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Read Disturbance in DRAM (I)

•Read disturbance in DRAM breaks memory isolation

•Prominent example: RowHammer
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DRAM Subarray
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Repeatedly opening (activating) and closing a DRAM row 
many times causes RowHammer bitflips in adjacent rows

[Kim+, ISCA’14] 4



Read Disturbance in DRAM (II)

•Read disturbance in DRAM breaks memory isolation

•A new read disturbance phenomenon: RowPress
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[Luo+, ISCA’23]

Keeping a DRAM row open for a long time 
causes bitflips in adjacent rows

DRAM Subarray
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Read Disturbance Solutions

There are many solutions to mitigate read disturbance bitflips

• More robust DRAM chips and/or error-correcting codes

• Increased refresh rate 

• Physical isolation

• Row remapping

• Preventive refresh

• Proactive throttling

Each solution offers a different system design point 
in reliability, performance, energy, and area tradeoff space
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The Read Disturbance Threshold (RDT)

•Many secure read disturbance solutions
take a preventive action before a bitflip manifests
• E.g., preventively refresh a victim row

•Must accurately quantify the amount of disturbance
that a row can withstand before experiencing a bitflip
• Typically identified by testing for read disturbance failures

•Read Disturbance Threshold (RDT):
The number of aggressor row activations 
needed to induce the first bitflip
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Accurate Identification of Read Disturbance Threshold
is Critical for System Security and Performance
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Configured RDT 
for the Mitigation Technique
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Variable Read Disturbance (VRD) Summary
Research Question
• How accurately and efficiently can we measure 

the read disturbance threshold (RDT) of each DRAM row?

Experimental Characterization
• Record >100M RDT measurements across 3750 rows and 

many test parameters (e.g., temperature, data pattern) in 
160 DDR4 and 4 HBM2 chips

Key Observations
• RDT changes significantly and unpredictably over time: VRD
• Maximum observed RDT is 3.5X higher than minimum (for a row)
• Smallest RDT (for a row) may appear after 94,467 measurements

Implications for System Security and Robustness
• RDT cannot be accurately identified quickly
• Given our limited dataset, guardbands (>10%) and ECC (SECDED or Chipkill)

may prevent VRD-induced bitflips at significant performance cost
• More data and analyses needed to make definitive conclusion

• Call for future work on understanding and efficiently mitigating VRD

9



Talk Outline

I. Motivation

II. Experimental Characterization Methodology

III. Foundational Results

IV. In-Depth Analysis of VRD

V. Implications for System Security and Robustness

VI. Conclusion

10



Talk Outline

I. Motivation

II. Experimental Characterization Methodology

III. Foundational Results

IV. In-Depth Analysis of VRD

V. Implications for System Security and Robustness

VI. Conclusion

11



Motivation
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DRAM chips are increasingly more vulnerable 
to read disturbance with technology scaling

Technology Scaling
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Motivation

DRAM read disturbance worsens 
as DRAM chip density increases

Existing solutions become more aggressive

Aggressive preventive actions make 
existing solutions prohibitively expensive
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Configured RDT 
for the Mitigation Technique
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Motivation
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Prior works assume that the ground truth 
Read Disturbance Threshold (RDT) can be identified



Problem
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No prior work rigorously studies 

temporal variation of 

DRAM read disturbance threshold

&

implications for future solutions



Our Goal

Answer two research questions:

Analyze implications for 
read disturbance solutions

1 Does RDT change over time?

2
How reliably and efficiently 

can RDT be measured?
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DDR4 DRAM Testing Infrastructure

DRAM Bender on a Xilinx Virtex UltraScale+ XCU200

Xilinx Alveo U200 FPGA Board
(programmed with DRAM Bender*)

DRAM Module with Heaters

MaxWell FT200 
Temperature Controller

PCIe 
Host Interface

*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-Based Infrastructure to Easily Test 
State-of-the-Art DRAM Chips,” TCAD, 2023. [GitHub: https://github.com/CMU-SAFARI/DRAM-Bender]

Fine-grained control over DRAM commands, 
timing parameters (±1.5ns), and temperature (±0.5°C )
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HBM2 DRAM Testing Infrastructure

*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-Based Infrastructure to Easily Test 
State-of-the-Art DRAM Chips,” TCAD, 2023. [GitHub: https://github.com/CMU-SAFARI/DRAM-Bender]

Fine-grained control over DRAM commands, 
timing parameters (±1.67ns), and temperature (±0.5°C )

DRAM Bender on a Bittware XUPVVH
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Tested DRAM Chips

