
60

Demystifying Complex Workload–DRAM Interactions:
An Experimental Study

SAUGATA GHOSE, Carnegie Mellon University, USA
TIANSHI LI, Carnegie Mellon University, USA
NASTARAN HAJINAZAR, Simon Fraser University, Canada & ETH Zürich, Switzerland
DAMLA SENOL CALI, Carnegie Mellon University, USA
ONUR MUTLU, ETH Zürich, Switzerland & Carnegie Mellon University, USA

It has become increasingly difficult to understand the complex interactions between modern applications and
main memory, composed of Dynamic Random Access Memory (DRAM) chips. Manufacturers are now selling
and proposing many different types of DRAM, with each DRAM type catering to different needs (e.g., high
throughput, low power, high memory density). At the same time, memory access patterns of prevalent and
emerging applications are rapidly diverging, as these applications manipulate larger data sets in very different
ways. As a result, the combined DRAM–workload behavior is often difficult to intuitively determine today,
which can hinder memory optimizations in both hardware and software.
In this work, we identify important families of workloads, as well as prevalent types of DRAM chips, and
rigorously analyze the combined DRAM–workload behavior. To this end, we perform a comprehensive
experimental study of the interaction between nine different DRAM types and 115 modern applications
and multiprogrammed workloads. We draw 12 key observations from our characterization, enabled in part
by our development of new metrics that take into account contention between memory requests due to
hardware design. Notably, we find that (1) newer DRAM technologies such as DDR4 and HMC often do not
outperform older technologies such as DDR3, due to higher access latencies and, also in the case of HMC, poor
exploitation of locality; (2) there is no single memory type that can effectively cater to all of the components of
a heterogeneous system (e.g., GDDR5 significantly outperforms other memories for multimedia acceleration,
while HMC significantly outperforms other memories for network acceleration); and (3) there is still a strong
need to lower DRAM latency, but unfortunately the current design trend of commodity DRAM is toward
higher latencies to obtain other benefits. We hope that the trends we identify can drive optimizations in both
hardware and software design. To aid further study, we open-source our extensively-modified simulator, as
well as a benchmark suite containing our applications.
CCS Concepts: •Hardware→Dynamicmemory; •Computingmethodologies→Model development
and analysis; • Computer systems organization→ Architectures;
Additional Key Words and Phrases: DRAM; memory systems; performance modeling; experimental characteri-
zation; 3D-stacked memory; low-power memory; energy; power consumption
ACM Reference Format:
Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu. 2019. Demystifying
Complex Workload–DRAM Interactions: An Experimental Study. Proc. ACM Meas. Anal. Comput. Syst. Vol. 3,
No. 3, Article 60 (December 2019), 50 pages. https://doi.org/10.1145/3366708

1 INTRODUCTION
Main memory in modern computing systems is built using Dynamic Random Access Memory
(DRAM) technology. The performance of DRAM is an increasingly critical factor in overall system

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
2476-1249/2019/12-ART60 $15.00
https://doi.org/10.1145/3366708

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:2 Saugata Ghose et al.

and application performance, due to the increasing memory demands of modern and emerging
applications. As modern DRAM designers strive to improve performance and energy efficiency, they
must deal with three major issues. First, DRAM consists of capacitive cells, and the latency to access
theseDRAMcells [73] is two ormore orders ofmagnitude greater than the execution latency of aCPU
add instruction [136]. Second, while the impact of long access latency can potentially be overcome by
increasing data throughput, DRAM chip throughput is also constrained because conventional DRAM
modules are discrete devices that reside off-chip from the CPU, and are connected to the CPU via
a narrow, pin-limited bus. For example, Double Data Rate (e.g., DDR3, DDR4) memories exchange
data with the CPU using a 64-bit bus. DRAM data throughput can be increased by increasing the
DRAM bus frequency and/or the bus pin count, but both of these options incur significant cost in
terms of energy and/or DRAM chip area. Third, DRAM power consumption is not reducing as the
memory density increases. Today, DRAM consumes as much as half of the total power consumption
of a system [33, 56, 111, 120, 147, 188, 189]. As a result, the amount of DRAM that can be added to a
system is now constrained by its power consumption.

