer to them
as Vendors A, B, and C in this paper. Many of these modules are the
same ones used in our prior work [31, 132], where we characterize
the latency and supply voltage behavior, but not the measured
power consumption, of each module. We supply the modules with
their nominal operating voltage of 1.35V [61].

We note that while DDR4 modules are available on the mar-
ket, there is poor experimental infrastructure support available
for such modules today; hence our use of DDR3L modules in our
characterization. In particular, at the time of writing, no tool equi-
valent to SoftMC has support for issuing test routines to DDR4
DRAM at a command-level granularity, and it is very difficult and
time-consuming to develop a new current measurement infrastruc-
ture for DDR4 modules (based on both our prior experience [14–
24, 31, 32, 53, 75–77, 79, 84, 89, 92, 97, 101, 102, 121, 128] and on other
prior work on building DRAM current measurement infrastructu-
res [66, 106]). However, due to the large number of similarities bet-
ween the design of DDR3 memory [110] and DDR4 memory [112],
we believe that the general trends observed in our characterization
should apply to DDR4 DRAM as well. We leave the exact adapta-
tion of the power models that we develop to DDR4 modules and an
investigation of the differences between DDR3 power consumption
and the power consumption of other DDRx DRAM architectures to
future work.

4 MEASURING REAL IDD CURRENT
Most existing DRAM power models are based on IDD values, which
are a series of current measurement tests [60] that are standardi-
zed by the JEDEC Solid State Technology Association (commonly
referred to as JEDEC). DRAM vendors conduct these current me-
asurement tests for each DRAM part that they manufacture, and
publish the measured values in part-specific datasheets. In order to
perform these measurements, a specific series of commands is exe-
cuted continuously in a loop, and average current measurements
are taken while the loop executes. We start our characterization by
measuring the actual current consumed by the modules listed in
Table 1, and present a summary of the actual measurements in this
section.

Recall from Section 3 that due to limitations in the maximum
frequency attainable on an FPGA, our infrastructure can operate the
DRAMmodules using a channel frequency of only 800 MT/s. While
each vendor provides IDD values for multiple channel frequencies
in their datasheets, they do not provide IDD values for 800MT/s, the
channel frequency employed by our FPGA infrastructure. However,

across the channel. DDR DRAM sends two transfers per clock cycle (one on the positive
clock edge, and another on the negative clock edge). This means that for a DRAM with
a channel frequency of 1600MT/s, the channel uses an 800MHz clock [60].

we can take advantage of the following relationship to extrapolate
the expected IDD values at 800MT/s:

P = IV ∝ V 2 f (1)

where P is power, I is the current, V is the voltage, and f is the
frequency. Since the operating voltage is constant at 1.35V, a linear
relationship exists between I and f . As a result, we perform regres-
sion using linear least squares [51, 94] to fit the datasheet values to
a quadratic model, and use this model to extrapolate the estimated
IDD values at 800MT/s. We find that the datasheet values fit well
to the linear model determined through regression. For Vendor C,
which has the worst fit out of our three vendors, the lowest R2
value (which represents the goodness of fit) across all IDD values
is 0.9783. Therefore, we conclude that our estimated IDD values at
800MT/s are accurate.

There are five types of IDD current values that we measure:
(1) idle: IDD2N, IDD3N; (2) activate and precharge: IDD0, IDD1;
(3) read and write: IDD4R, IDD4W, IDD7; (4) refresh: IDD5B; and
(5) power-down mode: IDD2P1.

4.1 Idle (IDD2N/IDD3N)
We start by measuring the idle (i.e., standby) current. JEDEC defines
two idle current measurement loops: (1) IDD2N, which measures
the current consumed by the module when no banks have a row
activated; and (2) IDD3N, which measures the current consumed
by the module when all banks have a row activated.

Figure 5 shows the average current measured during the IDD2N
loop. We use box plots to show the distribution across all modules
from each vendor. Each box illustrates the quartiles of the distri-
bution, and the whiskers illustrate the minimum and maximum
values. We make two key observations from this data. First, there is
non-trivial variation in the amount of current consumed from module
to module for the same DRAM vendor. The amount of variation is
different for each vendor, and the range normalized to the data-
sheet current varies from 14.7% for Vendor A to 37.5% for Vendor B.
As the architecture of the module remains the same for modules
from the same vendor (because we study a single part per vendor),
we conclude that these differences are a result of manufacturing
process variation. Second, the measured currents are significantly
lower than the datasheet values. As we can see in the figure, DRAM
vendors leave a guardband (i.e., margin) in the reported IDD va-
lues. The capacitors used for DRAM cells are very tall and narrow
trenches [114], which improves the chip density. Unfortunately, the
very high aspect ratio (i.e., height over width) of the cells (e.g., > 70
for modern DRAM chips [57]) increases the difficulty of DRAM
lithography, and can result in significant process variation. Vendors
use the guardband to account for the expected worst-case process
variation in IDD values. Our average IDD2N measurement is 38.3%,

6

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

0

20

40

60

80

100

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

1.00

0.80

0.60

0.40

0.20

Figure 5: IDD2N current measurements (left), and current
normalized to datasheet value (right).

76.6%, and 54.9% of the specified IDD2N current for Vendors A, B,
and C, respectively.

We see the same trends for the current measured during the
IDD3N loop, as shown in Figure 6. The average measured IDD3N
current is 23.4%, 53.2%, and 33.4% of the specified IDD3N current
for Vendors A, B, and C, respectively. We observe that the full
normalized range of the measured current (i.e., the difference in
current between the highest-current DRAMmodule and the lowest-
current module) is 8.8%, 19.3%, and 12.4% of the specified current,
respectively for the three vendors. The normalized range represents
how much variation in current exists across the modules that we
tested for each vendor.

0

50

100

150

200

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

0.70

0.50
0.40

0.20
0.10

0.60

0.30

Figure 6: IDD3N current measurements (left), and current
normalized to datasheet value (right).

We conclude that (1) the actual power consumed by real DRAM
modules in the idle state is much lower than the IDD2N/IDD3N
values provided by the vendors, and (2) there is significant variation
of these current values across parts manufactured by a given vendor.

4.2 Activate and Precharge (IDD0/IDD1)
Next, we study the amount of current consumed during activate
and precharge operations. Unfortunately, it is not possible to mea-
sure activation and precharge current independently in real DRAM
modules, as a second activation cannot take place before an already-
activated row is precharged. JEDEC defines two measurement loops
for activation and precharge: (1) IDD0, which performs successive
activate and precharge operations as quickly as possible without
violating DRAM timing parameters; and (2) IDD1, which performs
successive {activate, read, precharge} operations in a similar manner.

Figure 7 shows the average current measured during the IDD0
loop. We make two key observations. First, we again observe a
large margin between the datasheet values and our measurements,
and find that the activation and precharge current consumption

is much lower than expected. Our average IDD0 measurement is
40.2%, 42.6%, and 45.4% of the specified IDD0 current for Vendors A,
B, and C, respectively. Second, we find that the absolute amount
of current consumed across all three models is somewhat similar
despite the large difference in the datasheet specification, with
average current measurements of 72.2mA, 70.4mA, and 58.1mA
for the three respective vendors. We note very similar trends for
IDD1, as shown in Figure 8, with average current measurements of
107.4mA, 114.9mA, and 87.9mA for the three respective vendors

0

50

100

150

200

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t 0.50

0.45

0.40

0.35

0.30

Figure 7: IDD0 currentmeasurements (left), and current nor-
malized to datasheet value (right).

0
50

100
150
200
250
300
350

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

0.70

0.60

0.50

0.40

0.20

0.30

Figure 8: IDD1 currentmeasurements (left), and current nor-
malized to datasheet value (right).

We conclude that the actual power consumed by real DRAM
modules during the activate and precharge operations is much
lower than the IDD0/IDD1 values provided by the vendors.

4.3 Read and Write (IDD4R/IDD4W/IDD7)
We study the amount of current consumed during read and write
operations. JEDEC defines three measurement loops for these ope-
rations: (1) IDD4R, which performs back-to-back read operations
to open rows across all eight banks; (2) IDD4W, which performs
back-to-back write operations to open rows across all eight banks;
and (3) IDD7, which interleaves {activate, read, auto-precharge} ope-
rations across all eight banks.

Figure 9 shows the average current measured during the IDD4R
loop. As we observe from the figure, several of our current mea-
surements actually exceed the value specified by vendors in the
datasheets. In fact, for the modules from Vendor C, the average
current measured from the modules exceeds the datasheet value by
11.4%, with a current of 343.5mA. These measurements should not
be interpreted as a lack of a margin for IDD4R or an underestima-
tion by the DRAM vendor. Instead, these measurements represent a
limitation of our FPGA measurement infrastructure. As part of the

7

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

read operation, the DRAMmodule must drive the data values across
the memory channel. To do so, a read operation selects a column
from an open row of each DRAM chip in the target rank, and uses
the peripheral circuitry inside a DRAM chip, which is responsible
for performing the external I/O (see Section 2.2). While vendor spe-
cifications ignore the portion of the current used by the I/O driver
in the IDD4R value, our measurement infrastructure captures the
I/O driver current, which can account for a sizable portion of the
total measured current. As a result, our measured current includes
a portion that is not included by the DRAM vendors, causing some
of our measured values to be larger than those reported by vendor
datasheets.

0

200

400

600

800

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

1.25

1.00

0.75

0.50

0.25

Figure 9: IDD4R current measurements (left), and current
normalized to datasheet value (right).

We estimate the amount of the current consumed by the I/O
driver (see Section 5.1), and subtract this amount from our original
IDD4R measurement, as shown in Figure 10 (the Corrected bars).
After this correction, the average IDD4R value drops from 52.6%,
94.7%, and 111.4% of the specified IDD4R current to 45.9%, 79.5%,
and 95.4% for Vendors A, B, and C, respectively. We observe that
even with the corrections, the margins provided by Vendors B and
C for IDD4R are much smaller than the margins for the other IDD
values that we measure. This may be because the read operation
does not interact directly with DRAM cells, which are susceptible
to significant manufacturing process variation, and predominantly
makes use of the sense amplifiers, peripheral logic, and I/O drivers.

0

200

400

600

800

Cu
rr

en
t(
m
A)

Datasheet Measured Corrected

Vendor A Vendor B Vendor C

Figure 10: IDD4R current measurements before and after
correction for I/O driver current.

Figure 11 shows the average current measured during the IDD4W
loop. We observe that unlike the IDD4R results, our measurements
for IDD4W are much smaller than the datasheet values. This is
due to two reasons. First, during a write operation, the peripheral
circuitry within the DRAM chip does not need to drive current
across the memory channel, instead acting as a current sink. Second,

unlike read operations, a write operation affects the charge stored
within DRAM cells. Because the DRAM cells are susceptible to
significant manufacturing process variation, the IDD4W numbers
that are reported by the vendors include a large guardband to
account for worst-case DRAM cells that can consume much higher
current than the typical cell. On average, the measured IDD4W
current is 49.1%, 54.5%, and 59.0% of the specified IDD4W current
for Vendors A, B, and C, respectively.

0

200

400

600

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

0.65
0.60

0.50
0.45

0.35
0.40

0.55

Figure 11: IDD4W current measurements (left), and current
normalized to datasheet value (right).

Our IDD7 measurements behave very similarly to IDD0 and
IDD1, but have a larger range, as shown in Figure 12. As the read
operations are interleaved with activate and precharge operations
to each bank, the IDD7 measurement loop accesses the DRAM cells.
As a result, unlike what we observed for IDD4R, the measured IDD7
values have large margins compared to the datasheet. The average
measured IDD7 current is 58.4%, 43.5%, and 52.7% of the specified
IDD7 current for Vendors A, B, and C, respectively, and the full
normalized range (i.e., the difference between the highest-current
module and the lowest-current module) is 10.1%, 17.9%, and 18.1%,
respectively for the three vendors.

0

200

400

600

800

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

0.65
0.60

0.50
0.45

0.35
0.40

0.55

Figure 12: IDD7 current measurements (left), and current
normalized to datasheet value (right).

