The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

Nastaran Hajinazar
Konstantinos Kanellopoulos
Rachata Ausavarungruengnirun
Jonathan Appavoo

Pratyush Patel

Minesh Patel
Saugata Ghose
Geraldo F. Oliveira
Vivek Seshadri
Onur Mutlu

SAFARI
ETH Zürich
SFU
Carnegie Mellon
KMUTNB
Microsoft
UNIVERSITY of WASHINGTON
BOSTON UNIVERSITY
Computing Systems Are Diversifying

Application

Virtual Memory
managed by the operating system

Hardware

Cannot adapt efficiently
Motivation, Goal, and Key Idea

• Continually adapting the conventional virtual memory framework is **challenging**

• Prior work for optimizing virtual memory
 - Applicable to only **limited** problems or applications
 - **Not compatible** and can not be implemented in a single system

• **Goal:** Design an alternative virtual memory framework that
 - **Efficiently** and **flexibly** supports increasingly diverse system configurations
 - Provides the **key features** of conventional virtual memory framework while eliminating its **key inefficiencies**

• **Virtual Block Interface (VBI):** A new virtual memory framework
 - **Key Idea:** Delegate physical memory management to dedicated hardware in the memory controller
VBI: Overview

Conventional Virtual Memory

Virtual Address Space (VAS)

Processes

one-to-one mapping (OS)

Page Tables
managed by the OS

Physical Memory

VBI

Virtual Blocks (VB)

Processes

many-to-many mapping (OS)

Memory Translation Layer
in the memory controller

Physical Memory
Key Optimizations and Results

• **Benefits:** Many optimizations not easily attainable before. Examples:
 - Appropriately sized process address space
 - Flexible address translation structures
 - Communicating data semantics to the hardware
 - Inherently virtual caches
 - Eliminating 2D page walks in virtual machines
 - Delayed physical memory allocation
 - Early memory reservation mechanism

Inherent to VBI design

• **Evaluation:** Two example use cases
 - VBI significantly improves performance in both native execution and virtual machines (by 2.4x and 4.3x on average, respectively)
 - Increases the effectiveness of managing heterogeneous memory architectures

Covered in the paper

VBI is a promising new virtual memory framework
- Can enable several important optimizations
- Increases design flexibility for virtual memory
- A new direction for future work in novel virtual memory frameworks
The Virtual Block Interface:
A Flexible Alternative to the Conventional Virtual Memory Framework

Nastaran Hajinazar Pratyush Patel Minesh Patel
Konstantinos Kanellopoulos Saugata Ghose Geraldo F. Oliveira
Rachata Ausavarunngnirun Vivek Seshadri Onur Mutlu
Jonathan Appavoo