
Demystifying Complex
Workload–DRAM Interactions:

An Experimental Study

Saugata Ghose, Tianshi Li,
Nastaran Hajinazar, Damla Senol Cali, Onur Mutlu

June 27, 2019



Why Study Workload–DRAM Interactions?

Manufacturers are developing many new types of DRAM
• DRAM limits performance, energy improvements:

new types may overcome some limitations
• Memory systems now serve a very diverse set of applications:

can no longer take a one-size-fits-all approach

 So which DRAM type works best with which application?
• Difficult to understand intuitively due to the complexity of the interaction
• Can’t be tested methodically on real systems: new type needs a new CPU

We perform a wide-ranging experimental study to uncover
the combined behavior of workloads and DRAM types
• 115 prevalent/emerging applications and multiprogrammed workloads
• 9 modern DRAM types: DDR3, DDR4, GDDR5, HBM, HMC, 

LPDDR3, LPDDR4, Wide I/O, Wide I/O 2
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Insights From Our Extensive Experimental Study
1. DDR4 worse than DDR3 for most desktop/scientific applications

2. HMC worse than DDR3 for apps with high spatial locality

3. HMC good for highly memory intensive multiprogrammed workloads

4. LPDDRx performance gap over DDRx worsens as the intensity increases

5. LPDDR4 saves power over DDR3 without losing much performance for
high-intensity multiprogrammed workloads

6. Multithreaded programs with irregular accesses become throughput-bound as the 
input problem size increases

7. Server/cloud applications don’t benefit from high-throughput DRAM

8. LPDDRx saves energy for server/cloud apps without a large performance penalty

9. Intensive multimedia apps benefit from high-throughput DRAM with wide rows

10. Network accelerators experience high queuing latencies, benefit from parallelism

11. GDDR5 is more energy efficient than DDR3 for high-throughput accelerators

12. OS routines benefit most from low-latency DRAM that exploits spatial locality
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Insights From Our Extensive Experimental Study

 12 key observations on the combined DRAM–workload behavior
Most significant experimental observations

• Newer is not always better:
DDR4, HMC (newer DRAM types) do not outperform the older DDR3 
type for many families of applications

• Power savings don’t always sacrifice performance:
Some low-power DRAM types perform close to or better than standard-
power DRAM types when bandwidth demand is very high

• Heterogeneous systems cannot rely on a single DRAM type:
The ideal DRAM for a heterogeneous system depends heavily on the 
predominant functions performed by the system (e.g., multimedia, network 
processing, compute)

• Increasing memory latency to increase parallelism can be harmful:
OS routines exhibit extremely high spatial locality, and can’t benefit from 
the high parallelism provided by many newer DRAM types
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Background: DRAM Basics

Characterization Methodology & Metrics

Major Observations from Our Study

Key Takeaways and Conclusion
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Simplified View: DRAM Organization & Operation

A memory channel connects 
the processor with DRAM
• Controller issues commands
• Many systems have multiple 

independent channels

DRAM has multiple banks
• Conceptually: 2D array of data
• Banks can operate in parallel
• Many banks share one channel

Data is stored in DRAM cells
• A cell stores charge in a capacitor 

to represent a one-bit data value
• Before reading/writing, a full row 

of cells (e.g., 8kB in DDR3) 
must be activated (opened)
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Modern DRAM Types: Comparison to DDR3

Bank groups

 3D-stacked DRAM
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Background: DRAM Basics

Characterization Methodology & Metrics

Major Observations from Our Study

Key Takeaways and Conclusion
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Characterization Methodology

Modified version of Ramulator
• New shared cache model: comes within 6.1% of gem5 (a detailed, 

rigorously validated out-of-order processor simulator)
• New HMC model (to be released in July)
• Open source: available at https://github.com/CMU-SAFARI/ramulator/

Energy: modeled for available memories using DRAMPower

Applications
• 87 different applications, which we group into six diverse families

» Desktop/scientific » Network acceleration
» Server/cloud » General-purpose GPU (GPGPU)
» Multimedia acceleration » Common OS routines

