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Executive Summary
Problem: Address translation is a major performance bottleneck in data-intensive workloads

Large datasets and irregular memory access patterns lead to frequent L2 TLB misses (e.g., 20-50 
MPKI) and frequent high-latency (e.g., 100-150 cycles) page table walks (PTW)

Motivation: Increasing the translation reach  (i.e., memory covered by the TLBs) reduces PTWs. 
However, employing large TLBs leads to increased area, power and latency overheads.                                               

Victima: New software-transparent scheme that drastically increases the address  translation 
reach of the processor’s TLB hierarchy by leveraging the underutilized cache resources

https://github.com/CMU-SAFARI/Victima

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art large TLB design and (ii) achieves 
similar performance to an optimistically fast  128K-entry L2 TLB

Key Idea:  Key Benefits:

+ Efficient in native/virtualized environments

+ Fully transparent to application/OS software

+ Compatible with huge page schemes

Transform L2 cache blocks 
that store PTEs into blocks 
that store TLB entries

PTEs

TLB Entries

L2 Cache
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Opportunity: Increase the translation reach of the TLB hierarchy by storing the existing TLB entries 
within the existing cache hierarchy 



Talk Outline

Background & Motivation

Opportunity: Leverage Caches

Victima: Overview

Victima: Detailed Design

Evaluation Results
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Talk Outline

Background & Motivation
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Virtual Memory Basics

•The Page Table (PT) stores all                 
virtual-to-physical address mappings 

•The x86-64 PT is organized as                            
a 4/5-level radix tree 

•To access the PT, the system performs           
a Page Table Walk (PTW)
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Page Table Walk in x86-64
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Page Table Walk in x86-64

7

Four sequential memory accesses 
during a page table walk in x86-64



Address Translation Flow (I)
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Address Translation Flow (II)
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Address Translation Overhead

0.0 K
1.0 K
2.0 K
3.0 K
4.0 K
5.0 K

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

18
0-

19
0

N
um

be
r o

f O
cu

rre
nc

es

PTW Latency (cycles)

Core spends 137 cycles on average 
to perform a PTW

Mean: 137 cycles
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Address Translation Overhead

High latency 
PTWs

Frequent
PTWs

High performance 
overheads
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Potential Solution
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Reduce PTW frequency by 
increasing address translation reach



Address Translation Reach: Definition

4KB

4KB 4KB

2MB
4KB

2MB
2MB

4KB

Amount of VA-to-PA mappings 
stored by the processor’s TLB hierarchy 

Example Modern Processors: 
Maximum 3-4GB

Increase Reach

Reduce PTWs
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Increasing Address Translation Reach

Large HardwareTLBs
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Scaling Hardware L2 TLB (I) 

Employing a 64K-entry L2 TLB 
reduces MPKI from 39 to 24
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Scaling Hardware L2 TLB (II)

64K-entry L2 TLB with optimistic access 
latency provides 5.4% speedup over baseline
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64K-Entry L2 TLB Optimistic 12-cycle access latency



Scaling Hardware L2 TLB (II)

64K-entry L2 TLB with optimistic access 
latency provides 5.4% speedup over baseline

Benefits come for free?
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64K-entry L2 TLB with realistic access latency 
provides only 0.8% speedup over baseline

0.90

0.95

1.00

1.05

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

Sp
ee

du
p 

ov
er

 B
as

el
in

e 64K-Entry L2 TLB Realistic 39-cycle access latency

18

0.8%

Scaling Hardware L2 TLB (III)



Increasing Translation Reach

Large Software-ManagedTLBs
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Large Software-Managed L3 TLB

L2 TLB Miss Software 
L3 TLB

Main Memory

MMU
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Drawbacks of Software-Managed TLB

High Latency

Contiguous Physical Allocations

OS Modifications

1

2

3
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Increasing Translation Reach
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Both approaches come with 
major drawbacks
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Opportunity: Leverage Caches
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Opportunity: Leverage Caches

Store TLB entries in hardware caches
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Leverage Cache Hierarchy
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Where is the Benefit?

