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Overview of a Modern Solid-State Drive
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Key Problem: Path Conflicts in Modern SSDs

Multiple flash memory chips are connected to the
SSD Controller using a shared channel

. 4

[/0 requests attempt to simultaneously access the
flash chips using a single path = Path Conflict

<

Path Conflicts cause I/0 requests to be
transferred serially on the shared channel

<

|

Limits SSD parallelism and reduces performance
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Delay Caused by Path Conflicts
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Performance Impact of Path Conflicts

Path conflicts increase the average I/0 latency
by 57% in our experiments
on a performance-optimized SSD

The performance overhead of path conflicts
increases by 1.6x in our experiments
for high-1/0-intensity workloads
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Prior Approaches

. I .
Baseline SSD : Packetized SSD (pSSD) [1]
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Prior Approaches

Baseline SSD and Packetized SSD
do not provide path diversity to flash chips

SA FA R ’ [1] Kim+, “Networked SSD: Flash Memory Interconnection Network for High-Bandwidth SSD”, MICRO 2022
[2] Tavakkol+, “Network-on-SSD: A Scalable and High-Performance Communication Design Paradigm for SSDs”, IEEE CAL 2012 8



Prior Approaches

Baseline SSD and Packetized SSD
do not provide path diversity to flash chips

Packetized Network SSD (pnSSD) [1] : Network-on-SSD (NoSSD) [2]
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Prior Approaches

Baseline SSD and Packetized SSD
do not provide path diversity to flash chips |

-

Packetized Network SSD and Network-on-SSD |

1. do not effectively utilize the path diversity

2. incur large area & cost overheads

_ - R — R — ﬁ




To fundamentally address the
path conflict problem in SSDs by

1. increasing the number of paths to each flash chip
(i.e., path diversity) at low cost

2. effectively utilizing the increased path diversity
for communication between the SSD controller
and flash chips
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Our Proposal

@ A low-cost interconnection network of flash chips in the SSD
U U

Conflict-free path reservation for each I/0 request ]

A non-minimal fully-adaptive routing algorithm for path identification

Named after the network of canals in the city of Venice
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Venice: Architecture
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Venice provides increased path diversity at low cost

No modifications to existing flash chips in Venice
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Our Proposal

@ A low-cost interconnection network of flash chips in the SSD

U U

D Conflict-free path reservation for each I/0 request ]
A non-minimal fully-adaptive routing algorithm for path identification ]

Named after the network of canals in the city of Venice
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Venice: Path Reservation (I)

* Venice uses a small scout packet to reserve a
conflict-free path for each I/0 request

Router of F5
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Venice: Path Reservation (II)

* Venice uses a small scout packet to reserve a
conflict-free path for each I/0 request
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Venice: Path Reservation

Path reservation eliminates path conflicts
by enabling conflict-free 1/0 transfer

The overhead of path reservation is negligible
due to the small size of the scout packet




Our Proposal

@ A low-cost interconnection network of flash chips in the SSD

U U

D Conflict-free path reservation for each I/0 request ]
A non-minimal fully-adaptive routing algorithm for path identification ]

Named after the network of canals in the city of Venice
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Venice: Non-Minimal Fully Adaptive Routing

* Venice uses a non-minimal fully-adaptive routing algorithm to
route scout packets when a minimal path is unavailable

 Effectively utilizes the idle links in the interconnection network
to find a conflict-free path
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More in the Paper

* Venice’s non-minimal fully-adaptive routing algorithm
* Handling deadlock and livelock scenarios
* Overhead of exercising a non-minimal path

 Analysis of prior architectures proposed to mitigate
the path conflict problem

* Detailed background on modern SSD architecture
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Evaluation Methodology

* Using MQSim [Tavakkol+, FAST’18], a state-of-the-art SSD simulator

* Two SSD configurations
* Performance-Optimized (Samsung Z-NAND SSD)
* Cost-Optimized (Samsung PM9A3)

