xs A s Ev,
Sb" VQ/(’ K,b(,‘- Y,
3 5\ G/
< ® <
Via

Drastically Increasing
Address Translation Reach by Leveraging
Underutilized Cache Resources

Konstantinos Kanellopoulos
Hong Chul Nam, Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,
Rakesh Kumar, Davide Basilio Bartolini and Onur Mutlu

Q)
SAFAR’ ETH:-zurich HUA:NEI ® NTNU

SAFARI Researc

aaaaaaaaaa

Executive Summary

Problem: Address translation is a major performance bottleneck in data-intensive workloads
Large datasets and irreqgular memory access patterns lead to frequent L2 TLB misses (e.g., 20-50
MPKI) and frequent high-latency (e.g., 100-150 cycles) page table walks (PTW)

Motivation: Increasing the translation reach (i.e., memory covered by the TLBs) reduces PTWs.
However, employing large TLBs leads to increased area, power and latency overheads.

Opportunity: Increase the translation reach of the TLB hierarchy by storing the existing TLB entries
within the existing cache hierarchy

Victima: New software-transparent scheme that drastically increases the address translation
reach of the processor’s TLB hierarchy by leveraging the underutilized cache resources

Key ldea: L2 Cache Key Benefits:
Transform L2 cache blocks PTEs + Efficient in native/virtualized environments
that store PTEs into blocks

it TR e TLB Entries + Fully transparent to application/OS software
at store entries

+ Compatible with huge page schemes

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art large TLB design and (ii) achieves
similar performance to an optimistically fast 128K-entry L2 TLB

https://github.com/CMU-SAFARI/Victima
SAFARI 5

Talk Outline

Background & Motivation
Opportunity: Leverage Caches
Victima: Overview
Victima: Detailed Design

Evaluation Results

SAFARI

Talk Outline

Background & Motivation

SAFARI

Virtual Memory Basics

*The Page Table (PT) stores all
virtual-to-physical address mappings

*The x86-64 PT is organized as
a 4/5-level radix tree

*To access the PT, the system performs
a Page Table Walk (PTW)

SAFARI

Page Table Walk in x86-64

Virtual Address
PLs4 PL3 PL2 PL1

9 bits 9 bits][9 bits 9 bits

CR3

Physical Frame Number

SAFARI

Page Table Walk in x86-64

Four sequential memory accesses
during a page table walk in x86-64

SAFARI 7

Address Translation Flow (I)

Core

Virtual
Address

SAFARI

>

Memory
Management Unit

|

Page
Table

|

Memory
Hierarchy

Address Translation Flow (Il)

Memory Management Unit

» L11-TLB

Virtual
Address

—>[L1 D-TLB

Miss

Miss

Unified
L2 TLB

Miss

Page Walk

Caches

Miss

|

r

Page Table
Walker

\

SAFARI

Page
Table

|

Memory
Hierarchy

Address Translation Overhead

®

8 50K
® 40K
5 3.0K

(&)
O 20K

h

§1.0K
2 00K
&

>
Z

Mean: 137 cycles

20-30

30-40

40-50

70-80

o O
Q O
o

~ - -« - -~ -~ - - -« -«
1 1]

50-60
60-70

- ™ e v v v v @ v -

PTW Latency (cycles)

Core spends 137 cycles on average

SAFARI

to perform a PTW

10

Address Translation Overhead

High latency
PTWs

!

Frequent
PTWs

High performance
overheads

SAFARI

11

Potential Solution

Reduce PTW frequency by

Increasing address translation reach

SAFARI 12

Address Translation Reach: Definition
Amount of VA-to-PA mappings
stored by the processor’s TLB hierarchy

Example Modern Processors:
Maximum 3-4GB

Increase Reach

Reduce PTW:s

~—__—

SAFARI 13

Increasing Address Translation Reach

Large Hardware TLBs

SAFARI 14

Scaling Hardware L2 TLB (I)

O 1.5K-Entry L2 TLB B 64K-Entry L2 TLB

80
60 39

40 24
2 n
0

L2 TLB MPKI

Employing a 64K-entry L2 TLB
reduces MPKI from 39 to 24

SAFARI 15

Scaling Hardware L2 TLB (ll)

B 64K-Entry L2 TLB Optimistic 12-cycle access latency

64K-entry L2 TLB with optimistic access
latency provides 5.4% speedup over baseline

SAFARI 16

Scaling Hardware L2 TLB (ll)

B 64K-Entry L2 TLB Optimistic 12-cycle access latency

5
2 1.00
2 0.95
©
@ 0.90
O 0&

54%-

O Q- O L <O
¢ 2
N é & &Y‘

Benefits come for free?

