
The	Virtual	Block	Interface:
A	Flexible	Alternative	to	the	

Conventional	Virtual	Memory	Framework

Nastaran Hajinazar Pratyush Patel							Minesh Patel	
Konstantinos	Kanellopoulos Saugata Ghose										
Rachata Ausavarungnirun Geraldo	F.	Oliveira					

Jonathan	Appavoo Vivek	Seshadri								Onur Mutlu

Executive	Summary
• Motivation:	Modern	computing	systems	continue	to	diversifywith	respect	to	
system	architecture,	memory	technologies,	and	applications’	memory	needs

• Problem:	Continually	adapting	the	conventional	virtual	memory	framework	to	
each	possible	system	configuration	is	challenging
- Results	in	performance	loss	or	requires	non-trivial	workarounds

• Goal:	Design	an	alternative	virtual	memory	framework	that
(1)	Efficiently	supports	a	wide	variety	of	new	system	configurations	
(2)	Provides	the	key	features	and	eliminates	the	key	inefficiencies	of

the	conventional	virtual	memory	framework	

• Virtual	Block	Interface	(VBI):
Delegates	memory	management	to	dedicated	hardware	in	the	memory	controller
- Efficiently	adapts	to	diverse	system	configurations
- Reduces	overheads	and	complexities	associated	with	conventional	virtual	memory
- Enables	many	optimizations	(e.g.,	low-overhead	page	walks	in	virtual	machines,	virtual	caches)

• Evaluation:	Two	example	use	cases
1. VBI significantly	improves	performance	for	both	native	execution	(2.4x)

and	virtual	machine	environments	(4.3x)
2. VBI	significantly	improves	heterogeneous	memory	architecture	effectiveness

2

Motivation

Outline

3

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

Motivation

Outline

4

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

Virtual	Memory	

5

Application

Hardware

Virtual	Memory
managed	by	the	operating	system

Computing	Systems	Are	Diversifying

6

Application

Virtual	Memory
managed	by	the	operating	system

Hardware

Cannot	adapt
efficiently

Computing	Systems	Are	Diversifying

7

Application

Virtual	Memory
managed	by	the	operating	system

Hardware

Cannot	adapt
efficiently

Continually	adapting	the	conventional	
virtual	memory	framework	is	challenging

8

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

Conventional	Virtual	Memory	Framework

each	process	is	mapped	to	a	fixed-size	
virtual	address	space

e.g.,	256	TB	in	Intel	x86-64

9

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

Conventional	Virtual	Memory	Framework

one-to-one	mapping
managed	by	the	OS

10

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

Conventional	Virtual	Memory	Framework

per-process	page	tables	to
map	each	VAS	to	physical	memory

managed	by	the	OS

read	by	hardware

Challenges

• Three	examples	of	the	challenges in	adapting	
conventional	virtual	memory	frameworks	for	
increasingly-diverse	systems:

- Requiring	a rigid page	table	structure

- High	address	translation	overhead in	virtual	machines

- Inefficient heterogeneous	memory	management

11

Challenge	1:	Rigid	Page	Table	Structures

• Flexibly	customized	page	tables	can	reduce	the	
address	translation	overhead
- Customized	to	the	application’s
memory	behavior
• e.g.,	larger	granularities	for	more	densely
allocated	memory	regions

• Con:
- Requires	a	rigid page	table	structure

• e.g.,	fixed-granularity	4-level	page	table
in	Intel	x86

12

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

accessed	by	both	OS and	hardware

Challenges

• Three	examples	of	the	challenges in	adapting	
conventional	virtual	memory	frameworks	for	
increasingly-diverse	systems:

