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Executive Summary

Motivation: Modern computing systems continue to diversify with respect to
system architecture, memory technologies, and applications’ memory needs

Problem: Continually adapting the conventional virtual memory framework to
each possible system configuration is challenging

- Results in performance loss or requires non-trivial workarounds

Goal: Design an alternative virtual memory framework that
(1) Efficiently supports a wide variety of new system configurations

(2) Provides the key features and eliminates the key inefficiencies of
the conventional virtual memory framework

Virtual Block Interface (VBI):

Delegates memory management to dedicated hardware in the memory controller
- Efficiently adapts to diverse system configurations
- Reduces overheads and complexities associated with conventional virtual memory
- Enables many optimizations (e.g., low-overhead page walks in virtual machines, virtual caches)

Evaluation: Two example use cases

1. VBI significantly improves performance for both native execution (2.4x)
and virtual machine environments (4.3x)

2. VBI significantly improves heterogeneous memory architecture effectiveness
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Computing Systems Are Diversitying

Continually adapting the conventional

virtual memory framework is challenging
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Conventional Virtual Memory Framework

Pr

each process is mapped to a fixed-size
virtual address space <~ [ ] [ ]
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e.g., 256 TB in Intel x86-64 TVAS1 VAS2 VAS n

Virtual Address Space (VAS)

Page Tables
managed by the OS

Physical Memory
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Conventional Virtual Memory Framework
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Conventional Virtual Memory Framework

Processes
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Challenges

* Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management
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Challenge 1: Rigid Page Table Structures

* Flexibly customized page tables can reduce the
address translation overhead

Processes
L] n L P
- Customized to the application’s R
memory behavior

* e.g, larger granularities for more densely [ ] [ ]

allocated memory regions
VAS1 VAS2 VAS n

Virtual Address Space (VAS)
accessed by both OS and hardware <<

|
S Page Tables
) Con: \ managed by the OS
- Requires a rigid page table structure ' Physical Memory

* e.g, fixed-granularity 4-level page table

in Intel x86
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Challenges

* Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management
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Challenge 2: Overheads in Virtual Machines
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Challenge 2: Overheads in Virtual Machines

Process 2

 In virtual machines, Guest OS
processes go through an
extra level of indirection
Guest Virtual Address Space
guest virtual / ‘ Guest Page Tables I
- to - V|rtuaI|zat|on layer --
host virtual "mcess !

Host OS

* Con:
VAS 1 VAS 2
- 2D page table walks .

Host Virtual Address Space

host virtual
—to - Host Page Tables
host physical Physical Memory
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Challenges

* Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management
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Challenge 3: Managing Heterogeneous Memory

* Enhancing performance with
heterogenous memories requires:

- Data mapping

1 I

VAS 1
Virtual Address Space (VAS)

Page Tables
managed by the OS
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Challenge 3: Managing Heterogeneous Memory

* Enhancing performance with

heterogenous memories requires:
- Data mapping

- Data migration [:. I ]

VAS 1
Virtual Address Space (VAS)

Page Tables
¢ COn: managed by the OS

- OS has low visibility into iem.] [ o 'VI“

runtime memory behavior

* Timely reaction to the changes is challenging
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Prior Works

* Optimizations that alleviate the overheads of
the conventional virtual memory framework

Shortcomings:

* Based on specific system or workload characteristics

- Are applicable to only limited problems or applications

* Require specialized and not necessarily compatible
changes to both the OS and hardware

- Implementing all in a system is a daunting prospect
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Prior Works

We need a holistic solution that efficiently supports

increasingly diverse system configurations
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Our Goal

Design an alternative virtual memory framework that

* Efficiently and flexibly supports increasingly diverse
system configurations

* Provides the key features of conventional virtual memory
framework while eliminating its key inefficiencies

SAFARI 21



Outline

VBI: Virtual Block Interface

Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

SAFARI 22



Virtual Block Interface (VBI)

VBI is an alternative virtual memory framework

Key idea:

Delegate physical memory management to dedicated
hardware in the memory controller
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VBI: Guiding Principles

* Size virtual address spaces appropriately for processes

- Mitigates translation overheads of unnecessarily large
address spaces

* Decouple address translation from access protection
- Defers address translation until necessary to access memory

- Enables the flexibility of managing translation and protection
using separate structures

 Communicate data semantics to the hardware
- Enables intelligent resource management

Addresses the rigidness and lack of information in
current frameworks, to reduce large overheads
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VBI: Overview

Processes
L4 . .

o O

VAS1 VAS2 VAS n
Virtual Address Space (VAS)

Page Tables
managed by the OS

Physical Memory

Conventional Virtual Memory
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Virtual Blocks

* Globally-visible VBI address space
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Virtual Blocks

