
Virtuoso

Konstantinos Kanellopoulos Konstantinos Sgouras F. Nisa Bostanci

Andreas Kosmas Kakolyris Berkin Kerim Konar Rahul Bera

Mohammad Sadrosadati Rakesh Kumar Nandita Vijaykumar Onur Mutlu

Enabling Fast and Accurate Virtual Memory

Research with an Imitation-based

Operating System Simulation Methodology

https://github.com/CMU-SAFARI/Virtuoso

2

GPUs CPUs NICs

Virtual
Memory

3

GPUs

CPUs NICs

Accelerator

Virtual Memory
is a cornerstone of

modern computing systems

4

Does Virtual Memory
come for free?

5

Virtual memory causes high
performance overheads

Memory
Allocation

Address
Translation

1 2

6

Memory Allocation Overheads

Emerging Workloads

Short Running (<1s)

OS Memory
Allocation Routines

High spawning throughput

Time

Execution

Time spent in OS cannot be amortized due to short execution

1

7

On average 32% of execution time (measured
in a real system) spent on physical memory allocation

Physical Memory Allocation Overheads

0

20

40

60

80

100

J
S

O
N

A
E

S

IM
G

-R
E

S

W
C

N
T

D
B

L
la

m
a

B
a

g
e

l

M
is

tr
a

l

3
D

 T
ra

n
s

p

H
a

d
a

m
a

rd

2
D

-S
u

m

G
M

E
A

N

F
ra

c
ti
o

n
 o

f
to

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

Physical Memory Allocation

8

Address Translation Overheads

Emerging Workloads

Long Running (>100s) Irregular Memory Accesses

Data FetchingTLB Miss Page Table Walk

High Latency Address Translation

Time

2

9

On average 26% of execution time (measured
in a real system) is spent on address translation

Address Translation Overheads

0

20

40

60
B

C

B
F

S

C
C

K
C

O
R

E

G
C

P
R

S
S

S
P

T
C

X
S

R
N

D

G
M

E
A

N

F
ra

c
ti
o

n
 o

f
to

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

Address Translation

10

0

20

40

60

80

100
A

E
S

IM
G

-R
E

S

W
C

N
T

D
B

L
la

m
a

B
a

g
e

l

M
is

tr
a

l

T
ra

n
s
p

o
s
e

H
a

d
a

m
a

rd

M
m

a
p

P
a

g
e

 C
a

c
h

e

G
M

E
A

N

B
C

B
F

S

C
C

K
C

O
R

E

G
C

P
R

S
S

S
P

T
C

X
S

R
N

D

G
M

E
A

N

Short Running Long Running

F
ra

c
ti
o

n
 o

f
e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

Minor Page Faults Address Translation

VM causes high overheads
in diverse emerging workloads

High VM Overheads

11

Virtual Memory overheads are
expected to increase as we transition

to larger physical address spaces

12

Going into the Future

GPU Memory CPU Memory

Unified Virtual Memory

High Bandwidth
Limited Capacity

High Capacity
Low cost/bit

1

13

Going into the Future

GPU Memory CPU Memory

Unified Virtual Memory

High Bandwidth
Limited Capacity

High Capacity
Low cost/bit

Direct Storage Access

High-end SSD
Byte-addressable

interface

1

2

14

Going into the Future

GPU Memory CPU Memory

Unified Virtual Memory

High Bandwidth
Limited Capacity

High Capacity
Low cost/bit

Memory Disaggregation Direct Storage Access

High-end SSD
Byte-addressable

interface

Access to both local and remote
memory modules

1

2 3

15

Researchers try to
save the day

16

Co-design the hardware and the OS
to reduce VM overheads

Software-managed TLB Subsystem

Nagle+ ISCA 1993

Ryoo+ ISCA 2017

Marathe+ MICRO 2017

Jaleel+ TACO 2019

17

Co-design the hardware and the OS
to reduce VM overheads
Leveraging VA-to-PA Contiguity

Pham+ MICRO 2012

Karakostas*,Ghandhi*+ ISCA 2015

Zhao+ ISCA 2022

Ausavarungnirun+ MICRO 2017

18

Co-design the hardware and the OS
to reduce VM overheads

Accelerating Memory Allocation

Wang+ MICRO 2023

Lee+ ISCA 2020

Tirumalasetty+ TACO 2022

19

Co-design the hardware and the OS
to reduce VM overheads

Alternative Address Mappings

Picorel+ PACT 2016

Gosakan+ ASPLOS 2023

Kanellopoulos+ MICRO 2023

20

Co-design the hardware and the OS
to reduce VM overheads

Rethinking the Page Table Design

Employing Multiple Page Sizes

and more...