We conclude that (1) the measured read current is not much
lower than the datasheet value, even after we subtract the effect of
the I/O driver current; and (2) operations that access the cell array
in addition to the peripheral circuitry are likely to consume less
current than the specified datasheet values.

4.4 Refresh (IDD5B)
Next, we study the amount of current consumed during refresh
operations. We study the IDD5B current measurement loop defined
by JEDEC, which performs a continuous burst of refresh commands.
Figure 13 shows the current measured during the IDD5B loop. We

8

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

note that the refresh current consumes the highest current of any
of the operations that we have observed, and that the margin for
refresh is not as large as the idle current margin (see Section 4.1).
For Vendors A, B, and C, we observe average current consumption
across all modules to be 88.6%, 72.0%, and 88.0% of the specified
IDD5B current. However, while the margin is small, the measured
refresh current never exceeds the specified value.

0

200

400

600

800

1000

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

1.00

0.90

0.80

0.70

0.50

0.60

Figure 13: IDD5B current measurements (left), and current
normalized to datasheet value (right).

We conclude that the measured refresh current is not signifi-
cantly lower than the corresponding IDD5B value in the datasheet.

4.5 Power-Down Mode (IDD2P1)
Last, we study the impact of low-power modes in DRAM. Modern
DDRDRAMarchitectures provide several modes tominimize power
consumption during periods of low memory activity. We focus
on the fast power-down mode available in DDR3L DRAM [60, 61],
which turns off the internal clock, decode logic, and I/O buffers,
but keeps the delay-locked loop (DLL) circuit active. We study the
IDD2P1 measurement loop defined by JEDEC for the fast power-
down mode, which measures current when no bank is active.2

Figure 14 shows the current measured during the IDD2P1 loop.
We observe that the power-down mode is quite effective when no
bank is active, reducing the current significantly compared to when
no bank is active in normal power mode (which we characterize
above using the IDD2N measurement loop, as shown in Figure 5).
For Vendors A, B, and C, power-down mode reduces the current by
65.8%, 30.6%, and 48.7%, respectively (as observed by comparing the
measured values in Figure 14 to those in Figure 5.). For Vendors A
and C, for whom power-down mode is highly effective, the varia-
tion across modules in power-down current is small as well, with a
normalized range of 4.8% and 17.3% of the specified IDD2P1 cur-
rent, respectively. In contrast, the power-down mode for Vendor B
consumes significantly greater power, and its current ranges by as
much as 47.9% of the specified IDD2P1 current, indicating a less
efficient and more variation-prone power-down implementation
than the implementations of Vendors A and C.

We conclude that the power-down mode is effective at reducing
power, but it has significant power variation across vendors.

2A second mode, known as slow power-down, turns off the DLL circuit in addition
to the internal clock, decode logic, and I/O buffers. We are unable to test the slow
power-down mode, because our test infrastructure does not allow us to disable the
DLL circuit. As a result, we do not include results for the IDD2P0 measurement loop,
which is designed to test the slow power-down mode.

0

20

40

60

80

Cu
rr

en
t(
m
A)

Datasheet
Measured

Vendor A Vendor B Vendor C A B C

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

1.20

0.80
0.60

0.20
0.00

1.00

0.40

Figure 14: IDD2P1 current measurements (left), and current
normalized to datasheet value (right).

4.6 General Observations
Collectively examining all of the IDD results that we present in
Sections 4.1–4.5, we make two key observations.

First, we find that the majority of IDD values specified by the
DRAM vendors are drastically different from our measured results.
We believe that our measurements provide a more realistic vision
of the amount of power consumed by real-world modules than
the vendor-specified IDD values, and demonstrate inter-vendor
and intra-vendor module-to-module variation in DRAM power
consumption. In fact, we find that power models based on the IDD
values are oblivious to many significant factors that can affect the
power consumed by DRAM. These power models assume accesses
to specific banks, rows, and columns using specific data patterns,
but as we show in Sections 5 and 6, varying these factors can have
a non-trivial impact on the energy consumed by a DRAM module.

Second, we find that while there is a large difference in the
datasheet-reported IDD values across our three vendors, the dif-
ference in measured current is much smaller than the IDD values
suggest for activate, read, write, and precharge operations. For ex-
ample, for the IDD4R value, the datasheets state that Vendor A’s
DRAM modules consume 139% more current than Vendor C’s mo-
dules (a total difference of 427mA). In reality, we find from our
measurements that Vendor A’s modules consume only 26% more
current than Vendor C’s modules on average (a total difference
of 79mA). We believe that this observation is a result of all three
vendors’ modules being manufactured using similar process techno-
logy nodes. This is quite likely given the fact that the modules were
all manufactured around the same time (see Table 1). Despite the
use of similar process technology nodes by all three vendors, Ven-
dor A’s IDD values appear to include much larger margins than
the IDD values from Vendors B and C. This could reflect either
different levels of conservatism among the vendors, or could imply
that modules from vendors that employ larger margins have greater
variation (though we do not observe this in our experiments).

5 DATA DEPENDENCY
One major aspect that existing DRAM power models ignore is the
effect that a data value has on DRAM power consumption. The IDD
measurement loops, as defined by JEDEC, use only the data patterns
0x00 and 0x33 (where the byte value is repeated for each byte within
the cache line). While this allows for the tests to be standardized, it
does not offer any insight into whether or not current consumption
depends on the data value that is being read or written.

9

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

In this section, we design a set of measurements that determine
whether or not a relation exists between the data value and power
consumption, and analyze the results of these measurements. We
break these studies down into two parts: (1) whether the number of
ones within a cache line impacts the power consumed by DRAM
(Section 5.1), and (2) for a fixed number of ones, whether the fraction
of bits toggled within a cache line impacts the power consumed by
DRAM (Section 5.2). Based on our studies, we develop models for
our modules that quantify how power consumption changes for
each operation when we account for (1) the number of ones in a
cache line and (2) the number of wires that experience toggling
during a read or write operation (Section 5.3).

5.1 Effect of Number of Ones in Data
We start by exploring the relationship between the number of ones
in a 64-byte cache line (which consists of a number of columns read
from DRAM, as we discuss in Section 2.2) and the power consumed.
In order to test this behavior, we select a set of rows that we would
like to test, and populate each column of the row with the same
data pattern. We then repeatedly read data out of a single column
in a single row. Figure 15 shows how the current drawn by the
DRAM module (y-axis) changes as we increase the number of ones
in the cache line (x-axis), for both reads (Figure 15a) and writes
(Figure 15b). We make two key observations from the figure.

0

200

400

600

800

0 128 256 384 512

Re
ad

 C
ur

re
nt

(m
A)

Number of Ones in a Cache Line

Vendor A
Vendor B
Vendor C

(a) Read command

0

200

400

600

800

0 128 256 384 512

W
rit

e
Cu

rr
en

t(
m

A)

Number of Ones in a Cache Line

Vendor A
Vendor B
Vendor C

(b) Write command

Figure 15: Effect of the number of ones on the read (left) and
write (right) current drawn by DRAM. Error bars indicate
the 25th and 75th percentile measurements.

First, as the number of ones in a cache line increases, the current
required for a read operation increases, while the current required for
a write operation decreases. The variation in power consumption
with the number of ones is as much as 434mA for reads and 311mA
for writes (Vendor A). There are two causes for this: (1) the I/O
driver design, and (2) data-dependent power consumption within
the DRAM module. As we discuss in Section 2.2, when data is
transferred over the memory channel, each wire of the channel
is attached to two I/O drivers: one inside the DRAM module, and
another inside the memory controller. Only one of the I/O drivers
actively drives current on the wire at a time, depending on (1) the
operation being performed, and (2) the bit value that is transferred
on the wire. When one of the I/O drivers is driving current on the
wire, the other I/O driver sinks current [71]. For example, when
the wire is transferring a bit value one during a read operation
from DRAM, the I/O driver in the DRAMmodule drives the current
on the wire, while the I/O driver in the memory controller sinks

current. When the wire is transferring a bit value zero during a
read operation from DRAM, the I/O driver in the DRAM module
sinks current, while the I/O driver in the memory controller drives
current. The opposite is true for write operations to DRAM: the
I/O driver in the memory controller drives current when the wire
is transferring a bit value one to DRAM, and the I/O driver in the
DRAM module drives current when the wire is transferring a bit
value zero to DRAM. Even if we eliminate the estimated current used
by the I/O drivers (see Section 5.3), as shown in Figure 16, we still
observe significantly data-dependent power consumption, which
can change the current by as much as 230mA for reads and 111mA
for writes (Vendor A). While we cannot definitively identify the
sources of data-dependent power consumption within the DRAM,
we suspect that other peripheral circuitry within the DRAM, such
as the bank select and column select logic (see Section 5.2), may be
responsible for the data-dependent current behavior.

0

200

400

600

800

0 128 256 384 512
Number of Ones in a Cache Line

Vendor A
Vendor B
Vendor C

230 mA
Co

rr
ec

te
d

Re
ad

 C
ur

re
nt

(m
A)

(a) Read command

0

200

400

600

800

0 128 256 384 512
Number of Ones in a Cache Line

Vendor A
Vendor B
Vendor C

111 mA

Co
rr

ec
te

d
W

rit
e

Cu
rr

en
t(

m
A)

(b) Write command

Figure 16: Effect of the number of ones on the read (left)
and write (right) current drawn by DRAM, after subtracting
a conservative estimate of the I/O driver current.

Second, we observe that the relationship between the current
consumption and the number of ones is linear. Note that this linear
relationship is true even after we remove the effect of the I/O driver
current on the current measurements shown in Figure 15, as shown
in Figure 16. We use this linear relationship to build models of the
current consumption in Section 5.3.

We also perform tests to determine whether the data value sto-
red within a row affects the activate and precharge current (not
shown). We find that there is no notable variation for activate and
precharge current consumption based on the stored data value. This
is due to the way in which bitlines access a row during activation.
For each bitline, there is a corresponding reference bitline. For a
DRAM where a bit value 0 is represented as 0V and a bit value 1 is
represented asVDD , the bitline and reference bitline are precharged
to voltageVDD/2, allowing them to swing in either direction based
on the data held in the row. During activation, a cell swings (i.e.,
perturbs) the voltage of its bitline in the direction of the charge
stored in the cell, and the reference bitline is perturbed in the oppo-
site direction. Thus, for every activation, there is always one line
swinging up to VDD , and another line swinging down to 0V [71].
As a result, there is little difference between the power required for
a cell that stores a zero and a cell that stores a one during activate
and precharge operations.

10

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

5.2 Effect of Bit Toggling
Next, we explore how interleavingmemory requests across multiple
columns and banks affects the current drawn by DRAM. Figure 17
shows a high-level overview of the logic used in a DRAM chip to
select the bank and column desired by a request. Each bank contains
column select logic (e.g., ❶ for Bank 0 in Figure 17). When a row is
active in a bank, the entire contents of the row are latched in a row
buffer (see Section 2.1). The column select logic chooses one column
of data from the row buffer to output on the global bitline of the
bank. The DRAM chip then uses the bank select logic (❷) to choose
which global bitline contains the column that the chip should send
across the memory channel. The bank select logic sends this data
across the peripheral bus to the I/O drivers.

Bit toggling can occur when two back-to-back requests go to
different banks and/or columns. We can see where bit toggling
occurs by using the example 4-bit select logic shown in Figure 17.
If we have two back-to-back read requests, where Request W reads
Bank 0, Column 0, and Request X reads Bank 0, Column 1, the global
bitline wires for Bank 0 first send binary value 0000 (for Request W),
and then send binary value 1010 (for Request X). This causes two of
the wires in the global bitline, and two of the wires in the peripheral
bus, to toggle from a bit value 0 to a bit value 1. The number of wires
that toggle is data dependent: if Request X reads Bank 0, Column 2
instead, all four wires of the global bitline and all four wires of the
peripheral bus toggle. Requests W and X are an example of column
interleaving, because the requests go to two separate columns in the
same bank. Bit toggling can also take place during bank interleaving,
where back-to-back requests go to different banks. For example, if
we have two back-to-back read requests, where Request Y reads
Bank 0, Column 0, and Request Z reads Bank 7, Column 0, three
of the peripheral bus wires experience bit toggling, as the wires
first send binary value 0000 (for Request Y) and then send binary
value 1011 (for Request Z). Note that toggling does not always occur
when requests are column- and/or bank-interleaved. For example,
if one request reads Bank 7, Column 0, and another request reads
Bank 7, Column 2, the data on both the global bitlines for Bank 7
and the peripheral bus does not change.

