Understanding Reduced-Voltage Operation in Modern DRAM Devices

Experimental Characterization, Analysis, and Mechanisms

Kevin Chang⁺

A. Giray Yaglikci[†], Saugata Ghose[†], Aditya Agrawal^{*}, Niladrish Chatterjee^{*}, Abhijith Kashyap[†], Donghyuk Lee^{*}, Mike O'Connor^{*}, Hasan Hassan[‡], Onur Mutlu^{†‡}

Executive Summary

- DRAM (memory) power is significant in today's systems
 - Existing low-voltage DRAM reduces voltage **conservatively**
- <u>Goal</u>: Understand and exploit the reliability and latency behavior of real DRAM chips under *aggressive reduced-voltage operation*
- Key experimental observations:
 - Errors occur and increase with lower voltage
 - Errors exhibit spatial locality
 - Higher operation latency mitigates voltage-induced errors
- <u>Voltron</u>: A new DRAM energy reduction mechanism
 - Reduce DRAM voltage without introducing errors
 - Use a **regression model** to select voltage that does not degrade performance beyond a chosen target \rightarrow 7.3% system energy reduction

Outline

- Executive Summary
- Motivation
- DRAM Background
- Characterization of DRAM
- Voltron: DRAM Energy Reduction Mechanism
- Conclusion

High DRAM Power Consumption

<u>Problem</u>: High DRAM (memory) power in today's systems

>40% in POWER7 (Ware+, HPCA'10) >40% in GPU (Paul+, ISCA'15)

Low-Voltage Memory

- Existing DRAM designs to help reduce DRAM power by lowering supply voltage conservatively
 - Power \propto Voltage²
- DDR3L (low-voltage) reduces voltage from 1.5V to 1.35V (-10%)
- LPDDR4 (low-power) employs low-power I/O interface with I.2V (lower bandwidth)

Can we reduce DRAM power and energy by further reducing supply voltage?

Goals

1 Understand and characterize the various characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by lowering voltage while keeping performance loss within a target

Key Questions

 How does reducing voltage affect reliability (errors)?

 How does reducing voltage affect DRAM latency?

• How do we design a new DRAM energy reduction mechanism?

Outline

- Executive Summary
- Motivation
- DRAM Background
- Characterization of DRAM
- Voltron: DRAM Energy Reduction Mechanism
- Conclusion

High-Level DRAM Organization

DRAM Module

DRAM Chip Internals

DRAM Operations

ACTIVATE: Store the row into the **row buffer**

2 **READ**: Select the target cache line and drive to CPU

3 PRECHARGE: Prepare the array for a new ACTIVATE

DRAM Access Latency

Outline

- Executive Summary
- Motivation
- DRAM Background

Characterization of DRAM

- Experimental methodology
- Impact of voltage on reliability and latency
- Voltron: DRAM Energy Reduction Mechanism
- Conclusion

Supply Voltage Control on DRAM

Adjust the supply voltage to every chip on the same module

Custom Testing Platform

SoftMC [Hassan+, HPCA'17]: FPGA testing platform to

- I) Adjust supply voltage to DRAM modules
- 2) Schedule DRAM commands to DRAM modules
 - Existing systems: DRAM commands not exposed to users

DRAM module

Voltage controller

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Tested DRAM Modules

- **I24 DDR3L** (low-voltage) DRAM chips
 - 31 SO-DIMMs
 - I.35V (DDR3 uses I.5V)
 - Density: 4Gb per chip
 - Three major vendors/manufacturers
 - Manufacturing dates: 2014-2016
- Iteratively read every bit in each 4Gb chip under a wide range of supply voltage levels: 1.35V to 1.0V (-26%)

Outline

- Executive Summary
- Motivation
- DRAM Background

Characterization of DRAM

- Experimental methodology
- Impact of voltage on reliability and latency
- Voltron: DRAM Energy Reduction Mechanism
- Conclusion

Reliability Worsens with Lower Voltage

Source of Errors

Detailed circuit simulations (SPICE) of a DRAM cell array to model the behavior of DRAM operations <u>https://github.com/CMU-SAFARI/DRAM-Voltage-Study</u>

Reliable low-voltage operation requires higher latency

DIMMs Operating at Higher Latency

Measured minimum latency that does not cause errors in DRAM modules

DRAM requires longer latency to access data without errors at lower voltage

Spatial Locality of Errors

A module under 1.175V (**12% voltage reduction**) 0 1.0 ⊃r(row with ≥1-bit error 5 0.8 10 Row (000s) 0.6 15 0.4 20 25 0.2 30 0.0 1 2 3 6 0 4 5 7 Bank

Errors concentrate in certain regions

Other Results in the Paper

- Error-Correcting Codes (ECC)

 ECC (SECDED) is not sufficient to mitigate the errors
- Effect of temperature
 - Higher temperature requires higher latency under some voltage levels
- Data retention time
 - Lower voltage does **not** require more frequent refreshes
- Effect of stored data pattern on error rate

- Difference is **not** statistically significant to draw conclusion

Summary of Key Experimental Observations

- Voltage-induced errors increase as voltage reduces further below V_{min}
- Errors exhibit spatial locality

 Increasing the latency of DRAM operations mitigates voltage-induced errors

Outline

- Executive Summary
- Motivation
- DRAM Background
- Characterization of DRAM
 - Experimental methodology
 - Impact of voltage on reliability and latency

Voltron: DRAM Energy Reduction Mechanism

Conclusion

DRAM Voltage Adjustment to Reduce Energy

- <u>Goal</u>: Exploit the trade-off between voltage and latency to reduce energy consumption
- <u>Approach</u>: Reduce DRAM voltage **reliably**

- Performance loss due to increased latency at lower voltage Performance DRAM Power Savings **40** % Over High Power Savings Low Power Savings 30 **Nominal Voltage** Bad Performance **Good Performance** mprovement (20 10 0 -10 -20 0.9 0.1 1.2 1.3 Supply Voltage (V)

Voltron Overview

User specifies the **performance loss target**

Select the **minimum** DRAM voltage without violating the target

How do we predict performance loss due to increased latency under low DRAM voltage?