• Includes single-threaded and multi-threaded workloads
• 28 multiprogrammed workloads
• Open source: available at https://github.com/CMU-SAFARI/MemBen/
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Architectural Parameters

 9 DRAM types
• Standard power • Low power

» DDR3-2133 » LPDDR3-2133
» DDR4-3200 » LPDDR4-3200
» GDDR5-7000 » Wide I/O
» HBM » Wide I/O 2
» HMC 2.0

 4GB of DRAM total, typically distributed across 4 channels

Processor cores
• Single-thread/multiprogrammed: 4 cores, 4.0 GHz
• Multithreaded: 20 cores, 2 threads per core, 2.2 GHz
• Out-of-order cores, 128-entry ROB, 4-wide issue

 64kB/256kB private L1/L2 caches
 2MB of shared last-level cache (LLC) per core
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Metrics to Capture Parallelism and Contention

Parallelism
• Existing metrics (e.g., memory-level parallelism, bank-level parallelism) are 

typically from the perspective of an application
• We want to measure how well hardware parallelism is being utilized
• New metric: bank parallelism utilization (BPU)∑ # active banks in cycle 𝑖# cycles memory is active

Contention
• Dictates the time that a read/write request must wait
• Refined metric: row buffer locality (RBL)

» Row hit: no time
» Row miss: activation latency
» Row conflict: activation latency plus latency of requests to already-open row
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Background: DRAM Basics

Characterization Methodology & Metrics

Major Observations from Our Study

Key Takeaways and Conclusion
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1. Newer Is Not Always Better: Desktop/Scientific

DDR4 performs near identically to DDR3 most of the time
HMC performs worse than DDR3 in many (but not all) cases
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1. Newer Is Not Always Better: BPU

 libquantum (HMC slower): cannot even take advantage of the 
32 banks available in DDR3 – additional banks don’t help
mcf (HMC faster): makes use of more banks due to its much 

higher memory intensity (70 LLC misses per kiloinstruction)
 namd (HMC same): HMC has higher BPU due to the shorter 

rows, but increased latency cancels out performance benefits
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1. Newer Is Not Always Better: Row Buffer Locality

HMC’s poor spatial locality means that read/write requests are 
rarely row hits – leads to higher latency
HMC only benefits applications that exhibit few row hits and 

high memory intensity
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When Does HMC Perform Better?

Multiprogrammed workloads
(e.g., desktop/scientific: average speedup of 17.0% over DDR3)

Multithreaded applications
with large problem sizes
and high thread counts
(right: miniFE, 64x64x64)

Network accelerators
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2. Low Power Does Not Always Hurt Performance

 For many families of applications, using low-power DRAM 
types can hurt the performance significantly
 Some exceptions, such as multiprogrammed desktop/scientific 

workloads (below) and multimedia accelerators

LPDDR4: 68.2% less energy than DDR3, only 7.0% slower
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3. No One Best Type for Heterogeneous Systems
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3. Heterogeneous Systems: Energy

Example applications
• Network accelerator workloads
• Several GPGPU applications: sc, bfs, sp
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4. Need for Lower Access Latency: Performance

New DRAM types often increase access latency in order to 
provide more banks, higher throughput
Many applications can’t make up for the increased latency

• Especially true of common OS routines (e.g., file I/O, process forking)

• A variety of desktop/scientific, server/cloud, GPGPU applications
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4. Need for Lower Access Latency: Insight

Many applications still exhibit high spatial locality
We can see an example of this from the row buffer locality of the 

common OS routines
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Background: DRAM Basics

Characterization Methodology & Metrics

Major Observations from Our Study

Key Takeaways and Conclusion
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Key Takeaways

1. DRAM latency remains a critical bottleneck for
many applications

2. Bank parallelism is not fully utilized by a wide variety
of our applications

3. Spatial locality continues to provide significant performance 
benefits if it is exploited by the memory subsystem

4. For some classes of applications, low-power memory
can provide energy savings without sacrificing
significant performance
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Conclusion