We design a series of tests that can capture the current consumed
by the column and bank select logic, and how bit toggling at the
column/bank select logic affects current consumption. We perform
three types of tests:

(1) No Interleaving: All requests access the same bank and the same
column.

(2) Column Interleaving: Back-to-back requests access different
columns in the same bank.

(3) Bank+Column Interleaving: Back-to-back requests access diffe-
rent banks, and the column that is being accessed in a particular
bank is different from the column that was accessed by the last
access to that bank.

For each of the three types above, we perform multiple tests, va-
rying (1) the data pattern stored in or written to each column, and
(2) whether the test consists of all read requests or all write requests.

Note that when we change the data pattern being used, the
change in current is affected by two factors: (1) the increase in
current due to bit toggling, and (2) the increase in current due to
the number of ones in the data (see Section 5.1). As an example,
consider what happens during the column interleaving test for two
different pairs of data values. If we constantly alternate between
reading data value 0x00 and data value 0xAA from two columns, 50%
of the bitlines experience toggling. If we instead alternate between
data value 0x00 and data value 0x0A, the toggle rate is only 25%.
However, the column with data value 0xAA also has two more bits
set to ‘1’ than the the column with data value 0x0A, which requires
more current, as we discuss in Section 5.1. In order to isolate the
effect of only bit toggling, we calculate the total number of ones
in the two reads, and subtract the toggle-free current consumed
when reading the same number of ones with column interleaving.
For our example test where we alternate between a column with
data value 0x00 and another column with data value 0xAA (i.e.,
across both columns, there are an average of two ‘1’s per column),
we eliminate the impact of the number of ones by subtracting the
current consumed when we alternate between two columns that
both contain data value 0x88 (where each column has two ‘1’s).

Figure 18 shows how the measured current increases as we
increase the number of bits that are toggling, summarizing the
increase per bit across a wide range of data values for our column
interleaving (Figure 18a) and bank+column interleaving (Figure 18b)
tests. As we found for the number of ones, the current increases
linearly as we increase the number of bits that are toggling. In
Figure 18, we plot toggle sensitivity on the y-axis, which shows the
increase in current for each additional bit that is toggling, in terms
of mA/bit.

0000 1010 1111 … 0011

Bank 0 Row Buffer
0 1

column
number 2 c – 1

1011 0010 1011 … 0110

Bank 1 Row Buffer
0 1 2 c – 1

1011 0010 1011 … 0110

Bank 7 Row Buffer
0 1 2 c – 1

1

2

. . .

. . .

. . .

. . .

.

Column Select Column Select Column Select

Bank Select
global bitlines

peripheral bus
to I/O drivers

global bitlines

Figure 17: Column and bank select logic organization.

11

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

0.00

0.05

0.10

0.15

0.20

A B C A B C

To
gg

le
 Se

ns
iti

vi
ty

 (m
A/
bi
t)

0.267

Read Operation Write Operation

Column

(a) Column interleaving

0.00

0.05

0.10

0.15

0.20

A B C A B C

To
gg

le
 Se

ns
iti

vi
ty

 (m
A/
bi
t)

0.286

Read Operation Write Operation

Bank+Column
0.223

(b) Bank+column interleaving

Figure 18: Effect of bit toggling on read and write current consumption.

We make two key observations from the figure. First, the impact
of bit toggling on DRAM current consumption (up to a total of 26mA
for Vendor A with column interleaving when all bits are toggling)
is much smaller than the impact of the number of ones (230mA for
Vendor A when all bits are set to ones; see Section 5.1). Second,
toggling for the bank+column interleaving test requires less current
than toggling for the column interleaving test. We believe that both
of these observations are due to the design of the select logic, which
we show in Figure 17. When the DRAM selects another column
in the same bank, both the wires between the column select logic
and the bank select logic, and the wires between the bank select
logic and the I/O drivers, experience toggling. In contrast, when
DRAM selects a different bank, only the wires of the peripheral bus
experience toggling, which reduces the bit toggling energy in the
bank+column interleaving test compared to the bit toggling energy
in the column interleaving test.

We conclude that there is a linear relationship between the cur-
rent consumed and the number of bits that toggle, but that the
amount of current consumed as a result of bit toggling is small,
especially when compared to the current consumption effect of the
number of ones in the data.

5.3 Data Dependency Models
From our experiments in Sections 5.1 and 5.2, we observe a linear
relationship between the current consumed and the number of
ones in the cache line, as well as a linear relationship between the
current consumed and the number of bits that toggle due to back-
to-back read/write requests. As a result, we use linear least-squares
regression on our characterization data to develop quantitative

models for this relationship, in the following form:

Itotal = Izero + ∆IoneNones + ∆ItoддleNtoддles (2)

where Itotal is the total current consumed (in mA), Izero is the
current consumed when the cache line contains all zeroes, ∆Ione
represents the extra current for each additional one in the cache
line, Nones is the number of ones in the cache line, ∆Itoддle repre-
sents the extra current for each additional bit that is toggling, and
Ntoддles is the number of bits that were toggled, We confirm the
linear relationships of current with (1) the number of ones in the
cache line and (2) the number of bits toggled, by using the square of
the Pearson correlation coefficient [123], commonly known as the
R2 value. We find that across all of the modules that we measure,
the R2 value of these two correlations is never lower than 0.990.

Because different types of interleaving make use of different
switching circuitry, we require a separate set of model parameters
to use in Equation 2 for each type of operation interleaving. Ta-
ble 2 shows the average values of Izero , ∆Ione , and ∆Itoддle in mA
for read and write operations, with column interleaving, for each
module vendor. We compare the output of our model shown in
Table 2 to the average measured current of each data point shown
in Figure 15 (see Section 5.1), and find that the percent error of our
model never exceeds 1.40% (and the average percent error across all
data points is 0.34%). Table 5 in the appendix shows the parameters
used to model other combinations of bank and/or column interle-
aving. These data dependency models form a core component of
our new measurement-based DRAM power model (see Section 9).

We conclude that our models accurately capture the relationship
between data dependency and DRAM current consumption.

Table 2: Parameters (Izero , ∆Ione , ∆Itoддle ; in mA) used in Equation 2 to model current consumption (Itotal) due to data depen-
dency when read/write operations are column interleaved.

Vendor Read Write
Izero (mA) ∆Ione (mA) ∆Itoддle (mA) Izero (mA) ∆Ione (mA) ∆Itoддle (mA)

A 246.44 0.433 0.0515 531.18 -0.246 0.0461
B 217.42 0.157 0.0947 466.84 -0.215 0.0166
C 234.42 0.154 0.0856 368.29 -0.116 0.0229

12

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

6 CHARACTERIZING VARIATION OF
CURRENT

A significant limitation of existing DRAM power models [25, 27,
65, 111] is that they are based on IDD tests that are performed
by DRAM vendors on only a fixed set of banks and rows at room
temperature [60]. While these fixed conditions ensure repeatability,
the resulting existing models do not capture power consumption
variation across banks, rows, or temperature. In this section, we per-
form a series of experiments to characterize (1) structural variation,
where current may vary based on the bank, row, or column selected
due to the circuit-level design of the DRAM chip (Section 6.1), and
(2) whether the operating temperature of DRAM affects its current
consumption (Section 6.2). The results we have presented throug-
hout the paper so far already capture a third type of variation:
process variation. As we have shown using box plots (Figures 5–14),
different modules of the same part, from the same vendor, exhibit
a non-trivial amount of current variation for tests that target the
same bank(s), row(s), and column(s).

6.1 Structural Variation of Current
Each module consists of a number of hierarchical structures (i.e.,
banks, rows, and columns) that are connected together to provide
density and parallelism. Due to the need to maximize density and
optimize the physical chip layout, theremay be low-level differences
among some components. For example, in the Open Bitline architec-
ture [59], a DRAM array is broken up into subarrays [29, 30, 82, 139],
and pairs of subarrays share common row buffer structures. Subar-
rays in the middle of the bank share structures with both neighbors,
but subarrays placed at the edge share structures with only one
neighbor. Likewise, due to variation in the distance between diffe-
rent rows in a subarray and the logic required to access the row
(e.g., wordline select logic, row buffers), there can be significant
variation in the latency of different rows [32, 89]. We now study
if such structural variation factors impact the current consumed
by DRAM. We consider variation to be structural in nature only
when we observe the same trend repeated in each of the modules
we study from the same vendor. We consider all other variation to
be due to manufacturing process variation, and do not report it in
this section.

6.1.1 Structural Variation Across Banks. We first characterize
current variation across banks within the same module. Figure 19
shows the idle current consumed when we keep Row 0, which
contains all zeros, open (i.e., activated) in each bank. In the figure,
the average measured current of each bank is normalized to the
average measured current consumed by Bank 0, where Row 0 is
activated and contains all zeroes, for each vendor. We observe that
modules fromVendors A and B show little to no inter-bank variation
in their idle current consumption, but modules from Vendor C have
significant variation. Depending on which bank is activated, the
current can vary by as much as 23.6%. We find that these results
hold for other rows that we test. As we discuss in detail below,
we hypothesize that Vendor C’s DRAM chip organization contains
structural differences across each bank, resulting in the current
variation that we observe.

0.9
1.0
1.1
1.2
1.3

Vendor A Vendor B Vendor C
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

No
rm

al
ize

d
Id

le
 C

ur
re

nt

Figure 19: Idle current variation across banks when one
bank is active, normalized to current for Bank 0. Error bars
indicate the 25th and 75th percentile measurements.

Next, we characterize the variation in read current for each
bank within the same module. Figure 20 shows the average current
consumed when we repeatedly read Column 0 from Row 0 for each
bank, normalized to the average measured current consumed for
Bank 0 for each vendor. For these experiments, Row 0 contains
all zeroes. We observe that, in this case, all of the modules exhibit
variation. The variation for Vendor C does not match the variation
trend observed in Figure 19. We perform the same experiments
for writes (Figure 21), but find no notable variation for any of our
modules. This indicates that the structural variation is a result of
components that are used during read operations but not during
write operations. We observe similar variation trends when we
repeat the experiments with different data values in Row 0.

0.8
0.9
1.0
1.1

Vendor A Vendor B Vendor C
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

No
rm

al
ize

d
Re

ad
 C

ur
re

nt

Figure 20: Read current variation across banks, normalized
to current for Bank 0. Error bars indicate the 25th and 75th
percentile measurements.

0.8
0.9
1.0
1.1

Vendor A Vendor B Vendor C
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

No
rm

al
ize

d
W

rit
e

Cu
rr

en
t

Figure 21: Write current variation across banks, normalized
to current for Bank 0. Error bars indicate the 25th and 75th
percentile measurements.

Based on our results, we hypothesize that for modules from
Vendors A and B, the variation is a result of structural variation
in the I/O driver circuits used to read data, as the I/O drivers in
the DRAM module drive current on the DRAM channel only du-
ring a read operation. As Vendor C’s modules show variation in
the idle state and during read operations, but the variation trends
do not match, we conclude that there are multiple sources for the

13

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

variation that we observe, which include I/O driver variation. Over-
all, we find that structural variation exists across banks, but that
the pattern of variation is highly dependent on the vendor, due
to differences in the DRAM architecture from vendor to vendor.
Unfortunately, without access to detailed information about the
underlying DRAM architecture of each part (which is information
proprietary to DRAM vendors [75, 89]), we are currently unable to
pinpoint the exact sources of this structural variation.