Linear Model to Predict Performance

Linear Model to Predict Performance

- Application's characteristics for the model:
 - Memory intensity: Frequency of last-level cache misses
 - Memory stall time: Amount of time memory requests stall commit inside CPU
- Handling multiple applications:
 - Predict a performance loss for each application
 - Select the minimum voltage that satisfies the performance target for all applications

Comparison to Prior Work

- Prior work: Dynamically scale frequency and voltage of the entire DRAM based on bandwidth demand [David+, ICAC'11]
 - <u>Problem</u>: Lowering voltage on the peripheral circuitry decreases channel frequency (memory data throughput)
- <u>Voltron</u>: Reduce voltage to only DRAM array without changing the voltage to peripheral circuitry

Exploiting Spatial Locality of Errors

<u>Key idea</u>: Increase the latency only for DRAM banks that observe errors under low voltage

- <u>Benefit</u>: Higher performance

Outline

- Executive Summary
- Motivation
- DRAM Background
- Characterization of DRAM
 - Experimental methodology
 - Impact of voltage on reliability and latency

Voltron: DRAM Energy Reduction Mechanism

- Evaluation
- Conclusion

Voltron Evaluation Methodology

Cycle-level simulator: Ramulator [CAL'15]
 McPAT and DRAMPower for energy measurement

https://github.com/CMU-SAFARI/ramulator

- **4-core** system with DDR3L memory
- **Benchmarks**: SPEC2006, YCSB
- Comparison to prior work: MemDVFS [David+, ICAC'11]
 - Dynamic DRAM frequency and voltage scaling
 - Scaling based on the memory bandwidth consumption

Energy Savings with Bounded Performance

1. Voltron improves energy for both low and high intensity workloads

2. Voltron satisfies the performance loss target via a regression model

Outline

- Executive Summary
- Motivation
- DRAM Background
- Characterization of DRAM
 - Experimental methodology
 - Impact of voltage on reliability and latency
- Voltron: DRAM Energy Reduction Mechanism
- Conclusion

Conclusion

- DRAM (memory) power is significant in today's systems
 - Existing low-voltage DRAM reduces voltage **conservatively**
- <u>Goal</u>: Understand and exploit the reliability and latency behavior of real DRAM chips under *aggressive reduced-voltage operation*
- Key experimental observations:
 - Errors occur and increase with lower voltage
 - Errors exhibit spatial locality
 - Higher operation latency mitigates voltage-induced errors
- <u>Voltron</u>: A new DRAM energy reduction mechanism
 - Reduce DRAM voltage without introducing errors
 - Use a **regression model** to select voltage that does not degrade performance beyond a chosen target \rightarrow 7.3% system energy reduction

Understanding Reduced-Voltage Operation in Modern DRAM Devices

Experimental Characterization, Analysis, and Mechanisms

Kevin Chang⁺

A. Giray Yaglikci[†], Saugata Ghose[†], Aditya Agrawal^{*}, Niladrish Chatterjee^{*}, Abhijith Kashyap[†], Donghyuk Lee^{*}, Mike O'Connor^{*}, Hasan Hassan[‡], Onur Mutlu^{†‡}

BACKUP

Errors Rates Across Modules

Error Density

Temperature Impact

Impact on Retention Time

Derivation of More Precise Latency

DRAM circuit model validates our experimental results and provides more precise latency

Performance Loss Correlation

 <u>Observation</u>: Application's performance loss due to higher latency has a strong linear relationship with its memory intensity

MPKI = Last-level cache Misses Per Thousand Instruction

Performance-Aware Voltage Adjustment

• Build a performance (linear-regression) model to predict performance loss based on the selected voltage

 $PredictedLoss = \theta_0 + \theta_1 Latency + \theta_2 App. Itensity + \theta_3 App. StallTime$

Latency due to voltage adjustment

The running application's characteristics

- θ s are trained through 151 application samples
- Use the model to select a minimum voltage that satisfies a performance loss target specified by the user

Linear Model Accuracy

- $R^2 = 0.75 / 0.9$ for low and high intensity workloads
- RMSE = 2.8 / 2.5 for low and high intensity workloads

Dynamic Voltron

Algorithm 1 Array Voltage Selection		
1	SelectArrayVoltage(<i>target_loss</i>)	
2	for each interval	Enter at the end of an interval
3	<pre>profile = GetMemoryProfile()</pre>	
4	$NextV_{array} = 1.35$	
5	for $V_{array} \leftarrow 0.9$ to 1.3	\triangleright Search for the smallest V_{array} that satisfies the performance loss target
6	predicted_loss = Predict(Latency(V	array), profile.MPKI, profile.StallTime) Predict performance loss
7	if predicted_loss ≤ target_loss the	 Compare the predicted loss to the target
8	$NextV_{array} = V_{array}$	Use the current Varray for the next interval
9	break	
10	ApplyVoltage(NextVarray)	Apply the new Varray for the next interval

Effect of Exploiting Error Locality

Energy Breakdown

Heterogeneous Workloads

Performance Target Sweep

Sensitivity to Profile Interval Length

