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Overview	of	a	Modern	Solid-State	Drive
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Key	Problem:	Path	Conflicts	in	Modern	SSDs

Multiple	flash	memory	chips	are	connected	to	the	
SSD	Controller	using	a	shared	channel	

I/O	requests	attempt	to	simultaneously	access	the	
flash	chips using	a	single	path							Path	Conflict

Path	Conflicts	cause I/O	requests	to	be	
transferred	serially	on	the	shared	channel

Limits	SSD	parallelism	and	reduces	performance
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Delay	Caused	by	Path	Conflicts
• Case	1:	Same	Channel

• Case	2:	Different	Channels
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Performance	Impact	of	Path	Conflicts

Path	conflicts	increase the	average	I/O	latency	
by	57% in	our	experiments	

on	a	performance-optimized	SSD

The	performance	overhead	of	path	conflicts	
increases	by 1.6x	in	our	experiments
for	high-I/O-intensity	workloads
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Prior	Approaches
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Our	Goal

To	fundamentally	address	the	
path	conflict	problem	in	SSDs	by
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1. increasing the	number	of	paths	to	each	flash	chip	
(i.e.,	path	diversity)	at	low	cost

2. effectively	utilizing the	increased	path	diversity
for	communication	between	the	SSD	controller	
and	flash	chips
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Our	Proposal

Venice

Named after the network of canals in the city of Venice
https://en.wikipedia.org/wiki/Venice

A	low-cost	interconnection	network	of	flash	chips	in	the	SSD

Conflict-free	path	reservation	for	each	I/O	request

A	non-minimal	fully-adaptive	routing	algorithm for	path	identification
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Venice:	Architecture
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Venice	provides increased	path	diversity	at low	cost

No	modifications	to	existing	flash	chips	in	Venice



Our	Proposal
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Venice:	Path	Reservation	(I)

• Venice	uses	a	small	scout	packet	to	reserve	a	
conflict-free	path	for	each	I/O	request
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Venice:	Path	Reservation	(II)

• Venice	uses	a	small	scout	packet	to	reserve	a	
conflict-free	path	for	each	I/O	request
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Venice:	Path	Reservation

• Venice	uses	a	small	scout	packet	to	reserve	a	
conflict-free	path	for	each	I/O	request
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Reserved	Path

The	overhead of	path	reservation	is	negligible
due	to	the	small	size of	the	scout	packet

Path	reservation	eliminates	path	conflicts	
by	enabling	conflict-free	I/O	transfer



Our	Proposal

Named after the network of canals in the city of Venice
https://en.wikipedia.org/wiki/Venice

A	low-cost	interconnection	network	of	flash	chips	in	the	SSD

Conflict-free	path	reservation	for	each	I/O	request

A	non-minimal	fully-adaptive	routing	algorithm for	path	identification
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Venice:	Non-Minimal	Fully	Adaptive	Routing

• Venice	uses	a	non-minimal	fully-adaptive	routing	algorithm	to	
route	scout	packets	when	a	minimal	path	is	unavailable
• Effectively	utilizes	the	idle	links	in	the	interconnection	network	
to	find	a	conflict-free	path
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More	in	the	Paper

• Venice’s	non-minimal	fully-adaptive	routing	algorithm

• Handling	deadlock	and	livelock scenarios

• Overhead of	exercising a	non-minimal	path

• Analysis of	prior	architectures	proposed	to	mitigate	
the	path	conflict	problem

• Detailed	background	on	modern	SSD	architecture
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Evaluation	Methodology
• Using	MQSim	[Tavakkol+,	FAST’18],	a	state-of-the-art	SSD	simulator
• Two	SSD	configurations

• Performance-Optimized (Samsung	Z-NAND	SSD)
• Cost-Optimized (Samsung	PM9A3)

• Nineteen	data-intensive	workloads	from
• MSR	Cambridge,	YCSB,	Slacker,	SYSTOR	‘17	and	RocksDB

• Prior	Approaches
• Baseline	SSD:	A	typical	multi-channel	shared	bus	SSD
• Packetized	SSD	(pSSD)	[Kim+,	MICRO’22]:	Uses	packetization	to	double	the	
flash	channel	bandwidth

• Packetized	Network	SSD	(pnSSD)	[Kim+,	MICRO’22]:	Increases	path	diversity	
by	introducing	vertical	channels

• Network-on-SSD	(NoSSD)	[Tavakkol+,	CAL	2012]: Proposes	an	
interconnection	network	of	flash	chips	with	simple	deterministic	routing

• Path-conflict-free	SSD:	An	ideal SSDwith	no	path	conflicts
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Results:	Performance	Analysis	(I)
• Performance-Optimized	SSD
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Results:	Performance	Analysis	(II)
• Cost-Optimized	SSD