6.1.2 Structural Variation Across Rows. Next, we characterize
current variation across rows within the same bank. For each module,
wemeasure and compare the current consumedwhenwe repeatedly
activate and precharge 512 different rows.3 We find that there is
systematic structural variation in each of our modules. We observe
that the current consumed by each row increases with the number
of ones in the row address. Figure 22 shows this trend, where we
average together the current consumed by rows that contain the
same number of ones in their row address, and plot the average
current sorted by the number of ones in the address (on the x-
axis). As the figure shows, modules from Vendors A and B show
a correlation between the number of ones in the row address and
the current. For modules from Vendor B, a row with 15 ones in its
address consumes 14.6% more current than a row with all zeroes
in its address. Modules from Vendor C show a similar trend, but
exhibit a much smaller slope, and thus less variation, than modules
from Vendors A and B.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No
rm

al
ize

d
M

ea
su

re
d

Cu
rr

en
t

Number of Ones in Row Address

Vendor A
Vendor B
Vendor C

1.20
1.15
1.10
1.05
1.00
0.95

Figure 22: Relationship between activation current and
number of ones in row address, normalized to activation cur-
rent for Row 0.

We hypothesize that there are two potential sources of this va-
riation. First, due to the way that rows are organized within the
DRAM cell array, rows with more ones in their row addresses are
more likely to be physically further away from the sense amplifier
and column select logic [89]. As a result, longer segments of wires
must be driven for operations to rows with more ones in their row
addresses. Second, the row decoding logic uses some or all of the
row address bits to enable the wordline of the row that is activated.
The row decoding logic may consume more energy when a greater
number of row address bits are set to one. We cannot, however,
confirm these hypotheses without knowing the circuit-level im-
plementation of the internal logic of each DRAM chip, which is
information proprietary to DRAM vendors.
3We do not study the power consumed by read and write operations across different
rows, as these operations are not performed on the cells themselves. Instead, reads
and writes operate on data that is already in the row buffer, and the same row buffer
is used by all of the rows in a bank. Thus, the read and write operations use the same
hardware structures regardless of the row being accessed.

6.1.3 Structural Variation Across Columns. Last, we characterize
the current variation across columns within the same row. To this
end, for each column in an activated row, we measure the current
consumed when we repeatedly read from or write to that column,
and compare this with the current consumed when we repeatedly
read from or write to Column 0. (We do not show these comparisons
for brevity.) We find that for both read and write operations, there
is no notable variation in current consumption from one column
to another. We hypothesize that this lack of variation is because
read and write operations to different columns in a row make use
of the same global bitlines, bank select logic, peripheral bus, and
I/O drivers (see Figure 3 in Section 2.2). Thus, we conclude that
there is no significant source of structural current variation between
columns.

6.2 Variation of Current Due to Temperature
Prior work has shown that DRAM latency and refresh rates can be
affected by the temperature at which DRAM operates [31, 32, 79, 92,
97, 121]. To investigate if a relationship exists between operating
temperature and the current consumed by DRAM, we repeat all of
our experiments at 70 ± 1 ◦C.

From our experiments, we do not observe anymeasurable current
variation due to temperature (results not shown for brevity). We
believe that this is a limitation of our DRAM testing infrastructure.
In DRAM, the main source of temperature-related effects is the
change in charge leakage. At higher temperatures, the charge stored
within a DRAM cell leaks more rapidly [29, 79, 97, 98, 113, 121]. As
a result, refresh operations must either (1) restore a greater amount
of charge into the cell or (2) be performed more frequently, to make
up for the additional charge that leaked over the same amount of
time. As our test infrastructure continually iterates over a loop of
DRAM commands, the DRAM cells are continually accessed, and do
not have enough time to leak charge [97]. Thus, our measurements
cannot capture the impact of charge leakage without extensive
modifications to the SoftMC design. We leave such modifications to
SoftMC, and the resulting characterization of how charge leakage
due to temperature affects DRAM power consumption, to future
work.

7 GENERATIONAL TRENDS
The results we have presented so far examine the power consumed
by modules manufactured in recent years, using the latest process
technologies developed for DRAM. As is the case with micropro-
cessors, end users and system designers have grown accustomed to
reduced power consumption when new process technologies are
used. For DRAM, users and designers currently rely on datasheet
current specifications to estimate the amount of power savings
from one generation to another. In this section, we compare the
power reduction trends indicated by the datasheet values with the
actual power savings, as measured using our infrastructure.

We study changes in power consumption across DRAM gene-
rations for Vendor C. In addition to the modules listed in Table 1,
we have access to a number of older modules manufactured by
Vendor C. Table 3 summarizes select properties of these modules.
We test modules of two older parts, with one of the parts manu-
factured in 2011, and the second part manufactured in 2012. In

14

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

Table 3: Properties of older DDR3L modules from Vendor C.

Number Total Number Timing (ns) Assembly Supply Max. Channel
of Modules of Chips (tRCD/tRP/tRAS) Year Voltage Frequency (MT/s)

3 SO-DIMMs 24 13.75/13.75/35 2011 1.35V 1333
4 SO-DIMMs 32 13.75/13.75/35 2012 1.35V 1600

comparison, the Vendor C modules studied thus far in this paper
were manufactured in 2015.

To compare the change in power consumption across generati-
ons, we measure the IDD values for each module. Figure 23 shows
four of these IDD values, representing idle/standby (IDD2N), acti-
vate and precharge (IDD0), read (IDD4R), and write (IDD4W) cur-
rents. If we study the expected savings from the datasheet values
(dotted blue lines), we see a general downward trend as modules
move to newer process technologies (we plot the year of manu-
facture along the x-axis), indicating that the power consumption
should have decreased. Based on our measurements, we make two
key observations.

0

50

100

150

200

2010 2011 2012 2013 2014 2015

C
u

rr
e

n
t
(m

A
)

Year Manufactured

Datasheet Measured

-112.1mA

-53.7mA

(a) IDD2N (idle/standby)

0

100

200

300

400

2010 2011 2012 2013 2014 2015

C
u

rr
e

n
t
(m

A
)

Year Manufactured

Datasheet Measured

-192.1mA

-64.0mA

(b) IDD0 (activate and precharge)

0
100
200
300
400
500
600
700

2010 2011 2012 2013 2014 2015

C
u

rr
e

n
t
(m

A
)

Year Manufactured

Datasheet Measured

-212.2mA
-140.6mA

(c) IDD4R (read)

0
100
200
300
400
500
600
700

2010 2011 2012 2013 2014 2015

C
u

rr
e

n
t
(m

A
)

Year Manufactured

Datasheet Measured

-200.2mA

-147.4mA

(d) IDD4W (write)

Figure 23: Generational trends in IDD measurements.

First, we observe that for each IDD value, the actual power saved
by switching to a newer-generation module, as measured by using
our infrastructure, is significantly lower than the savings predicted
by the datasheet. For example, based on the datasheet, the expected
decrease in IDD0 current (Figure 23b) for moving from amodule ma-
nufactured in 2011 to a module manufactured in 2015 is 192.1mA.
In comparison, we measure an actual decrease of 64.0mA, repre-
senting only 33.3% of the expected savings. For read and write
operations, the difference is less drastic, but still statistically signi-
ficant. Using IDD4W (Figure 23d) as an example, we see that the
expected decrease from the datasheet is 200.2mA, but the decrease
measured from the actual DRAM modules is 147.4mA, or 73.6% of
the expected savings.

Second, we observe that in the case of IDD4R (Figure 23c), while
the read power consumed by older-generation modules was within
the IDD4R value in the datasheet, the lower-than-expected savings
have caused the measured current to exceed the expected current
based on the datasheet. This is in part due to the fact that the I/O
driver current is included in our read current measurement due to
the design of our infrastructure, but the I/O driver current is not
included as part of the vendor-specified current. As we discuss in
Section 4.3, the inclusion of the I/O driver current is a limitation
of our measurement infrastructure, but we can eliminate the I/O
driver current by applying correction mechanisms. Since the I/O
driver current is a constant value for all of our measurements,
the amount by which the measured read current decreases across
generations is not affected by the I/O driver current. We find that
the actual measured power savings for IDD4R is only 66.3% of the
expected savings reported in the datasheets (a measured decrease
of 140.6mA vs. an expected decrease of 212.2mA).

From our observations, we conclude that the power reduction
from DRAM scaling is not as significant as expected from the data-
sheet values provided by DRAM vendors. With almost half of the
total system power now consumed by DRAM [38, 48, 56, 93, 104,
122, 157, 163], system designers may not be able to obtain the total
system power savings they had expected by transitioning to newer
DRAM models, which could adversely affect the amount of power
and/or battery that is provisioned for a system.

8 SUMMARY OF KEY FINDINGS
We have presented extensive experimental characterization results
and analyses of DRAM power consumption that capture a wide
range of properties affecting the power consumption of real modern
DRAM devices. We summarize our findings in four key conclusions:
(1) The current consumed by real DRAM modules varies signifi-

cantly from the current specified in datasheets by the vendors,
across all IDD values that we measure (Section 4). We com-
prehensively show that there is significant inter-vendor and
intra-vendor module-to-module variation in DRAM power con-
sumption.

(2) DRAM power consumption strongly depends on the data value
that is read from or written to the DRAM chip, but does not
strongly depend on the amount of bit toggling (Section 5).

(3) There is significant structural variation of power consumption
within a DRAM chip, where the current varies based on which
bank or row is accessed in the DRAM chip (Section 6).

(4) Across successive process technology generations, the actual
power reduction of DRAM is much lower than the savings
indicated by the vendor-specified IDD values in the datasheets
(Section 7).

15

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

9 VAMPIRE: MODELING DRAM POWER
In order to overcome the shortcomings of existing power models,
we use the new observations from our rigorous experimental charac-
terization of real DRAM chips (Sections 4–6) to build the Variation-
Aware model of Memory Power Informed by Real Experiments (VAM-
PIRE). To our knowledge, VAMPIRE is the first real-measurement-
based power model for DRAM. By using our actual measurements
from our characterization, VAMPIRE predicts a realistic value for
DRAM power consumption, with little error. We validate VAMPIRE
against microbenchmarks executed on our power measurement
infrastructure to test and ensure its accuracy (see Section 9.1).

VAMPIRE takes in DRAM command traces, similar to the com-
mand traces used by DRAMPower [25, 27]. Each line of the com-
mand trace contains (1) the command name; (2) the target rank,
bank, row, and column for the command, if applicable; and (3) for
read and write commands, the 64-byte data that is read from or
written to DRAM. By annotating the data alongside the write com-
mand, VAMPIRE can determine data-dependent power consump-
tion. VAMPIRE also supports traces that do not include the written
data values: users can instead manually input a certain distribution
for the fraction of ones and the amount of bit toggling, which VAM-
PIRE uses to approximate the effect of data dependency on power
consumption.

VAMPIRE consists of three core components: (1) read and write
power modeling, which incorporates data-dependent behavior;
(2) idle/activation/precharge power modeling; and (3) structural va-
riation modeling. The first model component, read and write power
modeling, uses the data-dependency-aware current models that we
develop in Section 5.3. These current models incorporate the change
in power consumption due to (1) the number of bits set to one in the
data, (2) bit toggling, and (3) switching between different banks and
columns. The second model component, idle/activation/precharge
power modeling, uses the measurements from Section 4 to capture
the actual power consumed for all DRAM commands aside from
read and write. This includes the power consumed by activate ope-
rations, precharge operations, refresh operations and power-down
modes, and when a DIMM is idle. The third model component,
structural variation modeling, uses our characterization results
from Section 6 to adjust the estimated current based on which bank
and row are accessed.

VAMPIRE outputs a separate power value for each vendor, and
can account for process variation by outputting a range of power
values based on the impact of variation, as estimated from the varia-
tion that we capture in our experimental characterization. We plan
to integrate VAMPIRE into several memory system simulators (e.g.,
gem5 [11], DRAMSim2 [131], Ramulator [83, 133], NVSim [45]),
and will open-source the model [135].

9.1 Model Validation
We use a new series of experimental measurements, which were
not used to construct VAMPIRE, to validate the accuracy of our
model and compare it with the accuracy of two popular state-of-the-
art DRAM power models: the Micron power calculator [111] and
DRAMPower [25, 27]. Both models are based off of worst-case IDD
values reported in vendor datasheets, and neither of them models
most process variation, data-dependent power consumption, or

structural variation. We use the extrapolated IDD values that we
calculate in Section 4 as parameter inputs into both the Micron
power calculator and DRAMPower.