21

Co-design the hardware and the OS
to reduce VM overheads

Leverage VA-to-
PA Contiguity

Software-managed
TLB Subsystem

Accelerate
Memory

Allocation

Alternative Address Mappings

Rethinking the Page
Table Design Employing multiple page sizes

Wide range of hardware-OS co-design
techniques that aim to improve virtual memory

22

Effectively evaluating VM techniques
is crucial for progress in the domain

23

Challenges in Evaluation

Interplay between system components

Hardware
MMU

Software-level
Memory Management

System
Components

24

Example: Page Table and Large Pages

Page Table
Size

OS Allocation
Policy

Size of the page table depends on the
number of large pages provided by the OS

25

Example: Page Table and Large Pages

”I can provide plenty
 of large pages”

2MB Pages

Page Table

En

tr
ie

s

OS Kernel

Fr
ee

26

Example: Page Table and Large Pages

“Fragmentation is rising so
I cannot allocate 2MB pages”

4KB Pages

Page Table

En

tr
ie

s

OS Kernel

27

Page Table and Memory Interference

DRAM Bank
Ro

w
s

Row
Buffer

App 1

App 2

App 2

Page Table
Entries

Program
Data

Program
Data

...
...

28

Page Table and Memory Interference

DRAM Bank
Ro

w
s

Row
Buffer

App 1

App 2

App 2

...
...

Conflict

45

Page Table and Memory Interference

DRAM Bank
Ro

w
s

Row
Buffer

App 1

App 2

App 1

...
...

30

Page Table and Memory Interference

DRAM Bank
Ro

w
s

Row
Buffer

App 1

App 2

App 1

...
...

Conflict

31

Page Table and Memory Interference

DRAM Bank
Ro

w
s

Row
Buffer

App 1

App 2

App 1

...
...

Conflict

Frequent accesses
to page table entries cause

high interference in main memory

32

Challenges in Evaluation

Hardware
MMU

Software-level
Memory Management

System
Components

33

Challenges in Evaluation

Hardware
MMU

Software-level
Memory

Management

System
Components

Evaluating the interplay between
components is critical when assessing

current and new VM techniques

34

Researchers have
architectural simulators

 at their disposal

35

Existing Architectural Simulators

Emulation-based

Full-system

1

2

Two main classes of simulators

36

Ramulator

Sniper ChampSim

Emulation-based Simulators

Limited support for
OS primitives

ZSim

Analytically estimate
 VM Overheads

High simulation speed with a focus on
modeling microarchitectural features

37

Analytical Estimation of VM Overheads

Page Table Walk Latency = 100 cycles (fixed)
Minor Page Fault Latency = 2000 cycles (fixed)

Example

First-order Models

Is this good enough?

Simple mathematical or algorithmic approximation

38

Variable PTW Latency

Average PTW Latency (measured in a real
system) ranges from 33 up to 184 cycles

0

40

80

120

160

200

A
v
e

ra
g

e
 P

T
W

L

a
te

n
c
y
 (

c
y
c
le

s
)