160 DDR4 and 4 HBM2 Chips from SK Hynix, Micron, Samsung
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Testing Methodology

To characterize our DRAM chips at worst-case conditions:

1. Prevent sources of interference during core test loop 
• No DRAM refresh: to avoid refreshing victim row
• No read disturbance mitigation mechanisms: to observe circuit-level effects
• No error correcting codes (ECC): to observe all bitflips 
• Test for less than a refresh window (32ms) to avoid retention failures

2. Worst-case read disturbance access sequence
- We use worst-case read disturbance access sequence 

based on prior works’ observations
- Double-sided read disturbance: repeatedly access 

the two physically-adjacent rows

Record bitflips 
in victim Victim Row

Aggressor Row 1

Aggressor Row 2

1 hammer

Open-close

Open-close
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Foundational Results: Key Takeaway
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The Read Disturbance Threshold (RDT) of a row
changes randomly and unpredictably over time

Accurately identifying RDT is challenging

Key Takeaway
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Read Disturbance Threshold Changes Over Time
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The RDT of a Row Has Multiple States
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Variable Read Disturbance Across DRAM Chips
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Variable Read Disturbance Across DRAM Chips
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VRD is (Likely) Unpredictable

•The outcome of the next 
read disturbance threshold (RDT) measurement 
cannot be predicted given past measurements

34

1
RDT histograms well resemble* 
random probability distributions
e.g., normal distribution

* Resemblance quantified using statistical tests in the paper 

2
Analyze and find no repeating patterns
in the series of consecutively measured RDT values
using the autocorrelation function



VRD is (Likely) Unpredictable

•The outcome of the next RDT measurement
cannot be predicted given past measurements
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1
RDT histograms well resemble* 
random probability distributions
e.g., normal distribution

2
Analyze and find no repeating patterns 
using the autocorrelation function
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In-Depth Analysis: Parameter Space

•Four data patterns

•Three temperature levels: 50°C, 65°C, 80°C

•Three aggressor row on time values (RowPress):
• Minimum tRAS = ~35ns
• Interval between two periodic refresh commands tREFI = 7.8µs (DDR4)
• Maximum interval between two refresh 9 ⨉ tREFI = 70.2µs (DDR4)

•Test 3750 rows and measure RDT 1000 times per row
• Aside: what would happen if we measure >1M times?
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In-Depth Analysis: Key Takeaways

38

All tested DRAM rows exhibit VRD

Takeaway 1

Relatively few (<500) RDT measurements are
unlikely to yield the minimum RDT of a row

Takeaway 2

Data patterns, temperature, and
aggressor row on time affect VRD

Takeaway 3
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VRD Across DRAM Rows
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DRAM Rows Sorted by Increasing Coefficient of Variation of RDT
Across 1000 RDT Measurements
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VRD Across DRAM Rows
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DRAM Rows Sorted by Increasing Coefficient of Variation of RDT
Across 1000 RDT Measurements
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VRD in Two Example Rows

42

1.2⨉
3.5⨉

Variation in read disturbance threshold
 can reach 3.5⨉



In-Depth Analysis: Key Takeaways
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Probability of Identifying the Minimum RDT

•How likely is it that N < 1000 measurements
yield the minimum RDT value across 1000 measurements?

•N = 1, 3, 5, 10, 50, and 500

•Monte Carlo simulations for 10K iterations
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Probability of Identifying the Minimum RDT
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Very unlikely to find the minimum RDT
of a DRAM row with N = 1 measurement

only 0.2% for the median row



Probability of Identifying the Minimum RDT
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Probability of finding the minimum 
read disturbance threshold increases with N

(i.e., with more and more testing)

0.2% 0.7% 1.1% 2.1% 10.0% 75.3%
Probability values for the median row



Expected Value of the Minimum RDT

• With only N < 1000 RDT measurements
how far are we from the minimum RDT across 1000 measurements
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Expected Value of the Minimum RDT

• With only N < 1000 RDT measurements
how far are we from the minimum RDT across 1000 measurements
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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The minimum RDT is significantly smaller 
than the one expected to be found with N = 1 measurement

RDT expected to be found by 1 measurement
1.9⨉ greater than minimum RDT across 1000 measurements



Expected Value of the Minimum RDT
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In-Depth Analysis: Key Takeaways
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All tested DRAM rows exhibit VRD

Takeaway 1

Relatively few (<500) RDT measurements are
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Implications Summary

•Security guarantees provided by mitigation techniques 
rely on accurately identified 
minimum read disturbance threshold (RDT)