1.5K entries
12-cycle latency 

2MB L2 Cache

Fits 36x more 
TLB entries

Low latency 
(e.g., 16 cycles)

L2 TLB

PTW takes 137 cycles on average
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Interference with Program Data?
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Talk Outline

Victima: Overview
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Our Goal

Drastically increase 
the address translation reach of the processor 

Leverage cache resources 
to store TLB entries

29



Victima: Key Idea

Repurpose L2 cache blocks 
to store clusters of TLB entries

Low-latency and high-capacity component 
to back up the L2 TLB
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Victima: Overview
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Transform

Costly-to-translate page?



Victima Benefits

+ Drastic increase in address translation reach

+ Fully transparent to application/OS software

+ No need for contiguous physical allocations

+ Compatible with huge pages
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Talk Outline

Victima: Detailed Design
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Victima: Detailed Design

L2 Cache Modifications

Allocation of  TLB Entries in L2 Cache

Page Table Walk Cost Predictor

1

2

3
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Victima: L2 Cache Modifications

Access TLB blocks using virtual address

Perform tag matching for TLB blocks

1

2
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Example: Cache Configuration
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Data Blocks vs. TLB Blocks in Caches 
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Tag Matching for TLB Block
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Victima: L2 Cache Modifications

Allocation of  TLB Entries in L2 Cache2
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On L2 TLB Miss

On L2 TLB Eviction

1

2

Allocation of  TLB Entries in L2 Cache
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On L2 TLB Miss1

Allocation of  TLB Entries in L2 Cache
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Allocating TLB Blocks – L2 TLB Miss
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Transform



On L2 TLB Eviction2

Allocation of  TLB Entries in L2 Cache
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Allocating TLB Blocks – L2 TLB Eviction
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Address Translation in Victima (I)
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Address Translation in Victima (II)
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Victima: Detailed Design

Page Table Walk Cost Predictor3
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PTW Cost Predictor: Objective

Predict which pages are costly-to-translate
Insert only those TLB blocks in L2 cache
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Tracking Costly-to-Translate Pages

Page Table Entry

.. ..Frequency Cost 

Counters

Page Table Walker

Update Counters
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PTW Cost Predictor (PTW-CP)

PTW Frequency

PTW Cost

Comparator Tree
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based on L2 cache MPKI
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PTW-CP Details in the Paper
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Feature engineering to find 
minimal set of useful features  

2-feature comparator predicts costly-to-
translate pages with 82% accuracy 
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Evaluation Results
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Sniper Multicore Simulator extended with:
• TLB Hierarchy with multiple page sizes
• Radix page table walker
• Page walk caches

Workloads: Executed for 500M instructions
•GraphBIG: PR, BFS, BC, GC, CC
•HPCC: Randacc 
• XSBench: Particle Simulation 
•DLRM: Sparse-length sum 
•GenomicsBench: k-mer counting

Evaluation Methodology
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https://github.com/CMU-SAFARI/Victima



Configurations – Native Execution 

• Radix: Baseline system with 1.5K-entry L2 TLB and                 
Transparent Huge pages enabled

• Optimistic L2 TLB-64K: System with 64K-entry L2 TLB
(optimistic 12-cycle access latency)

• Optimistic L2 TLB-128K: System with 128K-entry L2 TLB                     
(optimistic 12-cycle access latency)

• POM-TLB1: System with 64K-entry software-managed L3 TLB

• Victima

[1] Ryoo et al. “Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA 201754



Victima achieves similar performance to 
the optimistically fast 128K-entry L2 TLB
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Victima reduces PTWs by 50% 
on average compared to the baseline 
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Effect of L2 Cache Size on Victima
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Performance in Virtualized Environments
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Area & Power Overhead