53 Benchmarks with Varying Memory Intensity Levels

High Memory
Intensity

Low Memory
Intensity

39

Variable Memory Allocation Latency

THP
Enabled

THP
Disabled

Physical Memory Allocation Latency (μs) in Log Scale

Contribution of outliers to total minor page fault latency: 25%

Contribution of outliers to total memory allocation latency: 67%

Median

25th
percentile

75th
percentile

40

Variable Memory Allocation Latency

The latency of handling memory allocation
 (measured in a real system)

exhibits high variability

THP
Enabled

THP
Disabled

Physical Memory Allocation Latency (μs) in Log Scale

Contribution of outliers to total minor page fault latency: 25%

Contribution of outliers to total memory allocation latency: 67%

41

Variable Memory Allocation Latency

The latency of handling memory allocation
 (measured in a real system)

exhibits high variability

THP
Enabled

THP
Disabled

Physical Memory Allocation Latency (μs) in Log Scale

Contribution of outliers to total minor page fault latency: 25%

Contribution of outliers to total memory allocation latency: 67%

42

Analytical Estimation of VM Overheads

Use of First-order Models

First-order models do not accurately
capture the dynamic nature of VM overheads

43

Full-System Simulators

gem5-FS

QFlex PTLsim

Enable the execution of a full-blown OS
on top of a hardware simulator

Low simulation
speed Hard to develop

44

Existing Architectural Simulators

Emulation-based

Full-System

1

2

Two main classes of simulators

45

Existing Architectural Simulators

Emulation-
based

Si
m

ul
at

io
n

Sp
ee

d

Accuracy in Estimating VM overheads

Full-
System

46

Existing Architectural Simulators

Emulation-
based

Si
m

ul
at

io
n

Sp
ee

d

Accuracy in Estimating VM overheads

Our goal

Full-
System

47

Enabling Fast and Accurate VM Research

New simulation framework that enables
fast and accurate prototyping and evaluation of
the software and hardware components of VM

Virtuoso

48

Imitation-based Simulation Methodology

Lightweight Userspace Kernel
written in a high-level programming language

Choose OS modules only related
to the desired research

“I will try to imitate
the full-blown OS”

49

Imitation-based Simulation Methodology

Full-blown Kernel

Thread Scheduler

Data Sharing
Support

Managing NUMA

Virtual Memory
Area Handling

Block device
driver

Protection

Transparent
Huge Pages

hugetlbfs

Cgroups

SLAB Allocator

Swapping

InterruptsMonitoring

Boot process

50

Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Virtual Memory
Area Handling

Transparent
Huge Pages

Swapping

51

Rapid development and prototyping

High simulation speed by executing
only the desired OS kernel functionality

Accurate evaluation by integrating
Virtuoso with an architectural simulator

1

2

3

Imitation-based Simulation Methodology

add R1, R1 ,R2

load R1, [0xA]

52

Lightweight Userspace Kernel

Desired Memory Management
modules written in a high-level language

Simulator

Binary Instrumentation

Core Model

Userspace Kernel
Instruction Stream

Imitation-based Simulation Methodology

+ Imitates the OS-level
Overhead

add R1, R1 ,R2

load R1, [0xA]

53

Lightweight Userspace Kernel

Desired Memory Management
modules written in a high-level language

Simulator

Binary Instrumentation

Core Model

Userspace Kernel
Instruction Stream

Imitation-based Simulation Methodology

Functional
Outcome

+ Enables emulation
of kernel modules

54

Workflow: Page Fault Handling Example

Example Userspace Kernel

Page Fault Handler

Transparent
Huge Pages

Buddy
Allocator

55

Workflow: Page Fault Handling Example

Core
Model

Example: Sniper Simulator [Carlson+ TACO 12]

MMU
Model

Translation
Request

Example Userspace Kernel

Workload2

Memory
Access
3

4

5

Page Fault Handler

1

Binary
Instrumentation

Page Fault

6

7

8

56

Workflow: Page Fault Handling Example

Core
Model

Example: Sniper Simulator [Carlson+ TACO 12]

MMU
Model

Translation
Request

Example Userspace Kernel

Workload

Memory
Access

Page Fault Handler

Page Fault
Outcome

57

MimicOS: Imitating the Linux Kernel

MimicOS modules written in C++

Transparent
Huge Pages

Buddy
Allocator

Radix-based
page table hugetlbfs

Swap Space Page Cache

More details in the paper

https://arxiv.org/pdf/2403.04635

58

VirTool: State-of-the-art VM techniques

Nested MMU
Support

4 page table
designs

2 THP
Policies

2 Hash-based
address mapping

schemes

2 Memory
Tagging Schemes

Software-
Managed TLB

2 Contiguity-
aware Schemes

Page-Size Prediction

2 Intermediate Address Space Schemes

Toolset encompassing the HW/SW components
of multiple state-of-the-art VM techniques