* Nineteen data-intensive workloads from
* MSR Cambridge, YCSB, Slacker, SYSTOR ‘17 and RocksDB

* Prior Approaches
* Baseline SSD: A typical multi-channel shared bus SSD

» Packetized SSD (pSSD) [Kim+, MICRO’22]: Uses packetization to double the
flash channel bandwidth

* Packetized Network SSD (pnSSD) [Kim+, MICRO’22]: Increases path diversity
by introducing vertical channels

* Network-on-SSD (NoSSD) [Tavakkol+, CAL 2012]: Proposes an
interconnection network of flash chips with simple deterministic routing

* Path-conflict-free SSD: An ideal SSD with no path conflicts
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Results: Performance Analysis (I}

* Performance-Optimized SSD

S pSSD pnSSD ENoSSD OVenice O Path-conflict-free SSD
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Venice improves SSD performance by 1.9x
on average over the best-performing prior work

Venice’s performance is within 4 5%
of the performance of a Path-conflict-free SSD
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Results: Performance Analysis (II)

* Cost-Optimized SSD
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Venice improves SSD performance by 1.5x
on average over the best-performing prior work

Venice’s performance is within 25%
of the performance of a Path-conflict-free SSD
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Results: Performance Analysis (III)

Venice provides significant improvement in
performance over all prior approaches




Results: Reduction in Path Conflicts
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: 99.98% of 1/0 requests :
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Venice mitigates path conflicts
by using path reservation and
effective utilization of path diversity
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Results: SSD Energy Consumption
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Venice reduces the SSD energy consumption
by 46% on average
over the most efficient prior work
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More in the Paper

* Power and area overhead analysis
* Tail latency analysis

* Sensitivity to interconnection network

configurations
* Performance on mixed workloads

* Detailed evaluation methodology
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Venice: Summary

@ Mitigates path conflicts by efficiently utilizing the
path diversity of the SSD interconnection network

y. Improves performance
‘. II by 1.9x/1.5x over the best-performing prior work
on performance-optimized/cost-optimized SSD

Reduces energy consumption
by 46% on average over the most efficient prior work

® LLow-cost and requires

no changes to commodity flash chips
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Performance on Mixed Workloads

Sensitivity to Interconnection Network Configuration

SAFARI



Structure of a Scout Packet 7\

* A scout packet consists of two 8 bit flits, a header flit
and a tail flit

* The flash controller sends a scout packet to identify a
conflict-free path for the I/0 request
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Power Consumption (I) 7\

* Router

 We implement the HDL and synthesize it using UMC 65nm
technology node

* Router consumes 0.241mW for a 4KB page transfer

* Network Link
* ORION 3.0 power model tool

* Each network link consumes about 1.08mW for a 4KB page
transfer

* Link capacitance is lower than bus capacitance -> 90%
less power than that of the shared channel bus
* Links are shorter and thinner than a shared bus

* Two drivers in links compared to several drivers in a bus

Avg. Power [mW]
#
Component of Instances for 4KB page transfer Area
Router 1 per flash node 0.241 8% of flash chip area
Link Up to 4 per flash node 1.08 0.04x flash channel area
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Area Overhead

* Router
* Area overhead estimated using router’s HDL model

* Each router has
« an area of 614 um?+401/0
* A total area of 8mm? -> 8% of a typical 100mm? flash chip

* Network Link
* ORION 3.0 model for area analysis of network links
* 112 network links for a 8x8 flash array configuration

* 449, lower area than a baseline multi-channel shared bus
architecture

* Links are thinner and require lower pitch sizes
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Evaluated Configurations

Performance-optimized
SSD [31, 99]

240GB, Z-NAND [31, 99, 119],
8-GB/s External I/O bandwidth (4-lane PCle Gen4);
1.2-GB/s Flash Channel I/O rate