* Globally-visible VBI address space

- Consists of a set of virtual blocks (VBs)
of different sizes

« Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

VB1 VB2 VB3
VBI Address Space

Memory Translation Layer

in the memory controller

Physical Memory
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Virtual Blocks

* Globally-visible VBI address space

- Consists of a set of virtual blocks (VBs)
of different sizes
« Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

 All VBs are visible to all processes
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Virtual Blocks

* Globally-visible VBI address space

- Consists of a set of virtual blocks (VBs)
of different sizes

« Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

VB1 VB2 VB3
 All VBs are visible to all processes VBI Address Space

Memory Translation Layer

* Processes map each semantically
meaningful unit of information

to a separate VB
- e.g, a data structure, a shared library

in the memory controller

Physical Memory
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Inherently Virtual Caches

» VBI address space provides
system-wide unique
VBI addresses

* VBI addresses are directly used
to access on-chip caches

- No longer require address translation

* Pros:
- Enables inherently virtual caches

* no synonyms and homonyms

SAFARI
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Hardware-Managed Memory

* Memory management is delegated
to the Memory Translation Layer
(MTL) in the memory controller

- Address translation

- Physical memory allocation VI T T

VBI Address Space

* Pros: Many benetfits, including

- Physical memory is allocated only

Memory Translation Layer

in the memory controller

when the location needs to be written

to memory

Physical Memory

- No need for 2D page walks in
virtual machines

- Enabling flexible translation structures
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0S-Managed Access Permissions

* OS controls which processes
access which VBs

* Each process has its own
permissions (read/write/execute)
when attaching to a VB

 OS maintains a list of VBs attached
to each process

- Stored in a per-process table
- Used during permission checks

SAFARI
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Process Address Space

Conventional virtual memory

SAFARI

Processes
* * *

o O

VAS1 VAS2

VAS n

Virtual Address Space (VAS)
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Process Address Space in VBI

* Any process can attach to any VB

* A process’' VBs define its
address space

- e .

- Address space size is determined by /
the actual needs of the process

/ Memory Translation Layer
’ in th troll
the address space of PPt e
process P4

Physical Memory
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Process Address Space in VBI

* Any process can attach to any VB

* A process’' VBs define its
address space

]
- Address space size is determined by VBT Address Space
the actual needs of the process 'l
/ Memory Translation Layer
/’ in the memory controller

First guiding principle:

Appropriately-sized virtual address spaces
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Decoupled Protection and Translation

Conventional virtual memory T T Processes

Access permlssmns

VAS 1 VAS 2 VAS n
managed by 0S
Virtual Address Space (VAS)
_ Page Tables
- -~
Address mapping JUCRN i
managed by OS
Physical Memory
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Decoupled Protection and Translation

VBI

Access permissions
managed by OS

Address mapping
managed by the MTL
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Decoupled Protection and Translation

VBI

Access permissions
managed by OS

VB1 VB2 VB3
VBI Address Space

Memory Translation Layer
Address mangp in ,l in the memory controller

Second guiding principle:

Decoupling address translation from access protection
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Address Translation Structures in VBI

* Translation structures are
not shared with the OS

- Separate structures for translation
and permission information

VB1 VB2 VB3
- Allows flexible translation structures VBI Address Space

- Per-VB translation structure tuned to | memory Translation Layer

the VB’s characteristics in the memory controller
e.g., single-level tables for small VBs ‘

Physical Memory

e Pros:

- Lowers overheads and allows for

customization
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VB Information

- ™
VB X

Reference
Counter

\m

<.

 Each VB is associated wit]
- System-wide unique ID
- Size
i.e.,, which size class

- Enable bit
- Reference counter

number of processes attached to the VB

- Properties bit vector

Sao I
~~<.\.VB1 /VB2 VB3

S =

VBI Address Space

Memory Translation Layer

in the memory controller

Physical Memory

semantic information about VB contents,
e.g., access pattern, latency sensitive vs. bandwidth sensitive
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VB Information

- N
VB X AN

Counter
\
Z

\m

<o /7
, _ _ e |
» Each VB is associated with ~~-.1VB1 VB2 VB3
- System-wide unique ID VBI Address Space
- Size

ie., which size class Memory Translation Layer

in the memory controller

Third guiding principle:

Communicating data semantics to the hardware
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Implementing VBI

* Please refer to our paper

- Detailed reference implementation and microarchitecture

Application CPU enable vb attach == Physical Memory
- 2 R
index = CVT Last-Level RS
request_vb(...); , Cache | || W o enieneemteenee e L L VT
x = malloc (index, size); (Cllent—VB Table) (LLC) VIT ) CVTs
' Cache ' (VB Info Table) Translation > Translation
‘ miss E Cache Walker Structures
. _ L2 Physical Address
y = (*x) Virtual Add VBI it
Jhd [ Address ) ress miss >»| Data
[index | offset} | VBUID | offset ] Memory Controller
""""""" " \ ) A ~—
1
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Optimizations Naturally Enabled by VBI