In the validation experiments, we execute the following sequence
of commands: {activate,n×read, precharge}, where we sweep various
values of n between 0 and 764.4 Each read operation reads a cache
line where all bytes of the cache line contain the data value 0xAA.
All reads are performed to Bank 0, Row 128, and back-to-back reads
are interleaved across different columns (see Section 5.2. For the
validation experiments, we measure the power consumption of
22 DRAM modules (8 modules for Vendor A, and 7 modules each
for Vendors B and C), where themodules of each vendor are selected
randomly from the 50 modules listed in Table 1. We generate traces
that capture the behavior of each experiment, and then feed them
into each of the DRAM power models that we evaluate.

Figure 24 shows the mean absolute percentage error (MAPE)
across each of our validation experiments, for each DRAM power
model compared to the measured current of each vendor’s DRAM
modules. We make three observations from the figure. First, the
Micron power model has a very high error across all three vendors,
with a MAPE of 160.6%, averaged across all three vendors. The
Micron model significantly overestimates the power consumption
of DRAM, as prior work has shown [25, 65], since it does not accura-
tely model a number of important phenomena, such as the fact that
when only one bank is active, the DRAM module consumes much
less power than when all banks are active [65]. Second, DRAMPo-
wer has a MAPE of 32.4%, averaged across all three vendors. While
this is lower than the error of the Micron power model, DRAMPo-
wer still has high error rates for Vendors A and B. This is because
DRAMPower does not capture the impact of our four observations
(see Section 8). The largest source of DRAMPower’s high error rates
is its inability to accurately model (1) the impact of data dependency
on the power consumed during each read operation; and (2) the
much lower power consumed by activate and precharge operations
and during idle time, as compared to the IDD0 and IDD2N values.
Third, VAMPIRE has a MAPE of only 6.8%, averaged across all
three vendors. Unlike the Micron power model and DRAMPower,
VAMPIRE has a low MAPE for all three vendors (with the highest
per-vendor MAPE being 7.1%).

We conclude that VAMPIRE is significantly more accurate than
state-of-the-art DRAM power models, because it incorporates our
new observations on (1) the large differences between the real mea-
sured DRAM power and the vendor-provided IDD values, (2) data-
dependent DRAM power consumption, and (3) the impact of struc-
tural variation on DRAM power consumption.

9.2 Evaluating DRAM Power Consumption
with Large Applications

In addition to the measurement-based validation, we compare the
power consumption reported by VAMPIRE to the power consump-
tion reported by DRAMPower [25, 27] (the best state-of-the-art
DRAM power model) when we simulate the memory access beha-
vior of real applications. Unfortunately, we cannot compare the
reported power consumption numbers to real DRAM power mea-
surements, due to the inability of SoftMC to interactively execute

4We ensure that all DRAM timing constraints are met for each experiment.

16

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

6.8%
32.4%

160.6%

0%

50%

100%

150%

200%

250%

Vendor A Vendor B Vendor C GMean

M
ea

n
Ab

so
lu

te
Pe

rc
en

ta
ge

 Er
ro

r Micron Model DRAMPower VAMPIRE

(8 modules) (7 modules) (7 modules)

Figure 24: Mean absolute percentage error of state-of-the-art DRAM power models and of VAMPIRE, compared to real measu-
red DRAM power.

command traces from full applications [53]. Instead, we measure
the relative error of DRAMPower, which does not capture several
aspects of DRAM power consumption, with respect to VAMPIRE,
which captures all of the key observations that we make based on
our experimental characterization.

For each DRAM power model, we determine the power con-
sumed by a single channel of DDR3L memory while executing
applications on a single CPU core. Table 4 shows the system con-
figuration that we simulate. We evaluate 23 applications from the
SPEC CPU2006 suite [146]. We use Pin [100] to record the last level
cache misses generated by each application. We fast-forward each
application past its initialization phase, and collect a memory trace
for a representative 100 million instruction portion. We generate
the input for each model by executing the memory trace on Ramu-
lator [83, 133], an open-source DRAM system simulator. We modify
Ramulator to output the correct format of DRAM commands for
VAMPIRE, which includes data values for write commands.

Table 4: Evaluated system configuration.

Processor x86-64 ISA, one core, 3.2GHz, 128-entry instruction window

Cache L1: 64 kB, 4-way associative; L2: 2MB, 16-way associative

Memory 64/64-entry read/write request queues, FR-FCFS [130, 167]Controller

DRAM DDR3L-800 [61], 1 channel, 1 rank/8 banks per channel

Figure 25 shows the relative error for the Micron power model
compared to VAMPIRE. We show the relative error as a box plot,
where the box represents the quartiles of the output for each appli-
cation. We observe that there is significant error in DRAMPower
compared to VAMPIRE. The average relative errors of DRAMPower
for Vendors A, B, and C are 58.3%, 45.0%, and 33.5%, respectively.
From the figure, we observe that the error actually varies signi-
ficantly from application to application. This is because relative
error of each application is highly dependent on the application’s
memory access behavior. In general, DRAMPower reports a much
higher power consumption value than VAMPIRE for applications
that are memory intensive, and reports a lower power consumption
value than VAMPIRE for applications that are not memory intensive.
We conclude that the properties of DRAM power consumption that
are missing fromDRAMPower greatly affect its reported power con-
sumption. VAMPIRE, by accurately modeling key properties that

affect DRAM power consumption, provides much more accurate
estimates of DRAM power consumption by large applications.

0%
20%
40%
60%
80%

100%

Re
la

tiv
e

Er
ro

r
vs

. V
AM

PI
RE

Vendor A Vendor B Vendor C

161.8% 113.3%

Figure 25: Box plots showing the distribution of the relative
error for the DRAMPower model compared to VAMPIRE,
across the applications that we simulate. Each box illustra-
tes the quartiles of the distribution of the relative error for
each application, and the whiskers illustrate the minimum
and maximum error values, across all applications evalua-
ted.

9.3 Example Applications of VAMPIRE
A large fraction of the error that we observe in existing power mo-
dels is likely the result of missing data dependency and variation
characteristics in these models. By capturing these characteristics
in detail, VAMPIRE allows researchers, architects and system de-
signers to accurately evaluate and take into account the various
sources of power consumption in modern DRAMmodules. This has
several implications for DRAM architectures and system designs,
of which we present three examples. First, taking advantage of
the systematic structural variation that VAMPIRE captures across
different banks and rows in a DRAM module, a system designer
can rewrite the virtual memory manager in the operating system
to optimize physical page allocation for low energy consumption.
Instead of treating all physical page locations within DRAM as
equal, the virtual memory manager could allocate data that is acces-
sed more frequently to those physical pages that reside in banks and
rows that consume less power. Second, VAMPIRE’s insights can be
used to determine when to schedule power-down modes for DRAM.
VAMPIRE provides accurate information on the actual power saved
during power-down mode by a DRAM module, and on the actual
power required to wake the module back up to full-power mode,
allowing designers and architects to accurately predict whether

17

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

there is enough time spent in power-down mode to amortize the
performance and power overheads of powering down and waking
up the module. Third, VAMPIRE’s model of data-dependent power
consumption can be used to design alternate data encodings that re-
duce power consumption within a DRAM chip. We discuss one such
data encoding in Section 10, and show how it takes advantage of the
data-dependent behavior captured by VAMPIRE to reduce DRAM
energy. We believe there are many other use cases of VAMPIRE,
and leave it to future work to uncover such other use cases.

10 CASE STUDY: DATA ENCODING
VAMPIRE enables a wide range of studies that were not possible
using existing models, because it captures characteristics such as
data dependency and structural variation that the existing models
do not take into account. An example of such a study is exploring
how the DRAM power consumption changes for different data
encodings, i.e., the mechanisms with which the memory controller
and/or DRAM module transform the cache line data values that
are stored in the DRAM module. In this section, we examine the
potential of cache line encodings that exploit the data dependency
of DRAM power consumption.

Prior studies on specialized data encodings for DRAM [47, 55,
124, 144, 145, 158] have largely focused on minimizing the amount
of bit toggling that takes place on the off-chip memory channel
(see Section 11.4). When a 64-byte cache line is transmitted along
the 64-bit memory channel, the data is split up into eight bursts,
and is sent one burst at a time. This can increase DRAM power
consumption due to bit toggling across different bursts from the
same cache line. A number of studies [7, 12, 55, 124, 144, 145, 150]
have shown the increased power consumption due to this inter-
burst bit toggling. In contrast to all these prior studies, we study
the data dependency and bit toggling that takes place within the
DRAM chip, where the bit toggling occurs across different cache
lines (see Section 5.2). As we discuss in Section 5, the amount of
power consumed during read and write operations depends on the
number of ones in the cache line, and on the number of bits that
are toggled within DRAM.

10.1 Encodings Studied
We examine how four different cache-line-level data encodings can
affect DRAM power consumption when they are applied to the data
before the data is written to DRAM:
• Baseline: The data is not encoded before being transferred to
DRAM.

• Base-Delta Immediate (BDI) [127]: We apply BDI compression
to the data. Prior work [124] has shown that many compres-
sion algorithms, including BDI, can consume more power than
Baseline as a result of the bit toggling that takes place on the
memory channel.

• Optimized: This per-byte encoding scheme encodes the most-
frequently-used byte values using the least number of ones in
the encoded byte value. For each application, we sort all possible
byte values (i.e., 0–255) based on their frequency of occurrence.5

5Note that our goal is to perform limit studies to gauge the potential of data encodings
that exploit DRAM power variation. As such, we do not assess the practicality of
sorting all byte values that are read and written by an application. We leave such

The byte values are then assigned to encoded values such that
the most frequent byte value is assigned to the encoded value
with the least number of ones (i.e., an encoded value of zero),
and the least frequent byte value is assigned to the encoded
value with the most ones. This encoding has two advantages.
First, it minimizes the number of ones used for the application,
which is likely to reduce the read power, as the power consumed
by a read operation increaseswhen the data that is read contains
a greater number of ones. Second, it reduces the probability of
toggling many bits at the same time between transmissions of
different cache lines. On the other hand, one drawback of this
encoding scheme is that this increases the power consumed by
write operations, as the data-dependent power consumption of
writes has an inverse relationship with the number of ones as
that of reads.

• Optimized withWrite Inversion (OWI):We develop a variation of
our Optimized encoding, to minimize DRAM power consump-
tion for both reads and writes. Our measurements in Section 5
show that read power increases with the number of ones in the
cache line, and write power decreases with the number of ones,
due to I/O driver power and data-dependent power consump-
tion within DRAM. In order to maximize the power savings, we
assume that cache lines that are to be written to DRAM are first
transformed using our Optimized encoding, and then inverted
(i.e., bitwise complemented) by the memory controller. Once
the data that is to be written passes through the I/O drivers and
peripheral circuitry within the module, the DRAM chip inverts
(i.e., bitwise complements) the data before it is written to the
DRAM cells.

The overhead to implement the Optimized and OWI encodings is
small. We assume that both encodingmechanisms use 256 bit× 8 bit
lookup tables in each DRAM chip. We use CACTI 7.0 [54] to esti-
mate the area and latency of the lookup table using a 22 nm ma-
nufacturing process technology, and find that each table requires
only 0.0024mm2 of area, and can perform a lookup in 0.134 ns.
The lookup tables are hard-coded, and we conservatively assume
that the lookup adds one DRAM cycle of latency. This latency is
similar to that incurred by channel encodings such as data bus
inversion [55, 144, 145], which is an optional feature in LPDDR4
memory [64].

We use the same simulation methodology described in Section 9,
and develop a tool to encode the data recorded by Pin [100] and
Ramulator [83, 133] for each encoding. To account for the perfor-
mance overhead of the Optimized and OWI encodings, we add one
DRAM cycle to each read and write operation in Ramulator. We ac-
count for the additional energy consumed for encoding data using
Optimized and OWI .

10.2 Evaluation
Figure 26 shows the average energy consumed inside DRAM for
each encoding, normalized to the energy consumption of Baseline,
for each vendor. We make three observations from the figure. First,
the OWI encoding, which optimizes the number of ones for both
reads and writes, achieves significant savings. OWI reduces the

considerations for future work, which we hope will develop a more practical encoding
mechanism.