SAFARI 17

Scaling Hardware L2 TLB (llI)

B 64K-Entry L2 TLB Realistic 39-cycle access latency

1.05
0.8%
1.00 -8 -

o
©
A

o
©
o

Speedup over Baseline

64K-entry L2 TLB with realistic access latency
provides only 0.8% speedup over baseline

SAFARI 18

Increasing Translation Reach

Large Software-Managed TLBs

SAFARI

19

Large Software-Managed L3 TLB

MMU

L2 TLB

Miss

SAFARI

Main Memory

Software

L3 TLB

snonbiuo)

20

Drawbacks of Software-Managed TLB

0 High Latency

6 Contiguous Physical Allocations

9 OS Modifications

SAFARI

Increasing Translation Reach

Large Large
Hardware Software-Managed
TLBs TLBs

Both approaches come with

major drawbacks

SAFARI 22

Talk Outline

Opportunity: Leverage Caches

SAFARI

23

Opportunity: Leverage Caches

Store TLB entries in hardware caches

SAFARI 24

Leverage Cache Hierarchy

MMU

.

|

L2 1 TLB Entry |

Miss mum—m)

SAFARI

L2 Cache

TLB Entry

25

Where is the Benefit?

2MB L2 Cache

L2 TLB .
Fits 36x more

1.5K entries TLB entries
12-cycle latency

Low latency
(e.g., 16 cycles)

PTW takes 137 cycles on average

SAFARI 26

Interference with Program Data?

B Reuse 0 O01-5 0O5-10 0O10-20 ©BO>20
N @ 100%
“_'Ig BO‘V0
o
Cm ’
%%‘, 60%
o
Cm 40%
S8 0o
Q5 20%
mA
0%

\z
O

L2 cache is heavily underutilized

SAFARI 27

Talk Outline

SAFARI

Victima: Overview

28

Our Goal

Leverage cache resources
to store TLB entries

4

Drastically increase
the address translation reach of the processor

SAFARI 29

Victima: Key Idea

Repurpose L2 cache blocks
to store clusters of TLB entries

4

Low-latency and high-capacity component
to back up the L2 TLB

SAFARI

30

Victima: Overview

Costly-to-translate page?

MMU L2 Cache
[N . .
] Miss
PT\-N Cost — PTE Block
Eviction Estimator
L2 L ranst
ransform
TLB
Mi
J—lss’ TLB Block
Low latency
- y

SAFARI

Victima Benefits

+ Drastic increase in address translation reach
+ Fully transparent to application/OS software
+ No need for contiguous physical allocations

+ Compatible with huge pages

SAFARI

32

Talk Outline

Victima: Detailed Design

SAFARI

33

Victima: Detailed Design

0 L2 Cache Modifications

9 Allocation of TLB Entries in L2 Cache

e Page Table Walk Cost Predictor

SAFARI

34

Victima: L2 Cache Modifications

o Access TLB blocks using virtual address

e Perform tag matching for TLB blocks

SAFARI

35

Example: Cache Configuration

L2 Cache

1MB
16-way associative

Set index 10 bits

SAFARI

Data Blocks vs. TLB Blocks in Caches

Data Block TLB Block
TLB Entry Tag 'TLBEntry __Tag __ASID/Size |
0 36 bits 1 23 bits 13 bits
Data PTEs (8 bytes per PTE)
64 bytes 0(1]|12|3|4|5]|6]|7

52-bit Physical Address

Tag

Set index Offset

36 bits

10 bits 6 bits

SAFARI

36-bit Virtual Page Number (4KB)
Tag Setindex Offset

23 bits 10 bits 3 bits

37

Tag Matching for TLB Block

TLB Block
TLB
Entry ? Tag ASID PTEs
1 o 23 bits 9 bits 314\|5
] |
Tag ASID Offset
Virtual . . 2 bt
Addl’ESS 23 bits 9 bits Its
SAFARI 38