Speculative Translation TLB Prefetching

59

VirTool: State-of-the-art VM techniques

Nested MMU
Support

4 page table
designs

2 THP
Policies

2 Hash-based
mapping
schemes

2 Memory
Tagging Schemes

Software-
Managed TLB

2 Contiguity-
aware Schemes

Page-Size Prediction

2 Intermediate Address Space Schemes

Toolset encompassing multiple
state-of-the-art VM techniques

Enables researchers to evaluate
and prototype current and
brand new VM techniques

60

VirTool: State-of-the-art VM techniques

Nested MMU
Support

4 page table
designs

2 THP
Policies

2 Hash-based
mapping
schemes

2 Memory
Tagging Schemes

Software-
Managed TLB

2 Contiguity-
aware Schemes

Page-Size Prediction

2 Intermediate Address Space Schemes

Toolset encompassing multiple
state-of-the-art VM techniques

Virtuoso is a highly versatile
simulation framework

61

Integrated Virtuoso with 5 Diverse
Architectural Simulators

gem5-SE
System-call emulation

mode of gem5

http://gem5.org/

http://gem5.org/

[Lowe-Power+ arXiv 2020]

[Binkert+ SIGARCH News 2011]

http://gem5.org/

62

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Ramulator

Focus on main
memory subsystem

https://github.com/CMU-SAFARI/ramulator2

https://github.com/CMU-SAFARI/ramulator2

[Luo+ CAL 2023]

https://github.com/CMU-SAFARI/ramulator2

63

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Sniper Focus on
multicore systems

[Carlson+ TACO 2012]
https://github.com/snipersim/snipersim

https://github.com/snipersim/snipersim

https://github.com/snipersim/snipersim

64

Integrated Virtuoso with 5 Diverse
Architectural Simulators

ChampSim

Focus on
microarchitecture

https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

[Gober+ arXiv 2022]

https://github.com/ChampSim/ChampSim

65

Integrated Virtuoso with 5 Diverse
Architectural Simulators

MQSim
Focus on

storage devices
[Tavakkol+ FAST 2018]

https://github.com/CMU-SAFARI/MQSim

https://github.com/CMU-SAFARI/MQSim

https://github.com/CMU-SAFARI/MQSim

66

Validation against a Real System

Virtuoso Sniper

High-end
Server-grade

CPU

Against
Linux Kernel

67

Validation: Instructions Per Cycle (IPC)

Virtuoso integrated with Sniper improves
 IPC modeling accuracy by 21%
 compared to baseline Sniper

20%

40%

60%

80%

100%

IP
C

 M
o

d
e

lin
g

 A
c
c
u

ra
c
y

Baseline Sniper Virtuoso + Sniper gem5-FS

68

Validation: Instructions Per Cycle (IPC)

Virtuoso integrated with Sniper achieves IPC
modeling accuracy within 9% of gem5-FS

20%

40%

60%

80%

100%

IP
C

 M
o

d
e

lin
g

 A
c
c
u

ra
c
y

Baseline Sniper Virtuoso + Sniper gem5-FS

69

Validation: Page Fault Handling Latency

Virtuoso integrated with Sniper models the
page fault handling latency with 66% accuracy,

within 15% of gem5-FS

20%

40%

60%

80%

100%

P
a

g
e

 F
a

u
lt

M
o

d
e

lin
g

 A
c
c
u

ra
c
y

Virtuoso+Sniper gem5-FS

70

Simulation Speed Comparison

13%

35%

2%

28%
20%

0%

20%

40%

60%

80%

S
lo

w
d

o
w

n
 o

v
e

r
 B

a
s
e

lin
e

 S
im

u
la

to
rs

with MimicOS

ChampSim Sniper Ramulator gem5 GMEAN

MimicOS leads to an average 20% simulation time
overhead over the baseline version of the simulator