18

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

energy consumption over Baseline by 12.2% on average, and up
to 28.6%. Second, our Optimized encoding provides no tangible
reduction in energy, as the increase in write current energy due
to data dependency cancels out any savings from optimizing the
read current. Third, data compressed with BDI consumes no more
energy than uncompressed data. While compression may increase
the amount of energy consumed on the memory channel, we see no
notable effect within DRAM, due to the relatively minor impact bit
toggling has on the current observed in our real chip measurements
(see Section 5.2).

0.7
0.8
0.9
1.0
1.1
1.2

Vendor A Vendor B Vendor C GMean

No
rm

al
ize

d
DR

AM
 E

ne
rg

y Baseline BDI Optimized OWI
-12.2%

Figure 26: Average energy consumption for various cache-
line-level data encodings, normalized to energy consumed
with Baseline encoding. Error bars show maximum and mi-
nimum normalized energy values across all applications.

We conclude that (1) DRAM energy can be reduced by using a
power-aware and DRAM-data-dependence-aware data encoding
mechanism; and (2) VAMPIRE, our new power model, enables the
exploration of the energy consumption of the encodings we have ex-
amined, as well as the new encodings that we hope future research
will develop.

11 RELATEDWORK
Several DRAMpower and energymodels exist. Most of thesemodels
are derived from the IDD(current) values provided by DRAMmanu-
facturers in their datasheets for worst-case power consumption. To
our knowledge, our work is the first to (1) characterize the power
consumption of a large number of real DRAM modules from three
major DRAM vendors, across a wide variety of tests; (2) demon-
strate how IDD values often deviate significantly from actual DRAM
power consumption and contain large guardbands; (3) comprehen-
sively demonstrate the inter-vendor and intra-vendor module-to-
module variation of DRAM power consumption; (4) show that
DRAM power consumption depends on data values and structural
variation; (5) show that DRAM power consumption has not de-
creased as much as vendor specifications indicate over successive
generations; and (6) develop a DRAM power model that accounts
for the impact of IDD value guardbands, data dependency, and
structural variation on the power that is consumed.

11.1 Architectural Power Models
The Micron DRAM power model [111] uses IDD values, command
count, execution time, and timing parameters from datasheets to
calculate power consumption. However, prior works [26, 65] have
shown that the Micron power model does not (1) account for any ad-
ditional time that may elapse between two DRAM commands [26],
(2) model an open-row policy [26] or more sophisticated row buffer
management policies, or (3) properly account for the power consu-
med when the number of active banks changes [65]. As we discuss

in Section 9.1, we find that the Micron power model also does not
take into account typical-case DRAM power consumption (which,
as we show in Section 4, is much lower than the IDD values speci-
fied by vendors in datasheets), data-dependent power consumption,
or the impact of structural variation on power consumption in
DRAM.

DRAMPower [26, 27] is an open-source tool that can be used at
the command level and transaction level to estimate power con-
sumption. It allows DRAM command traces to be logged and also
has an optional command scheduler, which emulates a memory
controller. While DRAMPower accounts for three of the major cha-
racteristics that are missing from the Micron power model (the addi-
tional time between commands, alternative row buffer management
policies, and the number of active banks), it is still predominantly
based upon the worst-case IDD estimates extracted from datasheets.
With the exception of (1) the change in active background power
based on the number of banks open [65, 107] and (2) IDD values
and module-to-module variation for a small number (10) of tested
DRAM modules [27], the power models and input parameters em-
ployed by DRAMPower are not based off of measured data, and
they do not take into account data dependency, a comprehensive
notion of module-to-module variation, or structural variation in
DRAM power. To our knowledge, the limited measurements from
real devices used in DRAMPower are performed on a small number
of DRAM modules, do not capture any variation trends, and do not
span across multiple vendors. As we show in Section 9.1, because
it is still based off of worst-case IDD values, DRAMPower has a
mean absolute percentage error of 32.4% compared to real measu-
red power in the DRAM chips that we test. In contrast, VAMPIRE,
our power model, is based fully off of measured data, and captures
the impact of data dependency and structural variation on power
consumption, providing high accuracy (only 6.8% error, as shown
in Section 9.1).

CACTI-D [34] and Vogelsang [154] use circuit-level models to
characterize the power consumed by DRAM. The peripheral ci-
rcuitry used in CACTI-D [34] is largely based on SRAM caches,
and does not accurately reflect the design of DRAM peripheral
logic. Vogelsang [154] uses transistor-level models to predict future
trends in DRAM power consumption, but the models are calibra-
ted to datasheet IDD values, and do not capture data dependency,
module-to-module variation, or structural variation. Similarly, the
PADRAMmodel [85] models a subset of RDRAM [129] components
and vendor specifications to develop a DRAM power model. Aside
from not capturing real DRAM power behavior, the PADRAM mo-
del is designed for RDRAM modules, and is not fully compatible
with the modern DDR SDRAMs that we characterize.

Wattch [13], McPAT [95], and the model by Fan et al. [49] are
models designed to capture the power dissipation and energy con-
sumption of modern processors. While these models can include a
DRAM power component, this component again relies on the IDD
datasheet values.

11.2 Low-Power DRAM
Prior works propose models, chip designs, and architectures to
reduce DRAM power consumption. A number of works [31, 36, 38]
study how to reduce the voltage and/or frequency of DRAM to

19

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

lower power consumption. Several prior works exploit low-power
modes to increase the time spent in a low-power state [1, 4, 5, 10,
39, 42–44, 49, 67–69, 85, 103, 147, 148]. Row-buffer-aware DRAM
designs [70, 82, 149] optimize data placement to increase row buffer
hits and, thus, reduce the energy spent on row activation and pre-
charge. A number of DRAM architectures reduce DRAM power by
activating only a fraction of the row [33, 37, 151, 165], a fraction of
the bitlines [90], or a fraction of the DRAM chips on a module [156,
164, 166], by reducing the access latency [30, 52, 89, 92, 139], or by
reducing the operating frequencies of some layers in a 3D-stacked
DRAM chip [88].

Many works study eliminating margins designed for worst-case
DRAM modules to improve energy efficiency. Various works [2,
9, 74–76, 96–98, 118, 121, 128, 152] reduce DRAM refresh power
by characterizing cell retention times and reducing unnecessary
refresh operations. Multiple works [25, 30, 32, 52, 82, 89, 90, 92, 113,
141] make DRAM more energy efficient by reducing the latencies
of DRAM operations.

Low-power DDR (LPDDR) [63, 64] is a family of DRAM archi-
tectures designed by JEDEC for use in low-power systems (e.g.,
mobile devices). LPDDR architectures employ major design chan-
ges over conventional DDR memory architectures. Two such chan-
ges include the use of a low-voltage-swing I/O interface (which,
in LPDDR4 DRAM, consumes 40% less I/O power than DDR4
DRAM [36]), and the inclusion of additional low-power modes
that make use of lower supply voltage levels that are not available
in DDR memory.

None of these works characterize DRAM power consumption,
and their ideas are orthogonal to ours.

11.3 Experimental DRAM Characterization
Various experimental studies [25, 31, 32, 53, 58, 65, 66, 74–77, 79,
84, 89, 92, 97, 108, 115, 121, 128, 136, 142, 143] characterize DRAM
reliability, data retention, and latency by measuring characteristics
of real DRAM chips, but they do not measure power consumption.
Kim et al. [78] study DRAM energy consumption under different
processor cache configurations, but do not study how different
DRAM operations contribute to energy consumption in modern
DRAMdevices. Jung et al. [65] experimentally characterize a limited
subset of IDD values to study the effect of the number of open
banks on active background power, but do not characterize any
other aspect of DRAM power consumption. A subsequent work
by Jung et al. [66] demonstrates a power measurement platform
for DDR3 DRAM, but does not (1) comprehensively report power
consumption across all DRAM operations; or (2) study the effects
of process variation, data dependency, or structural variation on
power consumption. In Section 4, we measure a comprehensive set
of IDD values, and we show how the power consumption differs
and varies significantly from the values provided in the datasheets.

11.4 Compression and Encoding Schemes
Prior works propose using compression and encoding schemes for
caches [3, 35, 46, 125, 127, 153, 162] andmemory [47, 126, 158]. Most
of these are pattern-based schemes and perform compression at
a word granularity. Base-Delta-Immediate compression [126, 127]
performs compression at a cache line granularity, by identifying

cache lines where the data value of each word in the line is within
a small range of values. Data bus inversion (DBI) [55, 144, 145]
is an encoding that reduces the power consumed by the memory
channel, by inverting the data transmitted during each data burst
when the data contains more zeroes than ones. DBI is an optional
feature that can be enabled in LPDDR4 memories [64].

These prior works either do not study the impact of compres-
sion encodings on DRAM power consumption, or do not study the
impact of implementing different encodings within the DRAM chip.
In Section 10, we study how a new power-aware cache line enco-
ding mechanism can reduce energy consumption in a DRAM chip
by exploiting our observations on data-dependent DRAM power
consumption.

12 CONCLUSION
DRAM power consumption is a critical issue in contemporary com-
puter systems, as DRAM now accounts for as much as half of the
total system power consumption. While there is a pressing need
to invent new low-power DRAM architectures, existing DRAM
power models do not accurately model the power consumed by
DRAM modules, limiting researchers’ understanding of the sour-
ces of power consumption. The existing DRAM power models are
inaccurate because they rely only on vendor-specified current mea-
surements, and do not capture several important characteristics of
power consumption that are present in real DRAM devices.

To address the shortcomings of existing DRAM power models,
we first perform an extensive experimental characterization of the
power consumed by real state-of-the-art DDR3L DRAM devices.
We measure the current consumed by 50 DRAM modules from
three major vendors, and make four key new observations that
previous models did not capture: (1) the actual current consumed
deviates significantly from the vendor specifications in the data-
sheets; (2) the data value that is read from or written to DRAM
significantly impacts power consumption; (3) power consumption
varies significantly based on which bank or row of a DRAM mo-
dule is being accessed; and (4) across successive process technology
generations, the actual power [reduction is often much lower than
the savings indicated by vendor specifications.

Based on our real device measurements and analysis, we build
VAMPIRE, a new, accurate DRAM power model. VAMPIRE enables
studies that could not be performed using prior DRAM power mo-
dels. For example, we show that a new power-aware data encoding
scheme can reduce DRAM power consumption by an average of
12.2% (up to 28.6%). We will release VAMPIRE and all of our raw me-
asurement data online [135]. We hope that the findings in this work
and our new power model will inspire new research directions, new
ideas, and rigorous and more accurate evaluations in power-and
energy-aware memory system design.

ACKNOWLEDGMENTS
We thank our shepherd Thomas Wenisch, the anonymous revie-
wers, and SAFARI Research Group members for feedback. Thanks
to Naveen Kakarla for his assistance with the experimental valida-
tion of VAMPIRE. We acknowledge the generous support of our
industrial partners (Google, Intel, Microsoft, NVIDIA, Samsung,
and VMware) and the United States Department of Energy. This

20

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

research was supported in part by the Semiconductor Research
Corporation and the National Science Foundation (grants 1212962
and 1320531).

REFERENCES
[1] N. Aggarwal, J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Power-Efficient DRAM

Speculation,” in HPCA, 2008.
[2] A. Agrawal, A. Ansari, and J. Torrellas, “Mosaic: Exploiting the Spatial Locality

of Process Variation to Reduce Refresh Energy in On-Chip eDRAM Modules,”
in HPCA, 2014.

[3] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for High-
Performance Processors,” in ISCA, 2004.

[4] A. M. Amin and Z. A. Chishti, “Rank-Aware Cache Replacement and Write
Buffering to Improve DRAM Energy Efficiency,” in ISLPED, 2010.

[5] V. Anagnostopoulou, S. Biswas, H. Saadeldeen, A. Savage, R. Bianchini, T. Yang,
D. Franklin, and F. T. Chong, “Barely Alive Memory Servers: Keeping Data
Active in a Low-Power State,” ACM JETC, 2012.