Victima: L2 Cache Modifications

9 Allocation of TLB Entries in L2 Cache

SAFARI

39

Allocation of TLB Entries in L2 Cache

€© OnL2TLBMiss

€) OnL2TLBEviction

SAFARI 40

Allocation of TLB Entries in L2 Cache

€© OnL2TLBMiss

SAFARI 41

Allocating TLB Blocks — L2 TLB Miss

MMU
()
L2 TLB Miss
Page Table
Walker
. J

SAFARI

PTW Cost
Estimator

L2 Cache

PTE Block

— — — — — [Transform

TLB Block

42

Allocation of TLB Entries in L2 Cache

€) OnL2TLBEviction

SAFARI 43

Allocating TLB Blocks — L2 TLB Eviction

MMU

L2 TLB

v

Eviction PTW Cost |
——— e

Estimator

Page Table
Walker

SAFARI

L2 Cache

- PTE Block

Transform

A

Address Translation in Victima (1)

MMU

P%

L2 TLB ————t————————>

SAFARI

L2 Cache

TLB Block

Hit (©

45

Address Translation in Victima (1)

MMU

Miss

L2 TLB ————t————————>

:
Page Table
Walker

SAFARI

L2 Cache

Miss @

Victima: Detailed Design

e Page Table Walk Cost Predictor

SAFARI

47

PTW Cost Predictor: Objective

Predict which pages are costly-to-translate
Insert only those TLB blocks in L2 cache

SAFARI 48

Tracking Costly-to-Translate Pages

SAFARI

Page Table Entry

Frequency| Cost

Counters

I Update Counters

Page Table Walker

49

PTW Cost Predictor (PTW-CP)

/

\

Comparator Tree

\

PTW Frequency b {

PTW Cost —— {

translate
page ?

Bypassing Logic
based on L2 cache MPKI

) translate

page!

y

SAFARI

Costly-to-

Costly-to-

50

PTW-CP Detalls in the Paper

Feature engineering to find
minimal set of useful features

2-feature comparator predicts costly-to-
translate pages with 82% accuracy

SAFARI 51

Talk Outline

SAFARI

Evaluation Results

52

Evaluation Methodology

Sniper Multicore Simulator extended with:
* TLB Hierarchy with multiple page sizes
* Radix page table walker
* Page walk caches

https://github.com/CMU-SAFARI/Victima

Workloads: Executed for 5ooM instructions
* GraphBIG: PR, BFS, BC, GC, CC
* HPCC: Randacc
» XSBench: Particle Simulation
* DLRM: Sparse-length sum
* GenomicsBench: k-mer counting

SAFARI

53

Configurations — Native Execution

* Radix: Baseline system with 1.5K-entry L2 TLB and
Transparent Huge pages enabled

* Optimistic L2 TLB-64K: System with 64K-entry L2 TLB
(optimistic 12-cycle access latency)

* Optimistic L2 TLB-128K: System with 128K-entry L2 TLB
(optimistic 12-cycle access latency)

* POM-TLB*: System with 64K-entry software-managed L3 TLB

* Victima

SAFARI [1] Ryoo et al. "Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA 2b1y

Performance Speedup

OPOM-TLB 64K @Opt. L2 TLB 64K @Opt.L2 TLB 128K M@ Victima
1.28x

AA
= N

©

Speedup over Baseline
o

© o

o

Victima achieves similar performance to
the optimistically fast 128K-entry L2 TLB

SAFARI 55

Reduction of Page Table Walks

O POM-TLB 64K BL2 TLB 64K OL2 TLB 128K @ Victima
100%

80%
60% 50p6

40%
20%
0%

Reduction of PTWs

Victima reduces PTWs by 50%

on average compared to the baseline
SAFARI 56

Effect of L2 Cache Size on Victima

O02MB BH4MB B 8MB
100% S

75% 63%

50%
25%
0% .