- Requiring	a rigid page	table	structure

- High	address	translation	overhead in	virtual	machines

- Inefficient heterogeneous	memory	management

13

Challenge	2:	Overheads	in	Virtual	Machines

14

Host Virtual Address Space

Host OS

Host Page Tables

Physical Memory

Process 1

VAS 1

Challenge	2:	Overheads	in	Virtual	Machines

15

• In	virtual	machines,	
processes	go	through	an	
extra	level	of	indirection

• Con:
- 2D	page	table	walks

Guest OS

Host Virtual Address Space

Host OS

Process 2

Host Page Tables

Physical Memory

---- virtualization layer ----

Guest Virtual Address Space

g VAS

Guest Page Tables

Process 1

VAS 1 VAS 2

guest	virtual
– to	–

host	virtual	

host	virtual
– to	–

host	physical	

Challenges

• Three	examples	of	the	challenges in	adapting	
conventional	virtual	memory	frameworks	for	
increasingly-diverse	systems:

- Requiring	a rigid page	table	structure

- High	address	translation	overhead in	virtual	machines

- Inefficient heterogeneous	memory	management

16

Page Tables
managed by the OS

• Enhancing	performance	with	
heterogenous	memories	requires:
- Data	mapping

17

Virtual Address Space (VAS)

P1

VAS 1

Challenge	3:	Managing	Heterogeneous	Memory

Slow Mem.Fast Mem.

18

Virtual Address Space (VAS)

P1

VAS 1

Page Tables
managed by the OS

Challenge	3:	Managing	Heterogeneous	Memory

Slow Mem.Fast Mem.

• Enhancing	performance	with	
heterogenous	memories	requires:
- Data	mapping
- Data	migration

• Con:
- OS	has	low	visibility	into
runtime	memory	behavior
• Timely	reaction	to	the	changes	is	challenging

Prior	Works
• Optimizations	that	alleviate the	overheads of
the	conventional	virtual	memory	framework

Shortcomings:
• Based	on	specific system	or	workload	characteristics

- Are	applicable	to	only	limited	problems	or	applications

• Require	specialized and	not	necessarily	compatible
changes	to	both	the	OS	and	hardware
- Implementing	all	in	a	system	is	a	daunting	prospect

19

Prior	Works
• Optimizations	that	alleviate the	overheads of
the	conventional	virtual	memory	framework

Shortcomings:
• Based	on	specific system	or	workload	characteristics

- Are	applicable	to	only	limited	problems	or	applications

• Require	specialized and	not	necessarily	compatible
changes	to	both	the	OS	and	hardware
- Implementing	all	in	a	system	is	a	daunting	prospect

20

We	need	a	holistic	solution	that	efficiently	supports	
increasingly	diverse	system	configurations

Design	an	alternative	virtual	memory	framework	that

• Efficiently and	flexibly supports	increasingly	diverse
system	configurations

• Provides the	key	features of	conventional	virtual	memory	
framework	while	eliminating its	key	inefficiencies

Our	Goal

21

Motivation

Outline

22

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

Virtual	Block	Interface	(VBI)

VBI	is	an	alternative	virtual	memory	framework

Key	idea:

Delegate physical	memory	management	to	dedicated	
hardware	in	the	memory	controller

23

VBI:	Guiding	Principles
• Size	virtual	address	spaces	appropriately	for	processes

- Mitigates translation	overheads of	unnecessarily	large	
address	spaces

• Decouple	address	translation	from	access	protection
- Defers	address	translation	until	necessary	to	access	memory
- Enables	the	flexibility of	managing	translation	and	protection	
using	separate	structures

• Communicate	data	semantics	to	the	hardware
- Enables	intelligent	resource	management

24

Addresses	the	rigidness	and	lack	of	information	in	
current	frameworks,	to	reduce	large	overheads

Motivation

Outline

25

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

VBI:	Overview

26

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

VBIConventional Virtual Memory

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

Virtual	Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space

27

Virtual	Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space
- Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

28

Virtual	Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space
- Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

• All	VBs	are	visible	to	all	processes

29

Virtual	Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes
• Globally-visible VBI	address	space
- Consists	of	a	set	of	virtual	blocks (VBs)
of	different	sizes
• Example	size	classes:	4	KB,	128	KB,	4	MB,
128	MB,	4	GB,	128	GB,	4	TB,	128	TB