[6] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[7] B. M. Beckmann and D. A. Wood, “TLC: Transmission Line Caches,” in MICRO,
2003.

[8] I. Bhati, Z. Chishti, and B. Jacob, “Coordinated Refresh: Energy Efficient Techni-
ques for DRAM Refresh Scheduling,” in ISLPED, 2013.

[9] I. Bhati, Z. Chishti, S. Lu, and B. Jacob, “Flexible Auto-Refresh: Enabling Scalable
and Energy-Efficient DRAM Refresh Reductions,” in ISCA, 2015.

[10] M. Bi, R. Duan, and C. Gniady, “Delay-Hiding Energy Management Mechanisms
for DRAM,” in HPCA, 2010.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “gem5: A Multiple-ISA Full System Simulator with
Detailed Memory Model,” CAN, vol. 39, June 2011.

[12] M. N. Bojnordi and E. İpek, “DESC: Energy-Efficient Data Exchange Using
Synchronized Counters,” in MICRO, 2013.

[13] D. Brooks, V. Tiwari, andM.Martonosi, “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,” in ISCA, 2000.

[14] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities
in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits,
and Mitigation Techniques,” in HPCA, 2017.

[15] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu, “Read Disturb
Errors in MLC NAND Flash Memory: Characterization and Mitigation,” in DSN,
2015.

[16] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC
NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[17] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash
Correct and Refresh: Retention Aware Management for Increased Lifetime,” in
ICCD, 2012.

[18] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Error
Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technol. J., May 2013.

[19] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization, Mi-
tigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proceedings
of the IEEE, 2017.

[20] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Reliability Issues in
Flash-Memory-Based Solid-State Drives: Experimental Analysis, Mitigation,
Recovery,” in Inside Solid State Drives (SSDs), 2nd ed. Springer Nature, 2018.

[21] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND
Flash Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[22] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution
in MLC NAND Flash Memory: Characterization, Analysis, and Modeling,” in
DATE, 2013.

[23] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

[24] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai,
“Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” in
SIGMETRICS, 2014.

[25] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens, “Exploiting Expendable Process-Margins in DRAMs for Run-Time
Performance Optimization,” in DATE, 2014.

[26] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved Power Modelling of
DDR SDRAMs,” in DSD, 2011.

[27] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson,
N. Wehn, and K. Goossens, “DRAMPower: Open-Source DRAM Power & Energy
Estimation Tool,” http://www.drampower.info.

[28] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Me-
mory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[29] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAMPerformance by Parallelizing Refreshes with Acces-
ses,” in HPCA, 2014.

[30] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[31] K. K. Chang, A. G. A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[32] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhi-
menko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[33] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, M. Rhu, S. W. Kecker, andW. J.
Dally, “Architecting an Energy-Efficient DRAM System for GPUs,” in HPCA,
2017.

[34] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“CACTI-3DD: Architecture-Level Modeling for 3D Die-Stacked DRAM Main
Memory,” in DATE, 2012.

[35] X. Chen, L. Yang, R. Dick, L. Shang, and H. Lekatsas, “A High-Performance
Microprocessor Cache Compression Algorithm,” TVLSI, 2010.

[36] J. Y. Choi, “LPDDR4: Evolution for New Mobile Worlds,” in MEMCON, 2013.
[37] E. Cooper-Balis and B. Jacob, “Fine-Grained Activation for Power Reduction in

DRAM,” IEEE Micro, 2010.
[38] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory Power

Management via Dynamic Voltage/Frequency Scaling,” in ICAC, 2011.
[39] V. De La Luz, M. Kandemir, and I. Kolcu, “Automatic DataMigration for Reducing

Energy Consumption in Multi-Bank Memory Systems,” in DAC, 2002.
[40] V. De La Luz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J.

Irwin, “DRAM Energy Management Using Software and Hardware Directed
Power Mode Control,” in HPCA, 2001.

[41] V. De La Luz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin, “Scheduler Based DRAM Energy Management,” in DAC, 2002.

[42] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “MemScale:
Active Low-Power Modes for Main Memory,” in ASPLOS, 2011.

[43] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Active Low-
Power Modes for Main Memory with MemScale,” in MICRO, 2012.

[44] B. Diniz, D. Guedes, J. W. Meira, and R. Bianchini, “Limiting the Power Con-
sumption of Main Memory,” in ISCA, 2007.

[45] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory,” TCAD, June 2012.

[46] J. Dusser, T. Piquet, and A. Seznec, “Zero-Content Augmented Caches,” in ICS,
2009.

[47] M. Ekman and P. Stenström, “A Robust Main-Memory Compression Scheme,”
in ISCA, 2005.

[48] R. Elmore, K. Gruchalla, C. Phillips, A. Purkayastha, and N. Wunder, “An Ana-
lysis of Application Power and Schedule Composition in a High Performance
Computing Environment,” National Renewable Energy Laboratory, Tech Report
NREL/TP-2C00-65392, 2016.

[49] X. Fan, C. S. Ellis, and A. R. Lebeck, “Memory Controller Policies for DRAM
Power Management,” in ISLPED, 2001.

[50] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds: A Study of
Emerging Scale-Out Workloads on Modern Hardware,” in ASPLOS, 2012.

[51] C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Ambientium. F. Perthes et I. H. Besser, 1809.

[52] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[53] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[54] Hewlett Packard Enterprise, “CACTI 7.0,” https://github.com/HewlettPackard/
cacti.

[55] T. M. Hollis, “Data Bus Inversion in High-Speed Memory Applications,” TCAS
II, 2009.

[56] U. Holzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

[57] S. Hong, “Memory Technology Trend and Future Challenges,” in IEDM, 2010.
[58] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike Twice:

Understanding the Nature of DRAM Errors and the Implications for System
Design,” in ASPLOS, 2012.

[59] M. Inoue, T. Yamada, H. Kotani, H. Yamauchi, A. Fujiwara, J. Matsushima,
H. Akamatsu, M. Fukumoto, M. Kubota, I. Nakao, N. Aoi, G. Fuse, S. Ogawa,
S. Odanaka, A. Ueno, and H. Yamamoto, “A 16-Mbit DRAM with a Relaxed

21

http://www.drampower.info
https://github.com/HewlettPackard/cacti
https://github.com/HewlettPackard/cacti

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

Sense-Amplifier-Pitch Open-Bit-Line Architecture,” JSSC, 1988.
[60] JEDEC Solid State Technology Assn., JESD79-3F: DDR3 SDRAM Standard, 2012.
[61] JEDEC Solid State Technology Assn., JESD79-3-1A.01: Addendum No.1 to JESD79-

3 - 1.35V DDR3L-800, DDR3L-1066, DDR3L-1333, DDR3L-1600, and DDR3L-1866,
2013.

[62] JEDEC Solid State Technology Assn., JESD21C, Module 4.20.18: 204-Pin DDR3
SDRAM Unbuffered SO-DIMM Design Specification, 2014.

[63] JEDEC Solid State Technology Assn., JESD209-3C: Low Power Double Data Rate
3 SDRAM (LPDDR3) Standard, 2015.

[64] JEDEC Solid State Technology Assn., JESD209-4B: Low Power Double Data Rate
4 (LPDDR4) Standard, 2017.

[65] M. Jung, D. M. Mathew, É. F. Zulian, C. Weis, and N. Wehn, “A New Bank Sensi-
tive DRAMPower Model for Efficient Design Space Exploration,” in PATMOS,
2016.

[66] M. Jung, D. M. Mathew, C. C. Rheinländer, C. Weis, and N. Wehn, “A Platform
to Analyze DDR3 DRAM’s Power and Retention Time,” IEEE Design and Test,
2017.

[67] M. Kandemir, O. Ozturk, and M. Karakoy, “Dynamic On-Chip Memory Manage-
ment for Chip Multiprocessors,” in CASES, 2004.

[68] M. Kandemir, U. Sezer, and V. De La Luz, “Improving Memory Energy Using
Access Pattern Classification,” in ICCAD, 2001.

[69] M. Kandemir, T. Yemliha, S. W. Son, and O. Ozturk, “Memory Bank Aware
Dynamic Loop Scheduling,” in DATE, 2007.

[70] D. Kaseridis, J. Stuechelia, and L. K. John, “Minimalist Open-Page: A DRAM
Page-Mode Scheduling Policy for the Many-Core Era,” in MICRO, 2011.

[71] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design: Fundamental
and High-Speed Topics. Wiley-IEEE Press, 2007.

[72] Keysight Technologies, Inc., 34134A AC/DC DMM Current Probe: User’s Guide,
https://literature.cdn.keysight.com/litweb/pdf/34134-90001.pdf, 2009.

[73] Keysight Technologies, Inc., Keysight Truevolt Series Digital Multimeters: Ope-
rating and Service Guide, https://literature.cdn.keysight.com/litweb/pdf/34460-
90901.pdf, 2017.

[74] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[75] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique
to Detect Data Dependent Failures in DRAM,” in DSN, 2016.

[76] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” CAL, 2016.

[77] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “De-
tecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current
Memory Content,” in MICRO, 2017.

[78] H. S. Kim, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Characterization of
Memory Energy Behavior,” WWC, 2000.

[79] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeoff in Modern DRAM Devices,” in HPCA, 2018.

[80] Y. Kim, “Architectural Techniques to Enhance DRAMScaling,” Ph.D. dissertation,
Carnegie Mellon Univ., 2015.

[81] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

[82] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray
Level Parallelism (SALP) in DRAM,” ISCA, 2012.

[83] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM
Simulator,” CAL, 2015.

[84] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[85] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power Aware Page Allocation,” in
ASPLOS, 2000.

[86] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-Level
Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[87] D. Lee, “Reducing DRAM Energy at Low Cost by Exploiting Heterogeneity,”
Ph.D. dissertation, Carnegie Mellon Univ., 2016.

[88] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” ACM
TACO, 2016.

[89] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in
SIGMETRICS, 2017.

[90] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[91] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[92] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[93] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller, “Energy
Management for Commercial Servers,” Computer, 2003.

[94] A.-M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comè-
tes. F. Didot, 1805.

[95] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.,
“McPAT: An Integrated Power, Area and Timing Modeling Framework for Mul-
ticore and Manycore Architectures.” in MICRO, 2009.

[96] C. H. Lin, D. Y. Shen, Y. J. Chen, C. L. Yang, and M. Wang, “SECRET: Selective
Error Correction for Refresh Energy Reduction in DRAMs,” in ICCD, 2012.

[97] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Profiling Mechanisms,” in ISCA, 2013.

[98] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[99] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving DRAM
Refresh-Power Through Critical Data Partitioning,” in ASPLOS, 2011.

[100] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI, 2004.

[101] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving
3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and
Temperature Awareness,” in HPCA, 2018.

[102] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3DNAND Flash
Memory Lifetime by Tolerating Early Retention Loss and Process Variation,” in
SIGMETRICS, 2018.

[103] C. Lyuh and T. Kim, “Memory Access Scheduling and Binding Considering
Energy Minimization in Multi-Bank Memory Systems,” in DAC, 2004.

[104] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis, and M. Ho-
rowitz, “Towards Energy-Proportional Datacenter Memory with Mobile DRAM,”
in ISCA, 2012.

[105] K. T. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B. C. Lee, and M. Horowitz,
“Rethinking DRAM Power Modes for Energy Proportionality,” in MICRO, 2012.

[106] D. M. Mathew, M. Schultheis, C. C. Rheinländer, C. Sudarshan, C. Weis, N. Wehn,
andM. Jung, “An Analysis on Retention Error Behavior and Power Consumption
of Recent DDR4 DRAMs,” in DATE, 2018.

[107] D. M. Mathew, Éder F. Zulian, S. Kannoth, M. Jung, C. Weis, and N. Wehn, “A
Bank-Wise DRAM Power Model for System Simulations,” RAPIDO, 2017.

[108] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[109] MFactors, “JET-5467A Product Page,” http://www.mfactors.com/jet-5467a-ddr3-
sodimm-extender-with-current-sensing/.

