
VICTIMA
Drastically Increasing

Address Translation Reach by Leveraging
Underutilized Cache Resources

Konstantinos Kanellopoulos
Hong Chul Nam, Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,

Rakesh Kumar, Davide Basilio Bartolini and Onur Mutlu

Executive Summary
Problem: Address translation is a major performance bottleneck in data-intensive workloads

Large datasets and irregular memory access patterns lead to frequent L2 TLB misses (e.g., 20-50
MPKI) and frequent high-latency (e.g., 100-150 cycles) page table walks (PTW)

Motivation: Increasing the translation reach (i.e., memory covered by the TLBs) reduces PTWs.
However, employing large TLBs leads to increased area, power and latency overheads.

Victima: New software-transparent scheme that drastically increases the address translation
reach of the processor’s TLB hierarchy by leveraging the underutilized cache resources

https://github.com/CMU-SAFARI/Victima

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art large TLB design and (ii) achieves
similar performance to an optimistically fast 128K-entry L2 TLB

Key Idea: Key Benefits:

+ Efficient in native/virtualized environments

+ Fully transparent to application/OS software

+ Compatible with huge page schemes

Transform L2 cache blocks
that store PTEs into blocks
that store TLB entries

PTEs

TLB Entries

L2 Cache

2

Opportunity: Increase the translation reach of the TLB hierarchy by storing the existing TLB entries
within the existing cache hierarchy

Talk Outline

Background & Motivation

Opportunity: Leverage Caches

Victima: Overview

Victima: Detailed Design

Evaluation Results

3

Talk Outline

Background & Motivation

4

Virtual Memory Basics

•The Page Table (PT) stores all
virtual-to-physical address mappings

•The x86-64 PT is organized as
a 4/5-level radix tree

•To access the PT, the system performs
a Page Table Walk (PTW)

5

Page Table Walk in x86-64

6

9 bits

Virtual Address

9 bits 9 bits 9 bits

CR3

Physical Frame Number

PL4 PL3 PL2 PL1

Page Table Walk in x86-64

7

Four sequential memory accesses
during a page table walk in x86-64

Address Translation Flow (I)

Memory
HierarchyCore

Page
Table

Memory
Management Unit

Virtual
Address

8

Address Translation Flow (II)

L1 I-TLB

L1 D-TLB

Unified
L2 TLB

Page Walk
Caches

Page Table
Walker

MissMiss

Miss

Virtual
Address

Miss

Memory
Hierarchy

Memory Management Unit

Page
Table

9

Address Translation Overhead

0.0 K
1.0 K
2.0 K
3.0 K
4.0 K
5.0 K

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

18
0-

19
0

N
um

be
r o

f O
cu

rre
nc

es

PTW Latency (cycles)

Core spends 137 cycles on average
to perform a PTW

Mean: 137 cycles

10

Address Translation Overhead

High latency
PTWs

Frequent
PTWs

High performance
overheads

11

+

Potential Solution

12

Reduce PTW frequency by
increasing address translation reach

Address Translation Reach: Definition

4KB

4KB 4KB

2MB
4KB

2MB
2MB

4KB

Amount of VA-to-PA mappings
stored by the processor’s TLB hierarchy

Example Modern Processors:
Maximum 3-4GB

Increase Reach

Reduce PTWs

13

Increasing Address Translation Reach

Large HardwareTLBs

14

Scaling Hardware L2 TLB (I)

Employing a 64K-entry L2 TLB
reduces MPKI from 39 to 24

39
24

0
20
40
60
80

BC BF
S CC

DL
RM GE

N GC PR RN
D
SS
SP TC XS

GM
EA
N

L2
 T

LB
 M

PK
I

1.5K-Entry L2 TLB 64K-Entry L2 TLB

15

Scaling Hardware L2 TLB (II)

64K-entry L2 TLB with optimistic access
latency provides 5.4% speedup over baseline

0.90
0.95
1.00
1.05
1.10
1.15

BC BF
S CC

DL
RM GE

N GC PR RN
D
SS
SP TC XS

GM
EA
NSp

ee
du

p
ov

er
 B

as
el

in
e

5.4%

16

64K-Entry L2 TLB Optimistic 12-cycle access latency

Scaling Hardware L2 TLB (II)

64K-entry L2 TLB with optimistic access
latency provides 5.4% speedup over baseline