• All	VBs	are	visible	to	all	processes

• Processes	map	each	semantically	
meaningful	unit	of	information	
to	a	separate	VB
- e.g.,	a	data	structure,	a	shared	library

30

Inherently	Virtual	Caches

• VBI	address	space	provides
system-wide unique
VBI	addresses

• VBI	addresses are	directly used
to	access	on-chip	caches
- No	longer	require	address	translation

• Pros:	
- Enables	inherently	virtual	caches

• no	synonyms	and	homonyms

31

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

Hardware-Managed	Memory

• Memory	management	is	delegated
to	the	Memory	Translation	Layer
(MTL) in	the	memory	controller
- Address	translation
- Physical	memory	allocation

• Pros:	Many	benefits,	including
- Physical	memory	is	allocated	only	
when	the	location	needs	to	be	written	
to	memory

- No	need	for	2D	page	walks	in	
virtual	machines

- Enabling	flexible	translation	structures
32

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

OS-Managed	Access	Permissions

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes• OS	controls	which	processes
access	which	VBs

• Each	process	has	its	own	
permissions (read/write/execute)	
when	attaching to	a	VB

• OS	maintains	a	list	of	VBs	attached
to	each	process
- Stored	in	a	per-process	table
- Used	during	permission	checks

33

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

Process	Address	Space

34

Conventional	virtual	memory

Process	Address	Space	in	VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes• Any	process	can	attach	to	any	VB

• A	process'	VBs	define	its
address	space
- Address	space	size	is	determined	by	
the	actual needs	of	the	process

the	address	space	of	
process	P1

35

Process	Address	Space	in	VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes• Any	process	can	attach	to	any	VB

• A	process'	VBs	define	its
address	space
- Address	space	size	is	determined	by	
the	actual needs	of	the	process

the	address	space	of	
process	P1

36

First	guiding	principle:	
Appropriately-sized	virtual	address	spaces

Decoupled	Protection	and	Translation

Address	mapping
managed	by	OS

37

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

Access	permissions	
managed	by	OS

Access	permissions
managed	by	OS

Conventional	virtual	memory

Decoupled	Protection	and	Translation

38

Access	permissions	
managed	by	OS

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .ProcessesVBI

Address	mapping
managed	by	the	MTL

Decoupled	Protection	and	Translation

Address	mapping
managed	by	OS

39

Access	permissions	
managed	by	OS

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

Access	permissions
managed	by	OS

Address	mapping
managed	by	the	MTL

Second	guiding	principle:
Decoupling	address	translation	from	access	protection

VBI

Address	Translation	Structures	in	VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

40

• Translation	structures	are
not	sharedwith	the	OS

- Separate	structures	for	translation	
and	permission	information

- Allows	flexible	translation	structures

- Per-VB	translation	structure	tuned	to	
the	VB’s	characteristics
e.g.,	single-level	tables	for	small	VBs

• Pros:	
- Lowers	overheads	and	allows	for	
customization

VB	Information

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

VB

Enable

Reference
Counter

Properties

Size

• Each	VB	is	associated	with
- System-wide	unique	ID
- Size
i.e.,	which	size	class

- Enable	bit
- Reference	counter
number	of	processes	attached	to	the	VB

- Properties	bit	vector
semantic	information	about	VB	contents,
e.g.,	access	pattern,	latency	sensitive	vs.	bandwidth	sensitive

X

41

VB	Information

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

VB

Enable

Reference
Counter

Properties

Size

• Each	VB	is	associated	with
- System-wide	unique	ID
- Size
i.e.,	which	size	class

- Enable	bit
- Reference	counter
number	of	processes	attached	to	the	VB

- Properties	bit	vector
semantic	information	about	VB	contents,
e.g.,	access	pattern,	latency	sensitive	vs.	bandwidth	sensitive

X

42

Third	guiding	principle:
Communicating	data	semantics	to	the	hardware

Implementing	VBI

• Please	refer	to	our	paper

- Detailed	reference	implementation	and	microarchitecture

43

Memory Controller

Memory Translation Layer (MTL)

L1
miss

VBUID offset

L2

Last-Level
Cache
(LLC)

index =
request_vb(...);
x = malloc(index, size);

.