26

0

1

2

3

MSR	Cambridge YCSB Slacker SYSTOR	'17 YCSB	RocksDB GMEAN

pSSD pnSSD NoSSD Venice Path-conflict-free	SSD

Sp
ee
du
p	
ov
er
	

Ba
se
lin
e	
SS
D

25
%

1.
7x

1.
5x1.
6x

1.
5x

Baseline	SSD

Venice	improves SSD	performance by	1.5x
on	average	over	the	best-performing	prior	work

Venice’s	performance is	within	25%	
of	the	performance	of	a	Path-conflict-free	SSD



Results:	Performance	Analysis	(III)
• Performance-Optimized	SSD

• Cost-Optimized	SSD
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Results:	Reduction	in	Path	Conflicts
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99.98%	of	I/O	requests	
do	not	experience	path	conflicts
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Results:	SSD	Energy	Consumption
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More	in	the	Paper

• Power and	area	overhead	analysis

• Tail	latency	analysis

• Sensitivity to	interconnection	network	

configurations

• Performance	on	mixed	workloads

• Detailed	evaluation	methodology
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More	in	the	Paper

https://arxiv.org/abs/2305.07768
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Venice:	Summary

Mitigates	path	conflicts	by	efficiently	utilizing	the	
path	diversity	of	the	SSD	interconnection	network

Improves	performance	
by	1.9x/1.5x	over	the	best-performing	prior	work
on	performance-optimized/cost-optimized	SSD

Reduces	energy	consumption	
by	46% on	average	over	the most	efficient	prior	work

33

Low-cost and requires	
no	changes	to	commodity	flash	chips
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FAQ
• Scout	Packet	Structure
• Power	Overhead
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• Evaluated	Configurations
• Workload	Characteristics
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• Results
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Structure	of	a	Scout	Packet

• A	scout	packet	consists	of	two	8	bit	flits,	a	header	flit	
and	a	tail	flit
• The	flash	controller	sends	a	scout	packet	to	identify	a	
conflict-free	path	for	the	I/O	request

Type

Type

Destination Flash Chip ID

Source Flash
Controller ID Unused Bits

2 bits

2 bits

6 bits

3 bits 3 bits

Scout Packet

8 bits

2-bit Type Info

1st
Bit

2nd
Bit

0: Cancel

1: Reserve

0: Header Flit

1: Tail Flit
1

2

Header
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Tail
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Power	Consumption	(I)
• Router
• We	implement	the	HDL	and	synthesize	it	using	UMC	65nm	
technology	node
• Router	consumes	0.241mW	for	a	4KB	page	transfer

• Network	Link
• ORION	3.0	power	model	tool
• Each	network	link	consumes	about	1.08mW	for	a	4KB	page	
transfer
• Link	capacitance	is	lower	than	bus	capacitance	->	90%	
less	power	than	that	of	the	shared	channel	bus
• Links	are	shorter	and	thinner	than	a	shared	bus
• Two	drivers	in	links	compared	to	several	drivers	in	a	bus



Area	Overhead

• Router	
• Area	overhead	estimated	using	router’s	HDL	model
• Each	router	has	

• an	area	of	614	𝜇m2	+	40	I/O
• A	total	area	of	8mm2	->	8%	of	a	typical	100mm2	flash	chip

• Network	Link
• ORION	3.0	model	for	area	analysis	of	network	links
• 112	network	links	for	a	8x8	flash	array	configuration
• 44%	lower	area	than	a	baseline	multi-channel	shared	bus	
architecture
• Links	are	thinner	and	require	lower	pitch	sizes



Evaluated	Configurations	



Workload	Characteristics



Mixed	Workloads



SSD	Throughput		Analysis
• Performance-Optimized	SSD

• Cost-Optimized	SSD
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SSD	Throughput		Analysis
• Performance-Optimized	SSD

• Cost-Optimized	SSD
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path	conflicts



Tail	Latency
• Comparison	of	tail	latencies	in	the	99th	percentile	of	
I/O	requests	
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Tail	Latency
• Comparison	of	tail	latencies	in	the	99th	percentile	of	
I/O	requests	
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Venice reduces	tail	latencies	
by	effectively	mitigating	path	conflicts



Power	Consumption	(II)

Venice reduces the	average	power	consumption	
by	4% over	Baseline	SSD			
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Performance	on	Mixed	Workloads
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Sensitivity	to	Network	Configurations
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Prior	Approaches	to	Address	Path	Conflicts

• Network-On-SSD	[2]
• Replaces	a	multi-channel	shared	bus	architecture	with	an	
interconnection	network	of	flash	chips
• Significantly	increases	path	diversity	than	a	typical	SSD
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5[2]	Tavakkol+,	“Network-on-SSD:	A	Scalable	and	High-Performance	Communication	Design	Paradigm	for	SSDs”,	IEEE	CAL	2012
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[2]	Tavakkol+,	“Network-on-SSD:	A	Scalable	and	High-Performance	Communication	Design	Paradigm	for	SSDs”,	IEEE	CAL	2012

Network-On-SSD’s	simple	routing	algorithm	fails
to	mitigate path	conflicts	in	SSDs