•Accurate identification of minimum RDT (for each row)
is extremely challenging (even with 1000s measurements) 
because RDT unpredictably changes over time

•We analyze the use of a guardband for RDT and ECC
• May prevent VRD-induced bitflips
• Large guardbands induce performance overhead

•Call for future work on online RDT profiling and 
runtime configurable read disturbance mitigations
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Important Caveat

•VRD solution analysis based on 1K or 10K
read disturbance threshold measurements per row

•More measurements could yield worse results
• Read disturbance threshold distribution tail could expand

•What results would millions or billions
of RDT measurements yield?
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Challenges of Accurately Identifying RDT
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Variation in read disturbance threshold across 1000 measurements 
can reach 3.5⨉ and may not be bounded

3.5⨉R
D

T

Measurement Number

VRD is affected by data pattern, temperature,
aggressor row on time

Comprehensive RDT profiling is time-intensive

Measuring RDT of each row only once with 8000 hammers
using four data patterns, at three temperature levels

takes 39 minutes in a bank of 256K rows



RDT Profiling is Time-Intensive
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Comprehensive RDT testing can take tens of hours 
(only 1000 measurements, one data pattern, 

one temperature level, one aggressor row on time)



RDT Profiling is Time-Intensive
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Comprehensive RDT testing can take hours 
(1000 measurements, one data pattern, 

one temperature level, one aggressor row on time)

https://arxiv.org/pdf/2502.13075
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Making Do With Few RDT Measurements

• A system designer might measure RDT a few times
and apply a safety margin (guardband) to the minimum observed value
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Making Do With Few RDT Measurements

• A system designer might measure RDT a few times
and apply a safety margin (guardband) to the minimum observed value
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Average across all tested rows

Minimum across all tested rows



Making Do With Few RDT Measurements
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A large guardband does not guarantee that 
the minimum RDT is always identified

Using guardbands alone is likely not effective



RDT Guardband Increases Performance Overheads

64

50% RDT safety margin can induce 
45% additional overhead (over no margin)

Relying solely on guardbands not recommended

45%

35%



Combining ECC and Guardbands (I)

•Single-error correcting double-error detecting (SECDED)
or Chipkill ECC combined with guardbands 
could mitigate VRD-induced bitflips
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Unique bitflips when 10% RDT guardband applied

10% guardband combined w/ ECC is likely unsafe



Combining ECC and Guardbands (II)
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RDT guardbands ≥20% yield 1 unique bitflip in a row

Given our limited measurement dataset (10K measurements)
RDT guardbands ≥20% combined with ECC

may prevent VRD-induced read disturbance bitflips 

More detailed analysis (following a large-scale study)
needed to make a definitive conclusion



More in the Paper

•Hypothetical explanation for VRD

• Effect of True- and Anti-Cell Layout
• Presence of true- and anti-cells in the victim row

does not significantly affect the RDT distribution

•Read disturbance mitigation evaluation methodology

•Probability of errors at the worst observed bitflip rate
for 10% RDT guardband
• SEC, SECDED, and Chipkill-like (SSC)

•Read disturbance testing time and energy consumption

•Detailed information on tested modules and chips

67
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Minimum RDT (of a row) may appear after many measurements

VRD Conclusion
Variable Read Disturbance (VRD)

The read disturbance threshold changes unpredictably over time

70

RDT for a DRAM row can vary by 3.5X

Given our limited read disturbance bitflip dataset,
guardbands combined with error-correcting codes

may be a solution for VRD-induced bitflips.

More data and analyses needed to make definitive conclusion.

Future work could alleviate the shortcomings of existing mitigations
& develop better understanding of inner workings of VRD 

Identifying the minimum RDT is challenging and time-intensive



Extended Version on arXiv
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Variable Read Disturbance (VRD) Summary

Research Question

• How accurately and efficiently can we measure the RDT
of each DRAM row?

Experimental Characterization

• Record >100M RDT measurements across 3750 rows and 
many test parameters (e.g., temperature, data pattern) in 
160 DDR4 and 4 HBM2 chips

Key Observations

• RDT changes significantly and unpredictably over time: VRD
• Smallest RDT value (for a row) may appear after 94,467 measurements
• Maximum observed RDT for a tested row can be 3.5X higher than minimum

Implications for System Security and Robustness

• RDT cannot be accurately identified quickly

• RDT guardbands (>10%) and ECC (SECDED or Chipkill) could
prevent VRD-induced bitflips at significant performance cost
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VRD Summary (I)

Motivation

• Read Disturbance Threshold (RDT) quantifies 
a DRAM row’s read disturbance vulnerability
• e.g., number of row activations needed to induce the first bitflip

• Read disturbance mitigation security depends on 
accurately-identified RDT for each DRAM row

Research Question

• How accurately and efficiently can we measure the RDT
of each DRAM row?