.

.
y = (*x); Virtual

Address

Application

index offset

miss

VBI
Address

CPU Physical Memory

VITs
CVTs

enable_vb attach

CVT
(Client–VB Table)

Cache Translation
Structures

Data

Translation
Walker

Physical AddressTLB

miss

hit

VIT
(VB Info Table)

Cache

Motivation

Outline

44

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

• Many	optimizations	not	easily	attainable	before

• Examples:
- Appropriately	sized	process	address	space
- Flexible	address	translation	structures
- Communicating	data	semantics	to	the	hardware
- Inherently	virtual	caches
- Delayed	physical	memory	allocation
- Eliminating	2D	page	walks	in	virtual	machines
- Early	memory	reservation	mechanism

Optimizations	Naturally	Enabled	by	VBI

45

Achieved
through
guiding

principles

Covered in our paper

Covered
next

• Inherently	virtual	caches

• Delayed	physical	memory	allocation

• Eliminating	2D	page	walks	in	virtual	machines

Example	Optimizations

46

In VBIIn Conventional Virtual Memory

virtually-indexed virtually-tagged
(VIVT)

Inherently	Virtual	Caches

47

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

miss

hit
physical
address

VIVT
Cache

Core

Physical Memory

TLB

virtual
address

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

physical
address

permission
check

page walk
miss

VIVT
Cache

Synonyms
&

homonyms

miss miss

permission
check

VBI
Cache

No
Synonyms

&
homonyms

physical
address

page walk

virtually-indexed physically-tagged
(VIPT)

In VBIIn Conventional Virtual Memory

virtually-indexed virtually-tagged
(VIVT)

Inherently	Virtual	Caches

48

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

miss

hit
physical
address

VIVT
Cache

Core

Physical Memory

TLB

virtual
address

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

physical
address

miss miss

permission
check

VBI
Cache

No
Synonyms

&
homonyms

physical
address

page walk

virtually-indexed physically-tagged
(VIPT)

In VBIIn Conventional Virtual Memory

virtually-indexed virtually-tagged
(VIVT)

Inherently	Virtual	Caches

49

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

miss

hit
physical
address

VIVT
Cache

Core

Physical Memory

TLB

virtual
address

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

physical
address

permission
check

page walk
miss

VIVT
Cache

Synonyms
&

homonyms

miss miss

permission
check

VBI
Cache

No
Synonyms

&
homonyms

physical
address

page walk

virtually-indexed physically-tagged
(VIPT)

In VBIIn Conventional Virtual Memory

virtually-indexed virtually-tagged
(VIVT)

Inherently	Virtual	Caches

50

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

miss

hit
physical
address

VIVT
Cache

Core

Physical Memory

TLB

virtual
address

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

physical
address

permission
check

page walk
miss

VIVT
Cache

Synonyms
&

homonyms

miss missphysical
address

page walk

virtually-indexed physically-tagged
(VIPT)

system-wide
unique

In VBIIn Conventional Virtual Memory

virtually-indexed virtually-tagged
(VIVT)

Inherently	Virtual	Caches

51

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

miss

hit
physical
address

VIVT
Cache

Core

Physical Memory

TLB

virtual
address

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

physical
address

permission
check

page walk
miss

VIVT
Cache

Synonyms
&

homonyms

miss miss

permission
check

VBI
Cache

No
Synonyms

&
homonyms

physical
address

page walk

system-wide
unique

virtually-indexed physically-tagged
(VIPT)