Benefits come for free?
17

0.90
0.95
1.00
1.05
1.10
1.15

BC BF
S CC

DL
RM GE

N GC PR RN
D
SS
SP TC XS

GM
EA
NSp

ee
du

p
ov

er
 B

as
el

in
e

5.4%

64K-Entry L2 TLB Optimistic 12-cycle access latency

64K-entry L2 TLB with realistic access latency
provides only 0.8% speedup over baseline

0.90

0.95

1.00

1.05

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

Sp
ee

du
p

ov
er

 B
as

el
in

e 64K-Entry L2 TLB Realistic 39-cycle access latency

18

0.8%

Scaling Hardware L2 TLB (III)

Increasing Translation Reach

Large Software-ManagedTLBs

19

Large Software-Managed L3 TLB

L2 TLB Miss Software
L3 TLB

Main Memory

MMU

20

Contiguous

Drawbacks of Software-Managed TLB

High Latency

Contiguous Physical Allocations

OS Modifications

1

2

3

21

Increasing Translation Reach

Large
Hardware

TLBs

Large
Software-Managed

TLBs

22

Both approaches come with
major drawbacks

Talk Outline

Opportunity: Leverage Caches

23

Opportunity: Leverage Caches

Store TLB entries in hardware caches

24

Leverage Cache Hierarchy

L2 TLB

MMU

TLB Entry

L2 Cache

PT
Walker

Miss

TLB Entry

25

Where is the Benefit?

1.5K entries
12-cycle latency

2MB L2 Cache

Fits 36x more
TLB entries

Low latency
(e.g., 16 cycles)

L2 TLB

PTW takes 137 cycles on average
26

Interference with Program Data?

0%
20%
40%
60%
80%

100%

BC
BFS CC

DLRM
GEN GC PR

RND
SSSP TC XS

GMEAN

Br
ea

kd
ow

n
of

 L
2

D
at

a
Bl

oc
k

R
eu

se

Reuse 0 1-5 5-10 10-20 >20

L2 cache is heavily underutilized

27

Talk Outline

Victima: Overview

28

Our Goal

Drastically increase
the address translation reach of the processor

Leverage cache resources
to store TLB entries

29

Victima: Key Idea

Repurpose L2 cache blocks
to store clusters of TLB entries

Low-latency and high-capacity component
to back up the L2 TLB

30

Victima: Overview

L2
TLB

MMU

PTW Cost
Estimator

L2 Cache

Low latency

PTE Block

TLB Block
Miss

Miss

Eviction

31

Transform

Costly-to-translate page?

Victima Benefits

+ Drastic increase in address translation reach

+ Fully transparent to application/OS software

+ No need for contiguous physical allocations

+ Compatible with huge pages

32

Talk Outline

Victima: Detailed Design

33

Victima: Detailed Design

L2 Cache Modifications

Allocation of TLB Entries in L2 Cache

Page Table Walk Cost Predictor

1

2

3

34

Victima: L2 Cache Modifications

Access TLB blocks using virtual address

Perform tag matching for TLB blocks

1

2

35

Example: Cache Configuration

36

1MB
16-way associative

L2 Cache

10 bitsSet index

Data Blocks vs. TLB Blocks in Caches

36 bits

0

Tag

64 bytes

TLB Entry

Data Block

Data

52-bit Physical Address

36 bits

Tag

37

1

TLB Entry

TLB Block

0 1 2 3 4 5 6 7

PTEs (8 bytes per PTE)

23 bits

23 bits

36-bit Virtual Page Number (4KB)
Tag

Tag

13 bits
ASID/Size

10 bits

Set index

6 bits

Offset

10 bits

Set index

3 bits

Offset

Tag Matching for TLB Block

23 bits1

Tag
TLB
Entry

TLB Block

Virtual
Address 23 bits

9 bits

ASID

Tag

9 bits

ASID

= =

38

3 bits

Offset

0 1 2 3 4 5 6 7

PTEs

Victima: L2 Cache Modifications

Allocation of TLB Entries in L2 Cache2

39

On L2 TLB Miss

On L2 TLB Eviction

1

2

Allocation of TLB Entries in L2 Cache

40

On L2 TLB Miss1

Allocation of TLB Entries in L2 Cache

41

Allocating TLB Blocks – L2 TLB Miss

L2 TLB

MMU

PTW Cost
Estimator

L2 Cache

TLB Block

PTE Block

Miss

Page Table
Walker

42

Transform

On L2 TLB Eviction2

Allocation of TLB Entries in L2 Cache

43

Allocating TLB Blocks – L2 TLB Eviction

L2 TLB

MMU

PTW Cost
Estimator

L2 Cache

TLB Block

Eviction

Page Table
Walker

44

Transform

PTE Block

Address Translation in Victima (I)