 Many optimizations not easily attainable before

* Examples:
i [ - Appropriately sized process address space ~ a pieved | :
1 - Flexible address translation structures through |

I guiding |
- Communicating data semantics to the hardware principles ll

Inherently virtual caches

Delayed physical memory allocation

Eliminating 2D page walks in virtual machines
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Example Optimizations

* Inherently virtual caches

* Delayed physical memory allocation

 Eliminating 2D page walks in virtual machines
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Inherently Virtual Caches

Core

hit
4 TLB
VIPT physical
Cache address Y
miss
page walk
physical
address
[ Physical Memory ]

virtually-indexed physically-tagged
(VIPT)

In Conventional Virtual Memory
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Inherently Virtual Caches

Core Core

hit
< TLB
VIPT physical VIVT
Cache address ' Y Cache
miss
page walk
physical miss
address
TLB
physical
address
[ Physical Memory ] [ Physical Memory ]
virtually-indexed physically-tagged virtually-indexed virtually-tagged
(VIPT) (VIVT)

In Conventional Virtual Memory
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Inherently Virtual Caches

' Core ' ' Core '

virtual permis:iSE _____ virtual
address check : address
\ I \ 4
I
hit
VIPT < . : TLB : Synonyms
physical [ &
CaChe address A ] :
miss I homonyms
page walk |
physical i miss
address I —
1
L.—-» TLB
miss )
Ik physical
page wa address
[ Physical Memory ] [ Physical Memory ]
virtually-indexed physically-tagged virtually-indexed virtually-tagged
(VIPT) (VIVT)

In Conventional Virtual Memory
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Inherently Virtual Caches

' Core '

' Core '

' Core '

I
I
I
I
. . . I
virtual permission virtual : VBl system-wide
address check : address I address  unique
\ 4 I
: v | ‘L
4 it TLB : Synonyms :
VIPT physical : & [ VBI
Cache | .qdress—F5— ! ! Cache
miss I homonyms :
page walk | i
1
physical I miss : miss
I \ 4 \ 4
address I I
1
I
L-—-» TLB I MTL
I
I
i I
mlsli physical I physical
Page Walk | — 4dress : address
\ 4 \ 4 \ 4 \ 4
. o I o
[ Physical Memory ] [ Physical Memory ] i Physical Memory ]
I
virtually-indexed physically-tagged virtually-indexed virtually-tagged :
(VIPT) (VIVT) "
In Conventional Virtual Memory In VBI
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Inherently Virtual Caches

' Core '

' Core '

Core

I
I
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1
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In Conventional Virtual Memory In VBI

SAFARI

51



Inherently Virtual Caches

Core Core Core

hit

miss
page walk

miss miss

VBI reduces address translation overhead

by enabling benefits akin to VIVT caches

(VIPT) (VIVT)
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Example Optimizations

* Inherently virtual caches

* Delayed physical memory allocation

 Eliminating 2D page walks in virtual machines
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Delayed Physical Memory Allocation

Core

l’__‘~\
/) hit
/|-
VIPT {[=—"1 JLB
\ | physical |
Cache M address ¢ # .
See’ miss
page walk

s

actual miss
cache line

\ 4 \ 4

[ I Physical Memory ]

virtually-indexed physically-tagged (VIPT)
In Conventional Virtual Memory
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Delayed Physical Memory Allocation
' Core ' ' Core '

|
|
|
|
|
virtual : VBI
address : address
v ”__~~\ : v
/ hit I
AP
VIPT '\‘physical \?-LB : VBI
Cache M address 7 § I Cache
See’ miss I
page walk I
] : zeroed 1 :
actual miss I he li | miss
cache line I cachetine
I no memory
: MTL allocated

|
|
|
\ 4 \ 4 I
|

[ I Physical Memory ] : [ Physical Memory ]
|
|

virtually-indexed physically-tagged (VIPT)
In Conventional Virtual Memory In VBI
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Delayed Physical Memory Allocation
' Core ' ' Core '

[ I Physical Memory ] [ I Physical Memory ]

|
|
|
|
|
virtual : VBI
address |
i address
v - i A
g s I '
/A hit \q-LB |
VIPT l‘ physical | 1 : VBI
y A
CaChe \,baddress /7 A ] i CaChe
See”’ miss |
page walk I
vl 1 _ : write
ac ua. miss 0 1 back
cache line [
: MTL
|
|
I allocates
: memory
A 4 v I v
|
|
|
|
|

virtually-indexed physically-tagged (VIPT)
In Conventional Virtual Memory In VBI
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Delayed Physical Memory Allocation