Reduction of PTWs

Employing an 8MB L2 cache with Victima
reduces PTWs by 63%

SAFARI 57

Performance in Virtualized Environments

O POM-TLB @ Victima
1.50 T

1.25
1.00
0.75
0.50

Speedup over NP

Victima outperforms 64K-entry
software-managed TLB by 12%

SAFARI 58

Area & Power Overhead

*Area and power overhead evalution using McPAT

*Comparison to a high-end Intel Raptor Lake

Victima incurs 0.04% area and
0.08% power overheads

SAFARI 59

More in the paper

*Victima integration in virtualized environments
*Maintenance operations to handle TLB shootdowns
* TLB-Block-aware replacement policy
*Implementation details of PTW cost estimator

* Translation reach provided by Victima

https://arxiv.org/abs/2310.04158
SAFARI 60

More in the paper

*Victima
* Maintet
*TLB-BIc
*Implem
* Translaf

SAFARI

Victima: Drastically Increasing Address Translation Reach
by Leveraging Underutilized Cache Resources

Konstantinos Kanellopoulos!
Mohammad Sadrosadati’

Hong Chul Nam!
Rakesh Kumar?

F. Nisa Bostanci! Rahul Bera!
Davide Basilio Bartolini® Onur Mutlu?

IETH Ziirich ?Norwegian University of Science and Technology *Huawei Zurich Research Center

Abstract

Address translation is a performance bottleneck in data-intensive
workloads due to large datasets and irregular access patterns that
lead to frequent high-latency page table walks (PTWs). PTWs can
be reduced by using (i) large hardware TLBs or (ii) large software-
managed TLBs. Unfortunately, both solutions have significant draw-
backs: increased access latency, power and area (for hardware TLBs),
and costly memory accesses, the need for large contiguous mem-
ory blocks, and complex OS modifications (for software-managed
TLBs).

We present Victima, a new software-transparent mechanism that
drastically increases the translation reach of the processor by lever-
aging the underutilized resources of the cache hierarchy. The key
idea of Victima is to repurpose L2 cache blocks to store clusters
of TLB entries, thereby providing an additional low-latency and
high-capacity component that backs up the last-level TLB and thus
reduces PTWs. Victima has two main components. First, a PTW
cost predictor (PTW-CP) identifies costly-to-translate addresses
based on the frequency and cost of the PTWs they lead to. Lever-
aging the PTW-CP, Victima uses the valuable cache space only for
TLB entries that correspond to costly-to-translate pages, reducing
the impact on cached application data. Second, a TLB-aware cache
replacement policy prioritizes keeping TLB entries in the cache
hierarchy by considering (i) the translation pressure (e.g., last-level

TLB.miss ratel and (i) the rense characteristics.of the TLB entries

address translations. However, with the very large data footprints
of modern workloads, the last-level TLB (L2 TLB) experiences high
miss rate (misses per kilo instructions; MPKI), leading to high-
latency page table walks (PTWs) that negatively impact application
performance. Virtualized environments exacerbate the PTW la-
tency as they impose two-level address translation (e.g., up to 24
memory accesses can occur during a PTW in a system with nested
paging [12, 13]), resulting in even higher address translation over-
heads compared to native execution environments. Therefore, it is
crucial to increase the translation reach (i.e., the maximum amount
of memory that can be covered by the processor’s TLB hierarchy) to
improve the effectiveness of TLBs and thus minimize PTWs. Doing
so becomes increasingly important as PTW latency continues to
rise with modern processors’ deeper multi-level page table (PT)
designs (e.g., 5-level radix PT in the latest Intel processors [4]).

Previous works have proposed various solutions to reduce the
high cost of address translation and increase the translation reach
of the TLBs such as employing (i) large hardware TLBs [14-16] or
(ii) backing up the last-level TLB with a large software-managed
TLB [17-25]. Unfortunately, both solutions have significant draw-
backs: increased access latency, power, and area (for hardware
TLBs), and costly memory accesses, the need for large contigu-
ous memory blocks, and complex OS modifications (for software-
managed TLBs).