Experimental Characterization

• Record >100M RDT measurements across 3750 rows and 
many test parameters (e.g., temperature, data pattern) in 
160 DDR4 and 4 HBM2 chips
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VRD Summary (II)
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Key Observations

• RDT changes significantly and unpredictably over time: VRD

• The smallest RDT value (for a row) may appear 
after 94,467 successive RDT measurements

• The maximum observed RDT for a tested row 
is 3.5X higher than the minimum observed for that row

Implications for System Security and Robustness

• RDT cannot be accurately identified quickly

• RDT guardbands (>10%) and ECC (SECDED or Chipkill) could
prevent VRD-induced bitflips at significant performance cost
• 10% and 50% RDT guardbands respectively induce 

6% and 45% performance overhead

• Call for future work on online profiling and 
runtime configurable read disturbance mitigation techniques



Mitigating Read Disturbance Bitflips

•Key Idea: Take an action before bitflip manifests

•Glass filled with water analogy
• ACT -> fill with some water
• ACT (keep open) -> fill with more water
• Spill -> bitflip

• Drink before spill -> no bitflip (and more room for water)
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DRAM Read Disturbance Bitflips
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DRAM Read Disturbance Bitflips
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DRAM Read Disturbance Bitflips
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DRAM Read Disturbance Bitflips
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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Min. RDT found by 1 measurement
3.21⨉ greater than 

min. RDT found by 1000 measurements



Expected Value of the Minimum RDT
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Hypothetical Explanation for VRD

•No device-level study shows temporal variations
in read disturbance vulnerability 
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Effect of Die Density and Die Revision (I)
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Number of Measurements (N)

RDT distribution worsens with increasing die density
and with advanced DRAM technology



Effect of Die Density and Die Revision (II)
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The effect of die density and die revision
is consistent across all tested modules



Effect of Data Pattern (I)
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Effect of Data Pattern (I)
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RDT distribution changes with data pattern

1.04⨉ 1.06⨉
expected normalized value for the median row



Effect of Data Pattern (II)
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No single data pattern causes 
the worst RDT distribution across all tested DRAM chips



Effect of Aggressor Row On Time
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RDT distribution can become better or worse 
with increasing row on time



Effect of Temperature
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DRAM Operation: Activate and Precharge

93

Row 1

Row 2

Row 3

Row Buffer

Row 1

Access data in Row 1

Row 1 is closed

DRAM Subarray



DRAM Operation: Activate and Precharge
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DRAM Operation: Activate and Precharge
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DRAM Operation: Activate and Precharge
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Implications Summary
• Security guarantees provided by mitigation techniques rely on 

accurately identified minimum RDT

• Accurate identification of minimum RDT
is extremely challenging (even with 1000s measurements) because 
RDT unpredictably changes over time

• **Given our limited bitflip dataset** 
a ≥20% guardband for RDT combined with error-correcting codes 
(e.g., Chipkill) could prevent VRD-induced bitflips at performance cost

• Evaluate a short-term solution:
combining a guardband for RDT and error-correcting codes
• >10% guardband for the minimum observed RDT, combined with;
• single-error correcting double-error detecting (SECDED) or Chipkill-like ECC
• could prevent VRD-induced bitflips at performance cost

• Call for future work on online RDT profiling and 
runtime configurable read disturbance mitigations
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Variable Read Disturbance (VRD) Summary

Research Question

• How accurately and efficiently can we measure the RDT
of each DRAM row?

Experimental Characterization

• Record >100M RDT measurements across 3750 rows and 
many test parameters (e.g., temperature, data pattern) in 
160 DDR4 and 4 HBM2 chips

Key Observations

• RDT changes significantly and unpredictably over time: VRD
• Maximum observed RDT for a tested row can be 3.5X higher than minimum
• Smallest RDT value (for a row) may appear after 94,467 measurements

Implications for System Security and Robustness

• RDT cannot be accurately identified quickly

• RDT guardbands (>10%) and ECC (SECDED or Chipkill) could
prevent VRD-induced bitflips at significant performance cost
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DRAM Cell Leakage

Each cell encodes information in leaky capacitors
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DRAM Refresh

Periodic refresh operations preserve stored data
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Read Disturbance Bitflips
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