Manufacturers are developing many new types of DRAM
• DRAM limits performance, energy improvements:

new types may overcome some limitations
• Memory systems now serve a very diverse set of applications:

can no longer take a one-size-fits-all approach
• Difficult to intuitively determine which DRAM–workload pair works best

We perform a wide-ranging experimental study to uncover
the combined behavior of workloads, DRAM types
• 115 prevalent/emerging applications and multiprogrammed workloads
• 9 modern DRAM types

 12 key observations on DRAM–workload behavior
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Simplified DRAM Organization and Operation

 Fundamental DRAM commands: activate, read, write, precharge
One row of DRAM: 8 kB
One cache line of data: 64 B
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Modern DRAM Types: Double Data Rate DRAM

DDR3
• Double Data Rate: bursts of data sent on memory channel at both positive 

and negative clock edge
• 8 banks per rank

DDR4
• More banks per rank using bank groups – results in 11-14% higher latency
• 16 banks per rank

GDDR5
• Also uses bank groups, but consumes more area/energy instead of 

increasing latency
• Sends double the data per cycle compared to DDR3 using a faster clock
• 16 banks per rank
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Modern DRAM Types: 3D-Stacked DRAM

 3D die stacking enables
new DRAM types with
high capacity, much
higher bandwidth

High-Bandwidth Memory (HBM)
• Instead of GDDR5’s faster clocks, HBM uses multiple channels per 

module to increase throughput
• 16 banks per rank

Hybrid Memory Cube (HMC)
• Partitions 3D-stacked DRAM into vaults: small vertical slices of DRAM 

with multiple banks
• Contains many more banks, but a row is 97% narrower than in DDR3: 

cannot exploit as much spatial locality
• 256 banks per rank
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Modern DRAM Types: Low-Power DRAM

LPDDR3 and LPDDR4
• Low-power variants of DDR3/DDR4
• Increased memory latency, limited capacity
• LPDDR3: 8 banks per rank
• LPDDR4: 16 banks per rank

Wide I/O and Wide I/O 2
• Low-power 3D-stacked DRAM
• Fewer channels than HBM
• Wide I/O: 4 banks per rank
• Wide I/O 2: 8 banks per rank

Page 30 of 25



Key DRAM Properties
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Detailed Methodology Details

Workload traces collected using Pin, Bochs
• Private caches fully modeled
• Bochs captures all system calls – important for OS routines, server/cloud
• Multithread traces capture per-trace interactions

(based on [Pelley+ ISCA 2014])

GPGPU results run on a full GPGPU-Sim+Ramulator platform
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Validating a Trace-Based Ramulator Approach

We compare
• gem5 (full-system, cycle accurate CPU simulator) + unmodified Ramulator
• Modified Ramulator with shared cache model (trace-driven)

Run all SPEC CPU2006 applications
Checking trends: normalize each performance value to one 

application (gamess)

Average error of Ramulator vs. gem5+Ramulator: 6.1%
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Desktop/Scientific: Single-Thread IPC/MPKI
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Desktop/Scientific: Single-Thread Performance

Page 35 of 25



Desktop/Scientific: Single-Thread DRAM Latency
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Desktop/Scientific: DDR3 BPU/RBL
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Desktop/Scientific: Multiprogrammed Performance
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Desktop/Scientific: Multiprogrammed RBL/BPU
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Desktop/Scientific: Energy and Power Breakdown
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Desktop/Scientific: Multithreaded IPC/MPKIs
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Desktop/Scientific: quicksilver Performance
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Desktop/Scientific: facesim Performance
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Desktop/Scientific: miniFE Performance

 Input size:
32x32x32

 Input size:
64x64x64
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Desktop/Scientific: Multithreaded RBL
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Server/Cloud: Single-Thread IPC
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Server/Cloud: Single-Thread Performance
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Server/Cloud: workload A server BPU/RBL
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Server/Cloud: Multiprogrammed Performance
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Server/Cloud: Energy
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Heterogeneous: Multimedia Accel. Performance
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Heterogeneous: Network Accel. Performance
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Heterogeneous: GPGPU Performance
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OS Routines: Performance
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OS Routines: Energy
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