In Conventional Virtual Memory In VBI

virtually-indexed virtually-tagged
(VIVT)

caches in VBI

52

VIPT
cache

Core

Physical Memory

TLB

virtual
address

miss

hit
physical
address

VIVT
cache

Core

Physical Memory

TLB

virtual
address

physical
address

VBI
cache

Core

Physical Memory

MTL

VBI
address

physical
address

permission
check

page walk
miss

VIVT
Cache

Synonyms
&

homonyms

miss miss

permission
check

VBI
Cache

No
Synonyms

&
homonyms

physical
address

page walk

system-wide
unique

virtually-indexed physically-tagged
(VIPT)

VBI	reduces address	translation	overhead
by	enabling	benefits	akin	to	VIVT	caches

Inherently	Virtual	Caches

• Inherently	virtual	caches

• Delayed	physical	memory	allocation

• Eliminating	2D	page	walks	in	virtual	machines

Example	Optimizations

53

miss
page walk

In VBI
virtually-indexed physically-tagged (VIPT)
In Conventional Virtual Memory

Delayed	Physical	Memory	Allocation

54

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

hit
physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

miss

no memory
allocated

miss zeroed
cache line

actual
cache line

miss
page walk

In VBI
virtually-indexed physically-tagged (VIPT)
In Conventional Virtual Memory

Delayed	Physical	Memory	Allocation

55

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

hit
physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

miss

no memory
allocated

miss zeroed
cache line

actual
cache line

miss
page walk

56

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

hit
physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

write
back

allocates
memory

actual
cache line

miss

virtually-indexed physically-tagged (VIPT)
In Conventional Virtual Memory In VBI

Delayed	Physical	Memory	Allocation

57

VBI
Cache

Core

Physical Memory

MTL

VBI
address

write
back

allocates
memory

• No	address	translation
for	accesses	to	regions	with
no	allocation

• No	memory	accesses
to regions	with	no	allocation	yet

• No	memory	allocation
for	VBs	that	never	leave	the	cache	
during	their	lifetime

In VBI

Delayed	Physical	Memory	Allocation

In VBI

58

VBI
Cache

Core

Physical Memory

MTL

VBI
address

write
back

Allocates
memory

• No	address	translation for	accesses	
to	regions	with	no	allocation

• No	memory	access	to regions	with	
no	allocation	yet

• No	memory	allocation	for	VBs	that	
never	leave	the	cache	during	their	
lifetime

VBI	reduces address	translation	overhead,	
improves overall performance,	

and reduces memory consumption

Delayed	Physical	Memory	Allocation

• Inherently	virtual	caches

• Inherently	virtual	caches

• Eliminating	2D	page	walks	in	virtual	machines

Example	Optimizations

59

Guest OS

60

Host Virtual Address Space

Host OS

Process 2

Host Page Tables

Physical Memory

---- virtualization layer ----

Eliminating	2D	Page	Walks	in	Virtual	Machines

Guest Virtual Address Space

g VAS

Guest Page Tables

Process 1

VAS 1 VAS 2

Process	running	on
a	virtual	machine	(VM)

guest	virtual
– to	–

host	virtual	

host	virtual
– to	–

host	physical	

Conventional	virtual	memory

Guest	OS and	host	OS	interact	once to	
attach	Process	1	to	its	VBs

61

MTL is	the	only	component in	the	system	
that	manages	address	mapping

Eliminating	2D	Page	Walks	in	Virtual	Machines

Guest OS

VBI Address Space

Host OS

Process 1

VB 1

Process 2

Memory Translation Layer
in Memory Controller

Physical Memory

VB 2 VB 3

---- virtualization layer ----

VBI

Guest	OS and	host	OS	interact	once	to	
attach	Process	1	to	its	VBs

62

MTL performs	address	translation	and	
memory	allocation

Eliminating	2D	Page	Walks	in	Virtual	Machines

Guest OS

VBI Address Space

Host OS

Process 2

VB 1

Process 1

Memory Translation Layer
in Memory Controller

Physical Memory

VB 2 VB 3

---- virtualization layer ----

By	eliminating	2D	page	walks,
VBI	reduces address	translation	overhead

in	virtualized	environments

Motivation

Outline

63

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

• Simulator:	heavily-modified	version	of	Ramulator
- Models	virtual	memory	components	(e.g.,	TLBs,	page	tables)
- Available	at	https://github.com/CMU-SAFARI/Ramulator-VBI