71

Simulation Speed Comparison

13%

35%

2%

28%
20%

77%

0%

20%

40%

60%

80%

S
lo

w
d

o
w

n
 o

v
e

r
 B

a
s
e

lin
e

 S
im

u
la

to
rs with MimicOS

with Full-blown Linux Kernel

ChampSim Sniper Ramulator gem5 GMEAN

Enabling full-system execution mode in gem5
leads to 77% simulation time overhead

72

Virtuoso’s Versatility

We showcase Virtuoso’s
 versatility by evaluating multiple

different use cases

5 use cases in the paper
https://arxiv.org/pdf/2403.04635

Demonstrate new insights on
state-of-the-art VM techniques

73

Virtuoso Example Use Cases

Evaluating Different
Page Table Designs

Evaluating Physical Memory
Allocation Policies

74

Virtuoso Example Use Cases

Evaluating Different
Page Table Designs

Radix: Baseline radix-based page table
ECH1: Elastic Cuckoo Hash-based Page Table

75

Evaluation Methodology

Fragmentation: Number of available 2MB pages
compared to the total number of 2MB pages

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking
Virtual Memory Translation for Parallelism” ASPLOS 2020

Workloads: GraphBIG, XSBench, HPCC

76

Reduction in PTW Latency

As memory fragmentation decreases, the PTW
latency reduction of ECH compared to Radix increases

0%

10%

20%

30%

40%

100% 98% 96% 94% 92% 90%

R
e

d
u

c
ti
o

n
 i
n
 t

o
ta

l
P

T
W

 L

a
te

n
c
y
 o

v
e

r
R

a
d

ix

Memory Fragmentation Level

Radix ECH

11%

6%

77

Main Memory Interference

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 D

R
A

M

 R
o
w

 B
u
ff
e
r

C
o
n
fl
ic

ts

ECH

ECH leads to an average 52% increase
in DRAM row buffer conflicts over Radix

2.5x 2.7x

52%

78

Virtuoso Example Use Cases

Evaluating Physical Memory
Allocation Policies

79

Evaluation Methodology

Buddy: Baseline allocator with the buddy system

Utopia:1 Part of memory is organized using a
hash-based mapping

Workloads: Short-input Short-output LLM inference

[1] Kanellopoulos et al. “Utopia: Fast and Efficient Address Translation via Hybrid
Restrictive & Flexible Virtual-to-Physical Address Mappings” MICRO 2023

Mistral-7B Llama-2-7B Bagel-2.8B

80

Accelerating Memory Allocation

0.00

0.50

1.00

1.50

2.00

2.50

Llama-2-7B Mistral-7B Bagel-2.8B

P
h

y
s
ic

a
l
M

e
m

o
ry

A

llo
c
a

ti
o

n
 S

p
e

e
d

u
p

Utopia - 32MB Hash-based Segment

Restricting the virtual-to-physical mapping
speeds up memory allocation by up to 2.17x

81

More Details in the Paper

- Detailed description of communication primitives

- Detailed description of MimicOS modules

- Integration methodology with different simulators

- Integration with heterogeneous system simulation

- Evaluation of intermediate address space schemes
- Evaluation of swapping activity and translation latency
in hash-based address mapping schemes

- Evaluation of two additional hash-based page tables

and more to come …

82

More Details in the Paper

https://arxiv.org/pdf/2403.04635

83

Virtuoso is Open-Source

https://github.com/CMU-SAFARI/Virtuoso

84

Virtuoso Website – Getting Started

https://github.com/CMU-SAFARI/Virtuoso/website

85

Virtuoso Website - Documentation

https://safari.ethz.ch/virtuoso

86

Virtuoso Website – Incoming Features

https://safari.ethz.ch/virtuoso

87

Conclusion

88

VM causes high overheads
in emerging workloads

New simulation framework that enables
fast and accurate prototyping and evaluation of
the software and hardware components of VM