Drawback of LarEe Hardware TLBs. First, a larger TLB has

https://arxiv.org/abs/2310.04158

owns

61

Victima is Open Source

O CMU-SAFARI / Victima Q Type (/] to search > + -

de (O Issues {9 Pullrequests (» Actions [Projects (@ Security 53 |~ Insights 3 Settings

s \fictima Public <7 EditPins + ®Unwatch 5 ~ % Fork 2 - ¢ Star 10 -
¥ main v P 1branch © 4tags Go to file Add file ~ About oz

Victima is a new software-transparent

ﬁ omutlu Update README.md bdcbhda5 3 weeks ago @ 98 commits technique that greatly extends the
address translation reach of modern
B8 documentation Added documentation 3 months ago processors by leveraging the
M ptwep Bump certifi from 2019.11.28 to 2023.7.22 in fptw_cp 3monthsago | Underutilized resources of the cache
hierarchy, as desribed in the MICRO
B script Merge pull request #3 from ctuning/main 2 months ago 2023 paper by Kanellopoulos et al.
B scripts Minor fixes in plotting 2 months ago (https://arxiv.org/pdf/2310.04158))
B0 sniper Added tracking of running workloads 3 months ago @ arxiv.org/abs/2310.04158
[gitattributes Structuring 3 months ago EEmoy @SN
¥ LICENSE Create LICENSE 3 weeks ago 00 Readme
[README.md Update README.md 3 weeks ago B MIT license
A~ Activity
artifact.sh fixed artifact 2 months ago
0 N ¢ 10 stars
Y cmryaml Readded support for MLCommons 3 months ago ® 5watching
[3 docker_wrapper.sh Supporting native mode 3 months ago % 2forks
R t it
[install_container.sh Added support for Podman 2 months ago EROIEASROSION
[3 install_docker.sh Fixed Docker permissions issue 3 months ago
Releases 2
‘= README.md 4 © Final Artifact MICRO 2023 (Latest)
on Sep 4
& A + 1release

https://github.com/CMU-SAFARI/Victima
SAFARI 62

Victima is Open Source

SAFARI

Documentation is available

TLB Lookup Model TLB Allocation Model
Modifications to the TLB lookup function Modifications to the TLB allocation
to implement Victima. function to implement Victima.

TLB::lookup

Icommon/core/memory_subsystem/parametric_dram_directory/tib.cc

bool hit ache.accessSinglelLineTLB(address, Cach

We call the accessSingleLineTLB function of the cache that acts as a TLB. This function is defined in cache.cc. It is used to access a single line in the TLB. It takes as parameters the address, the memory
operation type (LOAD, STORE), the data buffer, the data length, the time and the memory model. It returns a boolean value that indicates whether the TLB access was a hit or a miss. We set the modeled
parameter to true because we want to model the TLB access. We set the data buffer and the data length to NULL and 0 because we don't need them. We set the memory operation type to LOAD because we are
loading the data from the TLB. We set the address to the address of the page table entry. We set the hit variable to the return value of the function.

bool 12tlb_miss =

if (m_next_level)

{

where_next = m_next_level->lookup(address, now, ,model_count, lock_signal);
if(where_next != TLB::MISS)
12t1b_miss = 5
}

else if(victima_enabled){

UInt32 set;
IntPtr tag;

IntPtr cache_address = address >> (page_size DA
Cache* 1lldcache = m_manager->getCache(MemComponent
Cache* 12cache = m_manager->getCache(MemComponent
Cache* nuca = m_manager->getNucaCache()->getCache(

CacheBlockInfo* cb_11d = lldcache->peekSingleLine(cache_address);
CacheBlockInfo* cb_12 = 12cache->peekSinglelLine(cache_address);
CacheBlockInfo* cb_nuca = nuca->peekSinglelLine(cache_address);

In case of an L2 TLB miss, we check if the TLB entry is cached in the cache hierarchy in case Victima is enabled. In order to do that, we first calculate the address of the cache line that contains the TLB entry. We
do that by shifting the address to the right by the page size minus 3 bits (8 PTEs are stored in the cache line). We then get the L1 data cache, the L2 cache and the NUCA cache from the memory manager. We
then peek the cache line that contains the TLB entry from each cache. In the case of Victima, we only need to check the L2 cache and the NUCA cache. 6 3

Conclusion

We present Victima, a new software-transparent scheme that drastically
increases the translation reach of the processor’s TLB hierarchy
by leveraging the underutilized cache resources

L2 Cache
Key idea: Transform L2 cache PTEs
blocks that store PTEs into
blocks that store TLB entries TLB Entries

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art software-
managed TLB and (ii) achieves similar performance to an optimistically fast
128K-entry L2 TLB design without the associated area and power overheads

https://github.com/CMU-SAFARI/Victima)
4

SAFARI

Drastically Increasing
Trcmslation Reach by Leveraging
Underutilized Cache Resources

https://github.com/CMU-SAFARI/Victima

Konstantinos Kanellopoulos
Hong Chul Nam, Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,
Rakesh Kumar, Davide Basilio Bartolini and Onur Mutlu