L2 TLB

MMU L2 Cache

TLB Block
Miss

Page Table
Walker

Hit

45

Address Translation in Victima (II)

L2 TLB

MMU L2 Cache

Miss

Page Table
Walker

Miss

46

Victima: Detailed Design

Page Table Walk Cost Predictor3

47

PTW Cost Predictor: Objective

Predict which pages are costly-to-translate
Insert only those TLB blocks in L2 cache

48

Tracking Costly-to-Translate Pages

Page Table Entry

.. ..Frequency Cost

Counters

Page Table Walker

Update Counters

49

PTW Cost Predictor (PTW-CP)

PTW Frequency

PTW Cost

Comparator Tree

Bypassing Logic
based on L2 cache MPKI

Costly-to-
translate

page ?

50

Costly-to-
translate

page !

PTW-CP Details in the Paper

51

Feature engineering to find
minimal set of useful features

2-feature comparator predicts costly-to-
translate pages with 82% accuracy

Talk Outline

Evaluation Results

52

Sniper Multicore Simulator extended with:
• TLB Hierarchy with multiple page sizes
• Radix page table walker
• Page walk caches

Workloads: Executed for 500M instructions
•GraphBIG: PR, BFS, BC, GC, CC
•HPCC: Randacc
• XSBench: Particle Simulation
•DLRM: Sparse-length sum
•GenomicsBench: k-mer counting

Evaluation Methodology

53

https://github.com/CMU-SAFARI/Victima

Configurations – Native Execution

• Radix: Baseline system with 1.5K-entry L2 TLB and
Transparent Huge pages enabled

• Optimistic L2 TLB-64K: System with 64K-entry L2 TLB
(optimistic 12-cycle access latency)

• Optimistic L2 TLB-128K: System with 128K-entry L2 TLB
(optimistic 12-cycle access latency)

• POM-TLB1: System with 64K-entry software-managed L3 TLB

• Victima

[1] Ryoo et al. “Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA 201754

Victima achieves similar performance to
the optimistically fast 128K-entry L2 TLB

0.8

0.9

1.0

1.1

1.2

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

Sp
ee

du
p

ov
er

 B
as

el
in

e

POM-TLB 64K Opt. L2 TLB 64K Opt. L2 TLB 128K Victima
1.28x

Performance Speedup

55

Victima reduces PTWs by 50%
on average compared to the baseline

0%
20%
40%
60%
80%

100%

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

R
ed

uc
tio

n
of

 P
TW

s POM-TLB 64K L2 TLB 64K L2 TLB 128K Victima

50%

Reduction of Page Table Walks

56

Effect of L2 Cache Size on Victima

0%

25%

50%

75%

100%

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

R
ed

uc
tio

n
of

 P
TW

s

2MB 4MB 8MB

Employing an 8MB L2 cache with Victima
reduces PTWs by 63%

63%

57

Performance in Virtualized Environments

0.50

0.75

1.00

1.25

1.50

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

Sp
ee

du
p

ov
er

 N
P

POM-TLB Victima

Victima outperforms 64K-entry
software-managed TLB by 12%

58

Area & Power Overhead

•Area and power overhead evalution using McPAT

•Comparison to a high-end Intel Raptor Lake

59

Victima incurs 0.04% area and
0.08% power overheads

More in the paper

•Victima integration in virtualized environments

•Maintenance operations to handle TLB shootdowns

•TLB-Block-aware replacement policy

• Implementation details of PTW cost estimator

•Translation reach provided by Victima

https://arxiv.org/abs/2310.04158
60

More in the paper

•Victima integration in virtualized environments

•Maintenance operations to handle TLB shootdowns

•TLB-Block-aware replacement policy

• Implementation details of PTW cost estimator

•Translation reach provided by Victima

https://arxiv.org/abs/2310.04158
61

Victima is Open Source

https://github.com/CMU-SAFARI/Victima
62

Victima is Open Source

Documentation is available

63

Conclusion

We present Victima, a new software-transparent scheme that drastically
increases the translation reach of the processor’s TLB hierarchy

by leveraging the underutilized cache resources

https://github.com/CMU-SAFARI/Victima

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art software-
managed TLB and (ii) achieves similar performance to an optimistically fast
128K-entry L2 TLB design without the associated area and power overheads

64

Key idea: Transform L2 cache
blocks that store PTEs into
blocks that store TLB entries