•Area and power overhead evalution using McPAT

•Comparison to a high-end Intel Raptor Lake
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Victima incurs 0.04% area and 
0.08% power overheads



More in the paper

•Victima integration in virtualized environments

•Maintenance operations to handle TLB shootdowns

•TLB-Block-aware replacement policy

• Implementation details of PTW cost estimator

•Translation reach provided by Victima

https://arxiv.org/abs/2310.04158
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More in the paper

•Victima integration in virtualized environments

•Maintenance operations to handle TLB shootdowns

•TLB-Block-aware replacement policy

• Implementation details of PTW cost estimator

•Translation reach provided by Victima

https://arxiv.org/abs/2310.04158
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Victima is Open Source

https://github.com/CMU-SAFARI/Victima
62



Victima is Open Source

Documentation is available
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Conclusion

We present Victima, a new software-transparent scheme that drastically 
increases the translation reach of the processor’s TLB hierarchy

by leveraging the underutilized cache resources

https://github.com/CMU-SAFARI/Victima

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art software-
managed TLB and (ii) achieves similar performance to an optimistically fast  
128K-entry L2 TLB design without the associated area and power overheads
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Key idea: Transform L2 cache 
blocks that store PTEs into 
blocks that store TLB entries

PTEs

TLB Entries

L2 Cache
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Adding Hardware-based L3 TLB

High access latency offsets the potential 
performance gains of hardware L3 TLB
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Sensitivity to L2 Cache Replacement Policy

Employing the TLB-aware DRRIP leads to 
1.8% higher performance compared to the 

conventional DDRIP
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Page Table Walk in X86-64

Four sequential memory accesses 
during a page table walk in x86-64

Up to 24 memory accesses in 
virtualized environments 
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Virtualized Environments

Two-level address translation
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1 2

70



Virtualized Environments

L2 TLB
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Virtualized Environments

L2 TLB

MMU
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PTW-CP Feature Set
Feature (per PTE) Bits Description
Page Size 1 The size of the page (4KB or 2MB)
Page Table Walk Cost 3 DRAM accesses during a PTW
Page Table Walk Frequency 3 The number of PTWs
LLPWC Hits 5 The number of third-level PWC hits
L1 TLB Misses 5 The number of L1 TLB misses
L2 TLB Misses 5 The number of L2 TLB hits
L2 Cache Hits 5 The number of L2 cache hits
L1 TLB Evictions 5 The number of L1 TLB evictions
L2 TLB Evictions 6 The number of L2 TLB evictions
Accesses 6 The number of accesses to the page

Feature engineering to find 
minimal set of useful features  
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PTW-CP Exploration

NN-10 NN-5 NN-2 Comparator
Feature Size 10 5 2 2
Number of Layers 4 4 6 N/A
Size of Hidden Layers 16 64 4 N/A
Number of Neurons 737 8769 97 N/A
Size (B) 5896 70152 776 24
Recall 0.9334 0.9244 0.8962 0.8961
Accuracy 0.9213 0.9172 0.8290 0.8290
Precision 0.8768 0.8747 0.7333 0.7334
F1-score 0.9042 0.8989 0.8066 0.8066

2-feature comparator predicts costly-to-
translate pages with 82% accuracy 
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Configurations in Virtualized Environments 

•Nested Paging1: Baseline system that performs Nested PTWs

• POM-TLB2: System with 64K-entry software-managed L3 TLB

• Ideal Shadow Paging3: System that employs an ideal version of 
Shadow Paging

• Victima: Caching both TLB and Nested TLB entries in the L2 cache

[2] Ryoo et al. “Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA 2017
[1] Bhargava et al. “Accelerating two-dimensional page walks for virtualized systems” ASPLOS 2008

[3] “Agile paging: Exceeding the best of Nested and Shadow Paging” ISCA 2016

75



Reduction in Host and Guest PTWs
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