Virtuoso

https://github.com/CMU-SAFARI/Virtuoso

Imitation-based
Simulation Methodology

90

Rapid development and versatility

High simulation speed

Accurate simulation

1

2

3

91

Validation against high-end server-grade CPU

Implemented 5 diverse use cases to
showcase Virtuoso’s versatility

VirToo

l
Integration with

5 simulators
Toolset encompassing

multiple state-of-the-art
VM techniques

gem5-SE Ramulator

Sniper

ChampSim

MQSim

https://github.com/CMU-SAFARI/Virtuoso

92

We hope Virtuoso establishes a
 common ground for VM research

Virtuoso

Konstantinos Kanellopoulos Konstantinos Sgouras F. Nisa Bostanci

Andreas Kosmas Kakolyris Berkin Kerim Konar Rahul Bera

Mohammad Sadrosadati Rakesh Kumar Nandita Vijaykumar Onur Mutlu

Enabling Fast and Accurate Virtual Memory

Research with an Imitation-based

Operating System Simulation Methodology

https://github.com/CMU-SAFARI/Virtuoso

Github arXiv

94

Why do we need
Virtual Memory?

95

Programmer-transparent
memory management

Process isolation

Data sharing between processes

1

2

3

Virtual Memory Benefits

96

How does Virtual
Memory work?

97

Physical Address Space (e.g., physical memory)

Virtual Address
Space #1

Virtual Address
Space #2

App 1 App 2

98

Page

Page

Physical Address Space (e.g., physical memory)

Virtual Address
Space #1

Virtual Address
Space #2

App 1 App 2

Page Page Page

Page Page Page Page

(e.g., 4KB)

99

Physical Address Space

Virtual Address
Space #1

Virtual Address
Space #2

App 1 App 2

100

Physical Address Space

Virtual Address
Space #1

Virtual Address
Space #2

App 1 App 2

Virtual-to-Physical Address Mapping

101

Who establishes
virtual-to-physical

address mappings?

102

Physical Memory

Virtual Address Space App

Map virtual addresses
to physical memory

103

Virtual Address Space

Physical Address Space

Fault
Virtual address
 not mapped to

physical memory

104

Operating
System

Physical Memory

Handles memory
allocation

Virtual Address Space App

105

Operating System

Finds free space in
physical memory

Fetches data
from the disk

Application is stalled

Minor Fault Major Fault

106

Virtual Address Space

Operating
System

Physical Memory

Page Table

Store/Update the
virtual-to-physical address mapping

107

How does the CPU
discover the virtual-

to-physical mapping?

108

Memory
HierarchyCore

Memory
Management Unit

Virtual
Address

Address Translation

Page
Table

Hardware unit responsible
 for address translation

TLB Hierarchy Page Table
WalkerMiss

109

Memory
Hierarchy

Memory Management Unit

Page
Table

Address Translation

110

Validation against a Real System

MMU
Performance

Validation Metrics
Instructions

Per Cycle
Page Fault

Latency

Virtuoso Sniper

High-end
Server-grade

CPU

111

Validation: L2 TLB MPKI

Virtuoso integrated with Sniper models
the L2 TLB misses per kilo instructions

of a real high-end CPU with 82% accuracy

20%

40%

60%

80%

100%

L
2

 T
L

B
 M

P
K

I
 M

o
d

e
lli

n
g

 A
c
c
u

ra
c
y

82%

112

Validation: Page Table Walk Latency

20%

40%

60%

80%

100%

P
T

W
 L

a
te

n
c
y

M
o

d
e

lli
n

g
 A

c
c
u

ra
c
y

86%

Virtuoso integrated with Sniper models the
Page Table Walk latency of a real high-end CPU