PTEs

TLB Entries

L2 Cache

VICTIMA
Drastically Increasing

Translation Reach by Leveraging
Underutilized Cache Resources

Konstantinos Kanellopoulos
Hong Chul Nam, Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,

Rakesh Kumar, Davide Basilio Bartolini and Onur Mutlu

https://github.com/CMU-SAFARI/Victima

Adding Hardware-based L3 TLB

High access latency offsets the potential
performance gains of hardware L3 TLB

0.90
0.95
1.00
1.05
1.10

BC BF
S CC

DL
RM GE

N GC PR RN
D

SS
SP TC XS

GM
EA
N

Sp
ee

du
p

ov
er

 B
as

el
in

e L3 TLB 64K entries 15-cycle latency 64K-20 64K-25 64K-30 64K-35 64K-40
Cacti7.0 Estimation

66

0%

25%

50%

75%

100%

BC
BFS CC

DLRM
GEN GC PR

RND
SSSP TC XS

GMEANBr
ea

kd
ow

n
of

 T
LB

Bl
oc

k
R

eu
se

 in
 L

2
C

ac
he

Reuse 0 Reuse 1-5 Reuse 5-10 Reuse 10-20 Reuse >20

Reuse of TLB Blocks in L2 Cache

More than 60% of TLB blocks
experience reuse higher than 20

67

Sensitivity to L2 Cache Replacement Policy

Employing the TLB-aware DRRIP leads to
1.8% higher performance compared to the

conventional DDRIP

0.90

1.00

1.10

BC BF
S CC

DL
RM GE

N GC PR RN
D

SS
SP TC XS

GM
EA
N

Sp
ee

du
p

ov
er

 D
R

R
IP

TLB-Aware DRRIP

68

Page Table Walk in X86-64

Four sequential memory accesses
during a page table walk in x86-64

Up to 24 memory accesses in
virtualized environments

69

Virtualized Environments

Two-level address translation

Guest
Virtual

Host
Virtual

Host
Physical

1 2

70

Virtualized Environments

L2 TLB

Nested
TLB

Guest-Virtual

Host-Physical

Guest-Virtual

Host-Virtual

71

Virtualized Environments

L2 TLB

MMU

TLB Entry

L2 Cache
Nested

TLB
Nested TLB Entry

72

PTW-CP Feature Set
Feature (per PTE) Bits Description
Page Size 1 The size of the page (4KB or 2MB)
Page Table Walk Cost 3 DRAM accesses during a PTW
Page Table Walk Frequency 3 The number of PTWs
LLPWC Hits 5 The number of third-level PWC hits
L1 TLB Misses 5 The number of L1 TLB misses
L2 TLB Misses 5 The number of L2 TLB hits
L2 Cache Hits 5 The number of L2 cache hits
L1 TLB Evictions 5 The number of L1 TLB evictions
L2 TLB Evictions 6 The number of L2 TLB evictions
Accesses 6 The number of accesses to the page

Feature engineering to find
minimal set of useful features

73

PTW-CP Exploration

NN-10 NN-5 NN-2 Comparator
Feature Size 10 5 2 2
Number of Layers 4 4 6 N/A
Size of Hidden Layers 16 64 4 N/A
Number of Neurons 737 8769 97 N/A
Size (B) 5896 70152 776 24
Recall 0.9334 0.9244 0.8962 0.8961
Accuracy 0.9213 0.9172 0.8290 0.8290
Precision 0.8768 0.8747 0.7333 0.7334
F1-score 0.9042 0.8989 0.8066 0.8066

2-feature comparator predicts costly-to-
translate pages with 82% accuracy

74

Configurations in Virtualized Environments

•Nested Paging1: Baseline system that performs Nested PTWs

• POM-TLB2: System with 64K-entry software-managed L3 TLB

• Ideal Shadow Paging3: System that employs an ideal version of
Shadow Paging

• Victima: Caching both TLB and Nested TLB entries in the L2 cache

[2] Ryoo et al. “Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA 2017
[1] Bhargava et al. “Accelerating two-dimensional page walks for virtualized systems” ASPLOS 2008

[3] “Agile paging: Exceeding the best of Nested and Shadow Paging” ISCA 2016

75

Reduction in Host and Guest PTWs

0%
25%
50%
75%

100%

BC BF
S CC

DL
RM GE

N GC PR RN
D
SS
SP TC XS

GM
EA
NR

ed
uc

tio
n

of
 P

TW
s POM-TLB Guest PTW POM-TLB Host PTW Victima Guest PTW Victima Host PTW

76

