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Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Errors occur and increase with lower voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 
– Reduce DRAM voltage without introducing errors 
– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target à 7.3% system energy reduction
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High DRAM Power Consumption

• Problem: High DRAM (memory) power in today’s 
systems
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>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)



Low-Voltage Memory

• Existing DRAM designs to help reduce DRAM power 
by lowering supply voltage conservatively
– 𝑃𝑜𝑤𝑒𝑟 ∝ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒,

• DDR3L (low-voltage) reduces voltage from 1.5V to 
1.35V (-10%)

• LPDDR4 (low-power) employs low-power I/O 
interface with 1.2V (lower bandwidth)
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Can we reduce DRAM power and energy by
further reducing supply voltage?



Goals
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1 Understand and characterize the various 
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by 
lowering voltage while keeping performance loss 
within a target



Key Questions

• How does reducing voltage affect 
reliability (errors)?

• How does reducing voltage affect 
DRAM latency?

• How do we design a new DRAM energy 
reduction mechanism?
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High-Level DRAM Organization
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DRAM Chip Internals

10

Control
Logic

I/O

Peripheral
Circuitry

Bitline

S S S S

Sense amplifiers
(row buffer)

Wordline

DRAM Cell

Bank

DRAM
Array

Off-chip channel



DRAM Operations
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ACTIVATE: Store the row 
into the row buffer

READ: Select the target 
cache line and drive to CPU 
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DRAM Access Latency
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Supply Voltage Control on DRAM
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Supply Voltage

Adjust the supply voltage to every chip on the same module

DRAM Module



Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to 

1) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users
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https://github.com/CMU-SAFARI/DRAM-Voltage-Study



Tested DRAM Modules

• 124 DDR3L (low-voltage) DRAM chips
– 31 SO-DIMMs
– 1.35V (DDR3 uses 1.5V)
– Density: 4Gb per chip
– Three major vendors/manufacturers
– Manufacturing dates: 2014-2016

• Iteratively read every bit in each 4Gb chip under a wide 
range of supply voltage levels: 1.35V to 1.0V (-26%)
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Reliability Worsens with Lower Voltage

18

1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.25 1.3 1.35
6uSSly Voltage (V)

0
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

)r
aF

tLo
n 

of
 C

aF
he

 L
Ln

eV
w

Lth
 (

rr
or

V 
(%

)

Vendor A Vendor % Vendor C

Nominal
Voltage

Min. voltage (Vmin) 
without errors

Reducing voltage below Vmin causes 
an increasing number of errors

Errors induced by 
reduced-voltage operation



Source of Errors
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DIMMs Operating at Higher Latency
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Other Results in the Paper

• Error-Correcting Codes (ECC)
– ECC (SECDED) is not sufficient to mitigate the errors

• Effect of temperature
– Higher temperature requires higher latency under some 

voltage levels

• Data retention time
– Lower voltage does not require more frequent refreshes

• Effect of stored data pattern on error rate
– Difference is not statistically significant to draw conclusion

22



Summary of Key Experimental Observations

• Voltage-induced errors increase as 
voltage reduces further below Vmin

• Errors exhibit spatial locality

• Increasing the latency of DRAM operations 
mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce Energy

• Goal: Exploit the trade-off between voltage and latency 
to reduce energy consumption

• Approach: Reduce DRAM voltage reliably
– Performance loss due to increased latency at lower voltage
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Voltron Overview
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How do we predict performance loss due to 
increased latency under low DRAM voltage?

Voltron

User specifies the 
performance loss target

Select the minimum DRAM voltage 
without violating the target



Linear Model to Predict Performance
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Linear Model to Predict Performance

• Application’s characteristics for the model:
– Memory intensity: Frequency of last-level cache misses
– Memory stall time: Amount of time memory requests stall 

commit inside CPU

• Handling multiple applications:
– Predict a performance loss for each application
– Select the minimum voltage that satisfies the performance 

target for all applications

28



Comparison to Prior Work

• Prior work: Dynamically scale frequency and voltage of the entire 
DRAM based on bandwidth demand [David+, ICAC’11]

– Problem: Lowering voltage on the peripheral circuitry 
decreases channel frequency (memory data throughput)

• Voltron: Reduce voltage to only DRAM array without changing 
the voltage to peripheral circuitry
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that 
observe errors under low voltage

– Benefit: Higher performance

30

Peripheral
Circuitry DRAM Array

Control
Logic

I/O
Bank 0

Off-chip channel

Bank 1 Bank 2

High latency Low latency



Outline

• Executive Summary
• Motivation
• DRAM Background
• Characterization of DRAM

– Experimental methodology 
– Impact of voltage on reliability and latency

• Voltron: DRAM Energy Reduction Mechanism
– Evaluation

• Conclusion

31



Voltron Evaluation Methodology

• Cycle-level simulator: Ramulator [CAL’15]

– McPAT and DRAMPower for energy measurement

• 4-core system with DDR3L memory

• Benchmarks: SPEC2006, YCSB

• Comparison to prior work: MemDVFS [David+, ICAC’11]

– Dynamic DRAM frequency and voltage scaling
– Scaling based on the memory bandwidth consumption
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https://github.com/CMU-SAFARI/ramulator



Energy Savings with Bounded Performance
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Conclusion
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Errors occur and increase with lower voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 
– Reduce DRAM voltage without introducing errors 
– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target à 7.3% system energy reduction
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BACKUP
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Errors Rates Across Modules
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Error Density
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Temperature Impact
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Impact on Retention Time

41



Derivation of More Precise Latency
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Circuit-level SPICE simulation

DRAM circuit model validates our experimental 
results and provides more precise latency

Potential 
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Performance Loss Correlation

• Observation: Application’s performance loss due to 
higher latency has a strong linear relationship with its 
memory intensity
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Performance-Aware Voltage Adjustment

• Build a performance (linear-regression) model to 
predict performance loss based on the selected voltage

• 𝜽s are trained through 151 application samples
• Use the model to select a minimum voltage that 

satisfies a performance loss target specified by the user
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑜𝑠𝑠 = 𝜃B + 𝜃D𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝜃,𝐴𝑝𝑝. 𝐼𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + 𝜃J𝐴𝑝𝑝. 𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒

Latency due to 
voltage adjustment

The running application’s 
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Linear Model Accuracy

• R2 = 0.75 / 0.9 for low and high intensity workloads
• RMSE = 2.8 / 2.5 for low and high intensity workloads
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Dynamic Voltron
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Effect of Exploiting Error Locality
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Energy Breakdown
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Heterogeneous Workloads
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Performance Target Sweep
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Sensitivity to Profile Interval Length
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