with 86% accuracy

113

Instructions vs Simulation Time

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

0 10 20 30 40 50

Fraction of Instructions Executed by MimicOS

N
o

rm
a

liz
e

d

S
im

u
la

ti
o

n
 T

im
e

y=1.5x

y

x

Linear relationship between instructions
executed by MimicOS and simulation time

	Slide 1: Virtuoso
	Slide 2
	Slide 3
	Slide 4: Does Virtual Memory come for free?
	Slide 5: Memory Allocation
	Slide 6: Memory Allocation Overheads
	Slide 7: Physical Memory Allocation Overheads
	Slide 8: Address Translation Overheads
	Slide 9: Address Translation Overheads
	Slide 10: High VM Overheads
	Slide 11
	Slide 12: Going into the Future
	Slide 13: Going into the Future
	Slide 14: Going into the Future
	Slide 15: Researchers try to save the day
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Challenges in Evaluation
	Slide 24: Example: Page Table and Large Pages
	Slide 25: Example: Page Table and Large Pages
	Slide 26: Example: Page Table and Large Pages
	Slide 27: Page Table and Memory Interference
	Slide 28: Page Table and Memory Interference
	Slide 29: Page Table and Memory Interference
	Slide 30: Page Table and Memory Interference
	Slide 31: Page Table and Memory Interference
	Slide 32: Challenges in Evaluation
	Slide 33: Challenges in Evaluation
	Slide 34: Researchers have architectural simulators at their disposal
	Slide 35: Existing Architectural Simulators
	Slide 36: Emulation-based Simulators
	Slide 37: Analytical Estimation of VM Overheads
	Slide 38: Variable PTW Latency
	Slide 39: Variable Memory Allocation Latency
	Slide 40: Variable Memory Allocation Latency
	Slide 41: Variable Memory Allocation Latency
	Slide 42: Analytical Estimation of VM Overheads
	Slide 43: Full-System Simulators
	Slide 44: Existing Architectural Simulators
	Slide 45: Existing Architectural Simulators
	Slide 46: Existing Architectural Simulators
	Slide 47: Enabling Fast and Accurate VM Research
	Slide 48: Imitation-based Simulation Methodology
	Slide 49: Imitation-based Simulation Methodology
	Slide 50: Imitation-based Simulation Methodology
	Slide 51: Imitation-based Simulation Methodology
	Slide 52: Imitation-based Simulation Methodology
	Slide 53: Imitation-based Simulation Methodology
	Slide 54: Workflow: Page Fault Handling Example
	Slide 55: Workflow: Page Fault Handling Example
	Slide 56: Workflow: Page Fault Handling Example
	Slide 57: MimicOS: Imitating the Linux Kernel
	Slide 58: VirTool: State-of-the-art VM techniques
	Slide 59: VirTool: State-of-the-art VM techniques
	Slide 60: VirTool: State-of-the-art VM techniques
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Validation against a Real System
	Slide 67: Validation: Instructions Per Cycle (IPC)
	Slide 68: Validation: Instructions Per Cycle (IPC)
	Slide 69: Validation: Page Fault Handling Latency
	Slide 70: Simulation Speed Comparison
	Slide 71: Simulation Speed Comparison
	Slide 72: Virtuoso’s Versatility
	Slide 73: Virtuoso Example Use Cases
	Slide 74: Virtuoso Example Use Cases
	Slide 75: Evaluation Methodology
	Slide 76: Reduction in PTW Latency
	Slide 77: Main Memory Interference
	Slide 78: Virtuoso Example Use Cases
	Slide 79: Evaluation Methodology
	Slide 80: Accelerating Memory Allocation
	Slide 81: More Details in the Paper
	Slide 82: More Details in the Paper
	Slide 83: Virtuoso is Open-Source
	Slide 84: Virtuoso Website – Getting Started
	Slide 85: Virtuoso Website - Documentation
	Slide 86: Virtuoso Website – Incoming Features
	Slide 87: Conclusion
	Slide 88
	Slide 89
	Slide 90: Imitation-based Simulation Methodology
	Slide 91
	Slide 92
	Slide 93: Virtuoso
	Slide 94: Why do we need Virtual Memory?
	Slide 95
	Slide 96: How does Virtual Memory work?
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Who establishes virtual-to-physical address mappings?
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: How does the CPU discover the virtual-to-physical mapping?
	Slide 108
	Slide 109
	Slide 110: Validation against a Real System
	Slide 111: Validation: L2 TLB MPKI
	Slide 112: Validation: Page Table Walk Latency
	Slide 113: Instructions vs Simulation Time