• Workloads:	SPECspeed2017,	SPEC	CPU	2006,	TailBench,	Graph	500

• System	parameters:
- Core:	4-wide	issue,	OOO,	128-entry	ROB
- L1	Cache:	32	KB,	8-way	associative,	4	cycles
- L2	Cache:	256	KB,	8-way	associative,	8	cycles
- L3	Cache:	8	MB	(2	MB	per-core),	16-way	associative,	31	cycles
- L1	DTLB:							- 4	KB	pages:	64-entry,	fully	associative

- 2	MB	pages:	32-entry,	fully	associative
- L2	DTLB:	4	KB	and	2	MB	pages:	512-entry,	4-way	associative
- Page	Walk	Cache:	32-entry,	fully	associative
- DRAM:	DDR3-1600,	1	channel,	1	rank/channel,	8	banks/rank
- PCM:	PCM-800,	1	channel,	1	rank/channel,	8	banks/rank

Methodology

64

https://github.com/CMU-SAFARI/Ramulator-VBI

Motivation

Outline

65

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

• The	impact	of	VBI	on	reducing	the	address	translation	
overhead	in	both	native	execution	and	virtual	machines

• Evaluated	systems:
- Three	baselines:

• Native: applications	run	natively	on	an	x86-64	system
• Virtual: applications	run	inside	a	virtual	machine	(accelerated	using	2D	page	
walk	cache	[Bhargava+,	ASPLOS’08])	

• Perfect	TLB:	an	unrealistic	version	of	Native	with	no	translation	overhead

- One	VBI	configuration:
• VBI-Full:	VBI	with	all	the	optimizations	that	it	enables

• See	our	paper	for	results	on	more	system	configurations

Use	Case	1:	Address	Translation

66

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

mcf
milc

nam
d

sje
ng

bwave
s-1

7

deepsje
ng-1

7

lbm-17

omnetp
p-17

im
g-d

nn
mose

s

Graph500
AVG

Virtual Perfect TLB VBI-Full

Use	Case	1:	Address	Translation

67

Sp
ee

du
p

Normalized to Native

0.7x

13
.3

8.
9

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

mcf
milc

nam
d

sje
ng

bwave
s-1

7

deepsje
ng-1

7

lbm-17

omnetp
p-17

im
g-d

nn
mose

s

Graph500
AVG

Virtual Perfect TLB VBI-Full

Use	Case	1:	Address	Translation

68

Sp
ee

du
p

13
.3

8.
9

Normalized to Native

1.9x

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

mcf
milc

nam
d

sje
ng

bwave
s-1

7

deepsje
ng-1

7

lbm-17

omnetp
p-17

im
g-d

nn
mose

s

Graph500
AVG

Virtual Perfect TLB VBI-Full

Use	Case	1:	Address	Translation

69

Sp
ee

du
p

Normalized to Native

2.4x

13
.3

8.
9

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

mcf
milc

nam
d

sje
ng

bwave
s-1

7

deepsje
ng-1

7

lbm-17

omnetp
p-17

im
g-d

nn
mose

s

Graph500
AVG

Virtual Perfect TLB VBI-Full

Use	Case	1:	Address	Translation

70

Sp
ee

du
p

Normalized to Native

4.3x

13
.3

8.
9

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

mcf
milc

nam
d

sje
ng

bwave
s-1

7

deepsje
ng-1

7

lbm-17

omnetp
p-17

im
g-d

nn
mose

s

Graph500
AVG

Virtual Perfect TLB VBI-Full

Use	Case	1:	Address	Translation

71

Sp
ee

du
p

Normalized to Native

13
.3

8.
9

49%

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

mcf
milc

nam
d

sje
ng

bwave
s-1

7

deepsje
ng-1

7

lbm-17

omnetp
p-17

im
g-d

nn
mose

s

Graph500
AVG

Virtual Perfect TLB VBI-Full

Use	Case	1:	Address	Translation

72

Sp
ee

du
p

Normalized to Native

13
.3

8.
9

VBI	significantly	improves	performance
in	both	native execution and	virtual machines