NAND Config: 8 channels, 8 chips/channel,
1 die/chip, 2 planes/die, 128Gb die capacity,
1024 blocks/plane, 768 pages/block, 4KB page

Latencies: Read(tR): 3us; Erase (tBERS): 1ms
Program (tPROG): 100us

Cost-optimized
SSD [55]

1TB, 3D TLC NAND Flash,
8-GB/s External I/O bandwidth (4-lane PCle Gen4);
1.2-GB/s Flash Channel I/O rate

NAND Config: 8 channels, 8 chips/channel,
1 die/chip, 2 planes/die, 1024 blocks/die, 16KB page

Latencies: Read (tR): 45us; Erase (tBERS): 3.5ms
Program (tPROG): 650us

Venice Design Parameters

Topology. 8x8 2D mesh topology, 8-bit 1 GHz links,
One router next to each flash chip

Router Architecture. Two 8-bit buffers per port,

1 GHz frequency

Routing Algorithm. Non-minimal fully-adaptive
Switching. Circuit switching [102]
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Workload Characteristics

Traces

Read %

Avg. Request

Avg. Inter-request

Size (KB) Arrival Time (us)

hm_0 36 8.8 58
mds_0 12 9.6 268

proj_3 95 9.6 19

prxy_0 3 7.2 242
. rsrch_0 9 9.6 129

MSR Cambridge [122] stcL 0 56 137 9

src2_1 98 59.2 50

usr_0 40 22.8 98

wdev_0 20 9.2 162

web_1 54 29.6 67

YCSB_B 99 65.7 13

YCSB [123] YCSBD | 99 62 12
jenkins 94 33.4 615

Slacker [124] postgres 82 133 382
LUNO 76 20.4 218

SYSTOR ’17 [125] LUN2 73 16 320
LUN3 7 7.7 3127

ssd-00 91 90 5
YCSB RocksDB [126] Sd-10 35 15 5
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Mixed Workloads

Mix Constituent Description Avg. Inter-request
Workloads [122, 123] Arrival Time (us)
mix1 src2_1 and proj_3 Both workloads are read-intensive 5.8
mix2 || src2_1, proj_3 and YCSB_D | All three workloads are read-intensive 8.4
mix3 prxy_0 and rsrch_0 Both workloads are write-intensive 93
mix4 || prxy_0, rsrch_0 and mds_0 | All three workloads are write-intensive 56
) prxy_0 is write-intensive and
xS PEX): 0 and are2_1 src2_1 is read-intensive 2
prxy_0 is write-intensive,
mix6 || prxy_0, src2_1and usr_0 src2_1 is read-intensive and 3
usr_0 has 60% writes and 40% reads
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SSD Throughput Analysis

* Performance-Optimized SSD
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SSD Throughput Analysis

Venice improves SSD throughput over prior
approaches by effectively mitigating
path conflicts
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Tail Latency 7

* Comparison of tail latencies in the 99th percentile of
[/0 requests
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Tail Latency

Venice reduces tail latencies
by effectively mitigating path conflicts
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Power Consumption (II)

S pSSD pnSSD ENoSSD OVenice
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Venice reduces the average power consumption
by 4% over Baseline SSD
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5 pSSD pnSSD ENoSSD OVenice O Path-conflict-free SSD
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Venice outperforms prior approaches
on high-intensity mixed workloads
by effectively mitigating path conflicts
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Sensitivity to Network Configurations A

N pSSD ENoSSD O Venice O Path-conflict-free SSD
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Venice provides higher performance improvement
for 8x8 compared to 4x16 and 16x4
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Prior Approaches to Address Path Conflicts

* Network-On-SSD [2]

* Replaces a multi-channel shared bus architecture with an
interconnection network of flash chips

* Significantly increases path diversity than a typical SSD
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Prior Approaches to Address Path Conflicts

Network-On-SSD’s simple routing algorithm fails
to mitigate path conflicts in SSDs
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