)
SAFAR’ ETHzurich nuawer ® NTNU

SAFARI Researc

aaaaaaaaaa

Adding Hardware-based L3 TLB

Cacti7.0 Estimation

o O L3 TLB 64K entries 15-cycle latency 064K-20 064K-25 D64K-30 M64K-35 (@64K-40)

£1.10

[

£1.05

m - - - — s -

+1.00

3

0095 ml " “ "l]l “

20.90

O O % O o O Q- Q Q O S D
Q S O@

High access latency offsets the potential
performance gains of hardware L3 TLB

SAFARI 66

Reuse of TLB Blocks in L2 Cache

OReuse 0 @EReuse 1-5 B Reuse 5-10 W Reuse 10-20 B Reuse >20

100%
75%
50%

25%
0%

Breakdown of TLB Block
Reuse in L2 Cache

More than 60% of TLB blocks
experience reuse higher than 20

SAFARI 67

Sensitivity to L2 Cache Replacement Policy

Y
-
o

B TLB-Aware DRRIP

JII]IIlllll

L & O O %de
N

Y
o
o

O
©
o

Speedup over DRRIP

4
S
P

- Employing the TLB-aware DRRIP leads to
1.8% higher performance compared to the
conventional DDRIP

SAFARI 68

Page Table Walk in X86-64

Four sequential memory accesses
during a page table walk in x86-64

Up to 24 memory accesses in
virtualized environments

SAFARI 69

Virtuvalized Environments

Two-level address translation

Guest Host Host

ﬂ ﬁ

Virtual Virtual Physical

1 2

SAFARI

70

Virtuvalized Environments

L2 TLB

Nested
TLB

SAFARI

Guest-Virtual
Host-Physical

Guest-Virtual
Host-Virtual

71

Virtuvalized Environments

MMU

L2 Cache

Nested
TLB

| Nested TLB Entry |
J

SAFARI

PTW-CP Feature Set

Feature (per PTE) Bits Description

Page Size 1 The size of the page (4KB or 2MB)
Page Table Walk Cost DRAM accesses during a PTW
Page Table Walk Frequency The number of PTWs

LLPWC Hits The number of third-level PWC hits
L1 TLB Misses The number of L1 TLB misses

L2 TLB Misses The number of L2 TLB hits

L2 Cache Hits The number of L2 cache hits

L1 TLB Evictions The number of L1 TLB evictions

L2 TLB Evictions The number of L2 TLB evictions
Accesses The number of accesses to the page

GO o U1 U1 U1 L1 L1 W W

Feature engineering to find

minimal set of useful features

SAFARI 73

PTW-CP Exploration

NN-10 NN-5 NN-2 Comparator
Feature Size 10 5 2{ 2
Number of Layers 4 4 6 N]A
Size of Hidden Layers 16 64 4 N/A
Number of Neurons 737 8769 97 N/A
Size (B) 5896 70152 776 24
Recall 0.9334 0.9244 0.8962 ~ 0.8961
Accuracy 0.9213 0.9172 0.8290': 0.8290
Precision 0.8768 0.8747 0.7333 | 0.7334
F1-score 0.9042 0.8989 0.8066 0.8066

2-feature comparator predicts costly-to-

translate pages with 82% accuracy

SAFARI 74

Configurations in Virtualized Environments

* Nested Paging?: Baseline system that performs Nested PTWs
* POM-TLB2: System with 64K-entry software-managed L3 TLB

* Ideal Shadow Pagings3: System that employs an ideal version of
Shadow Paging

* Victima: Caching both TLB and Nested TLB entries in the L2 cache

[1] Bhargava et al. "Accelerating two-dimensional page walks for virtualized systems” ASPLOS 2008
[2] Ryoo et al. "Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA 2017
[3] "Agile paging: Exceeding the best of Nested and Shadow Paging” ISCA 2016

SAFARI 75

Reduction in Host and Guest PTWs

B POM-TLB Guest PTW B POM-TLB Host PTW 0O Victima Guest PTW @ Victima Host PTW

EWLLLLLLLL

Reduction of PTWs

SAFARI 76