49%

• The	benefits	of	VBI	in	harnessing	the	full	potential	of	
heterogeneous	memory	architectures

- Hybrid	PCM–DRAM	memory	architecture

• Evaluated	systems:
- Two	baselines:

• Hotness-Unaware	PCM–DRAM:	unaware	of	the	data	hotness

• IDEAL:	always	maps	frequently-accessed	data	to	DRAM

- One	VBI	configuration:
• VBI	PCM–DRAM:	VBI	maps	and	migrates	frequently-accessed	VBs	to	the	
DRAM

Use	Case	2:	Memory	Heterogeneity

73

More	in	our	paper:
• Similar	performance	improvement	for	Tiered-Latency-DRAM	[Lee+,	HPCA’13]

Use	Case	2:	Memory	Heterogeneity

74

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

hmmer
mcf

milc

so
plex

sp
hinx3

bwave
s-1

7

lbm-17

omnetp
p-17

xa
lancb

mk-17

im
g-d

nn
mose

s

Graph500
AVG

VBI PCM-DRAM IDEAL

Normalized to Hotness-Unaware PCM–DRAM

Sp
ee

du
p

33%

Use	Case	2:	Memory	Heterogeneity

75

0.0

0.5

1.0

1.5

2.0

2.5

asta
r

bzip
2

GemsFD
TD

hmmer
mcf

milc

so
plex

sp
hinx3

bwave
s-1

7

lbm-17

omnetp
p-17

xa
lancb

mk-17

im
g-d

nn
mose

s

Graph500
AVG

VBI PCM-DRAM IDEAL

Normalized to Hotness-Unaware PCM–DRAM

Sp
ee

du
p

33%

VBI	enables	efficient data	mapping and	data	
migration for	heterogeneous	memory	systems

Motivation

Outline

76

VBI:	Virtual	Block	Interface
Key	Idea	&	Guiding	Principles
Design	Overview
Optimizations	Enabled	by	VBI

Methodology

Results

Summary

• Virtual	Block	Interface	(VBI):	A	new	virtual	memory	framework
- Addresses	the	challenges	in	adapting	conventional	virtual	memory	to	
increasingly	diverse	system	configurations	and	workloads

• Key	Idea:	Delegate	physical	memory	management	to	dedicated	
hardware	in	the	memory	controller
• Benefits:	Not	easily	attainable	in	conventional	virtual	memory	
(e.g.,	inherently	virtual	caches	,		delaying	physical	memory	
allocation,	and	avoiding	2D	page	walks	in	virtual	machines)
• Evaluation:	

- VBI	significantly	improves	performance	in	both	native	execution	and	
virtual	machines

- Increases	the	effectiveness	of	managing	heterogeneous	memory	
architectures

• Conclusion:	VBI	is	a	promising	new	virtual	memory	framework
- Can	enable	several	important	optimizations
- Increases	design	flexibility	for	virtual	memory
- A	new	direction	for	future	work	in	novel	virtual	memory	frameworks

Summary

77

The	Virtual	Block	Interface:
A	Flexible	Alternative	to	the	

Conventional	Virtual	Memory	Framework

Nastaran Hajinazar Pratyush Patel							Minesh Patel	
Konstantinos	Kanellopoulos Saugata Ghose										
Rachata Ausavarungnirun Geraldo	F.	Oliveira					

Jonathan	Appavoo Vivek	Seshadri								Onur Mutlu