* No address translation
for accesses to regions with
no allocation

* No memory accesses
to regions with no allocation yet

* No memory allocation
for VBs that never leave the cache
during their lifetime

SAFARI

VBI
Cache

MTL

write
back

allocates
memory

[ I Physical Memory ]

In VBI
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Delayed Physical Memory Allocation

o for accesses
to regions with no allocation

o to regions with
no allocation yet

VBI reduces address translation overhead,

improves overall performance,
and reduces memory consumption

SAFARI
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Example Optimizations

* Inherently virtual caches

* Inherently virtual caches

* Eliminating 2D page walks in virtual machines
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Eliminating 2D Page Walks in Virtual Machines

Process running on
a virtual machine (VM)

Conventional virtual memory

Guest Virtual Address Space

guest virtual
- to — V|rtuaI|zat|on layer --

host virtual
\ =VAS 1

Host Virtual Address Space

host virtual
— to —_
host physical

Physical Memory ]
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Eliminating 2D Page Walks in Virtual Machines

Process 2

VBI
~ Guest OS
: ---- virtualization Jaydr ----
P
1
Guest OS and host OS interact once to 4_,' :
attach Process 1 to its VBs Ly
VB1 VB 2 VB3
VBI Address Space
Memory Translation Layer
. ] -~ inM Controll
MTL is the only component in the system __ _/ SOy FOnHOTEr
that manages address mapping
Physical Memory
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Eliminating 2D Page Walks in Virtual Machines

By eliminating 2D page walKks,

VBI reduces address translation overhead
in virtualized environments
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Methodology

* Simulator: heavily-modified version of Ramulator

- Models virtual memory components (e.g., TLBs, page tables)
- Available at https://github.com/CMU-SAFARI/Ramulator-VBI

* Workloads: SPECspeed 2017, SPEC CPU 2006, TailBench, Graph 500

* System parameters:

- Core: 4-wide issue, 000, 128-entry ROB
- L1 Cache: 32 KB, 8-way associative, 4 cycles
- L2 Cache: 256 KB, 8-way associative, 8 cycles
- L3 Cache: 8 MB (2 MB per-core), 16-way associative, 31 cycles
- L1DTLB: -4 KB pages: 64-entry, fully associative
- 2 MB pages: 32-entry, fully associative
- L2 DTLB: 4 KB and 2 MB pages: 512-entry, 4-way associative
- Page Walk Cache: 32-entry, fully associative
- DRAM: DDR3-1600, 1 channel, 1 rank/channel, 8 banks/rank
- PCM: PCM-800, 1 channel, 1 rank/channel, 8 banks/rank

SAFARI 64
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Use Case 1: Address Translation

* The impact of VBI on reducing the address translation
overhead in both native execution and virtual machines

* Evaluated systems:

- Three baselines:
* Native: applications run natively on an x86-64 system

 Virtual: applications run inside a virtual machine (accelerated using 2D page
walk cache [Bhargava+, ASPLOS’08])

 Perfect TLB: an unrealistic version of Native with no translation overhead

- One VBI configuration:
» VBI-Full: VBI with all the optimizations that it enables

* See our paper for results on more system configurations
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Use Case 1: Address Translation
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Use Case 1: Address Translation
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Use Case 1: Address Translation
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Use Case 1: Address Translation
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Use Case 1: Address Translation
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Use Case 1: Address Translation

49%
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VBI significantly improves performance
in both native execution and virtual machines
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Use Case 2: Memory Heterogeneity

* The benefits of VBI in harnessing the full potential of
heterogeneous memory architectures

- Hybrid PCM-DRAM memory architecture

* Evaluated systems:

- Two baselines:
e Hotness-Unaware PCM-DRAM: unaware of the data hotness

« IDEAL: always maps frequently-accessed data to DRAM
- One VBI configuration:

« VBI PCM-DRAM: VBI maps and migrates frequently-accessed VBs to the
DRAM
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Use Case 2: Memory Heterogeneity

33%
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More in our paper:

 Similar performance improvement for Tiered-Latency-DRAM [Lee+, HPCA'13]
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Use Case 2: Memory Heterogeneity
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VBI enables efficient data mapping and data
migration for heterogeneous memory systems
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Summary

* Virtual Block Interface (VBI): A new virtual memory framework

- Addresses the challenges in adapting conventional virtual memory to
increasingly diverse system configurations and workloads

* Key Idea: Delegate physical memory management to dedicated
hardware in the memory controller

Not easily attainable in conventional virtual memory
(e.g., inherently virtual caches, delaying physical memory
allocation, and avoiding 2D page walks in virtual machines)

 Evaluation:

- VBI significantly improves performance in both native execution and
virtual machines

- Increases the effectiveness of managing heterogeneous memory
architectures

* Conclusion: VBI is a promising new virtual memory framework
- Can enable several important optimizations
- Increases design flexibility for virtual memory
- A new direction for future work in novel virtual memory frameworks
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