[110] Micron Technology, Inc., “DDR3 Point-to-Point Design Support,” Technical Note
TN-41-13, 2013.

[111] Micron Technology, Inc., “CalculatingMemory System Power for DDR3,” Techni-
cal Note TN-41-01, 2015.

[112] Micron Technology, Inc., “DDR4 Point-to-Point Design Guide,” Technical Note
TN-40-40, 2018.

[113] J. Mukundan, H. Hunter, K. H. Kim, J. Stuecheli, and J. F. Martinez, “Understan-
ding and Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems,”
in ISCA, 2013.

[114] K. P. Muller, B. Flietner, C. L. Hwang, R. L. Kleinhenz, T. Nakao, R. Ranade,
Y. Tsunashima, and T. Mii, “Trench Storage Node Technology for Gigabit DRAM
Generations,” in IEDM, 1996.

[115] O. Mutlu, “The RowHammer Problem and Other Issues WeMay Face as Memory
Becomes Denser,” in DATE, 2017.

[116] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[117] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[118] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM Refresh Count for

Merged DRAM/Logic LSIs,” in ISLPED, 1998.
[119] O. Ozturk and M. Kandemir, “Data Replication in Banked DRAMs for Reducing

Energy Consumption,” in ISQED, 2006.
[120] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A Full System Simulator

for x86 CPUs,” in DAC, 2011.
[121] M. Patel, J. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the

Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,”
in ISCA, 2017.

[122] I. Paul,W. Huang,M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute
and Memory Power in High-Performance GPUs,” in ISCA, 2015.

[123] K. Pearson, “Notes on Regression and Inheritance in the Case of Two Parents,”
Proc. Royal Soc. London, 1895.

22

https://literature.cdn.keysight.com/litweb/pdf/34134-90001.pdf
https://literature.cdn.keysight.com/litweb/pdf/34460-90901.pdf
https://literature.cdn.keysight.com/litweb/pdf/34460-90901.pdf
http://www.mfactors.com/jet-5467a-ddr3-sodimm-extender-with-current-sensing/
http://www.mfactors.com/jet-5467a-ddr3-sodimm-extender-with-current-sensing/

What Your DRAM Power Models Are Not Telling You SIGMETRICS, June 2018, Irvine, CA

[124] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.
Keckler, “A Case for Toggle-Aware Compression for GPU Systems,” in HPCA,
2016.

[125] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Exploiting Compressed Block Size as an Indicator of Future Reuse,”
in HPCA, 2015.

[126] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, M. A. Kozuch, P. B.
Gibbons, and T. C. Mowry, “Linearly Compressed Pages: A Low-Complexity,
Low-Latency Main Memory Compression Framework,” in MICRO, 2013.

[127] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons, and T. C.
Mowry, “Base-Delta-Immediate Compression: Practical Data Compression for
On-Chip Caches,” in PACT, 2012.

[128] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[129] Rambus, Inc., “RDRAM Memory Architecture,” https://www.rambus.com/
memory-and-interfaces/rdram-memory-architecture/.

[130] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

[131] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate
Memory System Simulator,” CAL, 2011.

[132] SAFARI Research Group, “Characterization Results of Modern DRAM Devices
Under Reduced-Voltage Operation — GitHub Repository,” https://github.com/
CMU-SAFARI/DRAM-Voltage-Study.

[133] SAFARI Research Group, “Ramulator: A DRAM Simulator — GitHub Repository,”
https://github.com/CMU-SAFARI/ramulator.

[134] SAFARI Research Group, “SoftMC — GitHub Repository,” https://github.com/
CMU-SAFARI/SoftMC.

[135] SAFARI Research Group, “VAMPIRE — GitHub Repository,” https://github.com/
CMU-SAFARI/VAMPIRE.

[136] B. Schroeder, E. Pinheiro, and W. Webe, “DRAM Errors in the Wild: A Large-
Scale Field Study,” in SIGMETRICS, 2009.

[137] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO,
2017.

[138] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly
Efficient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University,
2016.

[139] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and
Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[140] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Mo-
vement,” in Advances in Computers, Volume 106, 2017.

[141] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-Uniform Access Time
Memory Controller,” in HPCA, 2014.

[142] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory Errors in Modern Systems: The Good, the Bad,
and the Ugly,” in ASPLOS, 2015.

[143] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,” in SC,
2012.

[144] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for Low-Power I/O,” TVLSI,
1995.

[145] M. R. Stan and W. P. Burleson, “Coding a Terminated Bus for Low Power,” in
GLSVLSI, 1995.

[146] Standard Performance Evaluation Corp., “SPEC CPU2006 Benchmarks,”
http://www.spec.org/cpu2006.

[147] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The Virtual
Write Queue: Coordinating DRAM and Last-Level Cache Policies,” in ISCA, 2010.

[148] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “Coordinating
DRAM and Last-Level-Cache Policies with the Virtual Write Queue,” IEEE Micro,
2011.

[149] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Da-
vis, “Micro-Pages: Increasing DRAM Efficiency with Locality-Aware Data Place-
ment,” in ASPLOS, 2010.

[150] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Non-Uniform Power
Access in Large Caches with Low-Swing Wires,” in HiPC, 2009.

[151] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis,
and N. P. Jouppi, “Rethinking DRAM Design and Organization for Energy-
Constrained Multi-Cores,” in ISCA, 2010.

[152] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in DRAM
(RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.

[153] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun,
C. Das, M. T. Kandemir, T. C. Mowry, and O. Mutlu, “A Case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with
Assist Warps,” in ISCA, 2015.

[154] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random
Access Memories,” in MICRO, 2010.

[155] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang,
C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “BigDataBench: A Big Data Bench-
mark Suite From Internet Services,” in HPCA, 2014.

[156] F. A. Ware and C. Hampel, “Improving Power and Data Efficiency with Threaded
Memory Modules,” in ICCD, 2006.

[157] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter,
“Architecting for Power Management: The IBM POWER7 Approach,” in HPCA,
2010.

[158] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for Compressed
Caching in Virtual Memory Systems,” in USENIX ATC, 1999.

[159] Xilinx, Inc., “Virtex-6 FPGA Family,” https://www.xilinx.com/products/silicon-
devices/fpga/virtex-6.html.

[160] Xilinx, Inc., “ML605 Hardware User Guide,” https://www.xilinx.com/support/
documentation/boards_and_kits/ug534.pdf, 2012.

[161] Xilinx, Inc., “MIG 7 Series and Virtex-6 DDR2/DDR3 Solution Center - Design
Assistant - Memory Controller Efficiency and Possible Improvements,” https:
//www.xilinx.com/support/answers/36719.html, 2017.

[162] J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data Caches,”
in MICRO, 2000.

[163] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan, “BOOM: Enabling
Mobile Memory Based Low-Power Server DIMMs,” in ISCA, 2012.

[164] D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive Granularity Memory Systems:
A Tradeoff Between Storage Efficiency and Throughput,” in ISCA, 2011.

[165] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-DRAM: A High-
Bandwidth and Low-Power DRAM Architecture from the Rethinking of Fine-
Grained Activation,” in ISCA, 2014.

[166] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-Rank:
Adaptive DRAM Architecture for Improving Memory Power Efficiency,” in
MICRO, 2008.

[167] W. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That Maxi-
mizes Throughput by Allowing Memory Requests and Commands to Be Issued
Out of Order,” U.S. Patent No. 5,630,096, 1997.

23

https://www.rambus.com/memory-and-interfaces/rdram-memory-architecture/
https://www.rambus.com/memory-and-interfaces/rdram-memory-architecture/
https://github.com/CMU-SAFARI/DRAM-Voltage-Study
https://github.com/CMU-SAFARI/DRAM-Voltage-Study
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/VAMPIRE
https://github.com/CMU-SAFARI/VAMPIRE
https://www.xilinx.com/products/silicon-devices/fpga/virtex-6.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-6.html
https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
https://www.xilinx.com/support/answers/36719.html
https://www.xilinx.com/support/answers/36719.html

SIGMETRICS, June 2018, Irvine, CA S. Ghose et al.

APPENDIX: FULL DRAM ENERGY MODEL PARAMETERS
Our new DRAM power model, VAMPIRE (see Section 9), depends on accurately capturing the current consumed by read and write operations
when operations are interleaved across different columns and banks, as we discuss in Section 5.2. In Section 5.3, we introduce a linear model
(Equation 2) that captures the energy consumed by each read or write operation, as a function of (1) the number of ones in the cache line,
(2) the number of bits that are toggled, and (3) whether the operations are interleaved across different banks and/or columns. Because
different types of interleaving make use of different switching circuitry (see Figure 18), we require a separate set of model parameters to use
in Equation 2 for each type of operation interleaving. Table 5 provides the model parameters (in mA) for each type of interleaving. All of
these parameters are derived using linear least-squares regression on data collected from real DRAM modules.

Table 5: Parameters to quantify current consumption (Itotal) due to data dependency, for themodel Itotal = Izero +∆IoneNones +

∆ItoддleNtoддles , where Nones is the number of ones in the cache line, Ntoддles is the number of bits that are toggled, and Izero ,
∆Ione , and ∆Itoддle are the parameters.

No Interleaving (Same Bank & Column)

Vendor Read Write
Izero (mA) ∆Ione (mA) ∆Itoддle (mA) Izero (mA) ∆Ione (mA) ∆Itoддle (mA)

A 250.88 0.449 0.0000 489.61 -0.217 0.0000
B 226.69 0.164 0.0000 447.95 -0.191 0.0000
C 222.11 0.134 0.0000 343.41 -0.000 0.0000

Column Interleaving Only (same as Table 2 in Section 5.3)

Vendor Read Write
Izero (mA) ∆Ione (mA) ∆Itoддle (mA) Izero (mA) ∆Ione (mA) ∆Itoддle (mA)

A 246.44 0.433 0.0515 531.18 -0.246 0.0461
B 217.42 0.157 0.0947 466.84 -0.215 0.0166
C 234.42 0.154 0.0856 368.29 -0.116 0.0229

Bank Interleaving Only

Vendor Read Write
Izero (mA) ∆Ione (mA) ∆Itoддle (mA) Izero (mA) ∆Ione (mA) ∆Itoддle (mA)

A 287.24 0.244 0.0200 534.93 -0.249 0.0225
B 228.14 0.159 0.0364 419.99 -0.179 0.0078
C 289.99 0.034 0.0455 304.33 -0.054 0.0455

Bank and Column Interleaving

Vendor Read Write
Izero (mA) ∆Ione (mA) ∆Itoддle (mA) Izero (mA) ∆Ione (mA) ∆Itoддle (mA)

A 277.13 0.267 0.0200 537.58 -0.249 0.0225
B 223.61 0.152 0.0364 420.43 -0.179 0.0078
C 266.51 0.099 0.0090 323.22 -0.072 0.0090

24

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Organization
	2.2 DRAM Operations

	3 Experimental Methodology
	3.1 Current Measurement Infrastructure
	3.2 DRAM Modules Tested

	4 Measuring Real IDD Current
	4.1 Idle (IDD2N/IDD3N)
	4.2 Activate and Precharge (IDD0/IDD1)
	4.3 Read and Write (IDD4R/IDD4W/IDD7)
	4.4 Refresh (IDD5B)
	4.5 Power-Down Mode (IDD2P1)
	4.6 General Observations

	5 Data Dependency
	5.1 Effect of Number of Ones in Data
	5.2 Effect of Bit Toggling
	5.3 Data Dependency Models

	6 Characterizing Variation of Current
	6.1 Structural Variation of Current
	6.2 Variation of Current Due to Temperature

	7 Generational Trends
	8 Summary of Key Findings
	9 VAMPIRE: Modeling DRAM Power
	9.1 Model Validation
	9.2 Evaluating DRAM Power Consumption with Large Applications
	9.3 Example Applications of VAMPIRE

	10 Case Study: Data Encoding
	10.1 Encodings Studied
	10.2 Evaluation

	11 Related Work
	11.1 Architectural Power Models
	11.2 Low-Power DRAM
	11.3 Experimental DRAM Characterization
	11.4 Compression and Encoding Schemes

	12 Conclusion
	References