In addition to themajor DRAMdesign issues that need to be overcome,memory systemsmust now
serve an increasingly diverse set of applications, sometimes concurrently. For example, workloads
designed for high-performance and cloud computing environments process very large amounts of
data, and do not always exhibit high temporal or spatial locality. In contrast, network processors
exhibit very bursty memory access patterns with low temporal locality. As a result, it is becoming
increasingly difficult for a single design point in the memory design space (i.e., one type of DRAM
interface and chip) to performwell for all of such a diverse set of applications. In response to these key
challenges, DRAMmanufacturers have been developing a number of different DRAM types over the
last decade, such asWide I/O [72] andWide I/O 2 [75], High-Bandwidth Memory (HBM) [1, 74, 108],
and the Hybrid Memory Cube (HMC) [59, 69, 148, 157].
With the increasingly-diversifying application behavior and the wide array of available DRAM

types, it has become very difficult to identify the best DRAM type for a given workload, let alone
for a system that is running a number of different workloads. Much of this difficulty lies in the
complex interaction betweenmemory access latency, bandwidth, parallelism, energy consumption,
and applicationmemory access patterns. Importantly, changesmade bymanufacturers in newDRAM
types cansignificantlyaffect thebehaviorof anapplication inways that areoftendifficult to intuitively
and easily determine. In response, priorwork has introduced a number of detailedmemory simulators
(e.g., [37, 96, 158]) to model the performance of different DRAM types, but end users must set up and
simulate each workload that they care about, for each individual DRAM type.Our goal in this work
is to comprehensively study the strengths and weaknesses of each DRAM type based on the memory
demands of each of a diverse range of workloads.
Prior studies of memory behavior (e.g., [2, 3, 10, 22, 28, 29, 46, 48, 53, 54, 96, 113, 114, 122, 133,

153, 158, 167, 179, 195, 196]) usually focus on a single type of workload (e.g., desktop/scientific
applications), and often examine only a single memory type (e.g., DDR3).We instead aim to provide a
much more comprehensive experimental study of the application and memory landscape today. Such
a comprehensive study has been difficult to perform in the past, and cannot be conducted on real
systems, because a given CPU chip does not support more than a single type of DRAM. As a result,
there is noway to isolate only the changes due to using onememory type in place of anothermemory
type on real hardware, since doing so requires the use of a different CPU to test the newmemory
type. Comprehensive simulation-based studies are also difficult, due to the extensive time required to
implement eachDRAM type, to port a large number of applications to the simulation platform, and to
capture both application-level and intricate processor-level interactions that impact memory access
patterns. To overcome these hurdles, we extensively modify a state-of-the-art, flexible and extensible
memory simulator, Ramulator [96], to (1) model newDRAM types that have recently appeared on

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:3

the market; and (2) efficiently capture processor-level interactions (e.g., instruction dependencies,
cache contention, data sharing) (see Appendix B).

Using our modified simulator, we perform a comprehensive experimental study of the combined
behavior of prevalent and emerging applications with a large number of contemporary DRAM types
(which we refer to as the combined DRAM–workload behavior). We study the design and behavior
of nine different commercial DRAM types: DDR3 [73], DDR4 [79], LPDDR3 [76], LPDDR4 [78],
GDDR5 [77], Wide I/O [72], Wide I/O 2 [75], HBM [1], and HMC [59]. We characterize each DRAM
type using 87 applications and 28 multiprogrammed workloads (115 in total) from six diverse ap-
plication families: desktop/scientific, server/cloud, multimedia acceleration, network acceleration,
general-purpose GPU (GPGPU), and common OS routines. We perform a rigorous experimental
characterization of system performance and DRAM energy consumption, and introduce newmetrics
to capture the sophisticated interactions betweenmemory access patterns and the underlying har-
dware. Our characterization yields twelve key observations (highlighted in boxes) and many other
findings (embedded in the text) about the combined DRAM–workload behavior (as we describe in
detail in Sections 5–9).

We highlight our five most significant experimental observations here:
(1) The newer, higher bandwidth DDR4 rarely outperforms DDR3 on the applications we evaluate.

Compared to DDR3, DDR4 doubles the number of banks in a DRAM chip, in order to enable
more bank-level parallelism and higher memory bandwidth. However, as a result of architectural
changes to provide higher bandwidth and bank-level parallelism, the access latency of DDR4 is
11–14% higher than that of DDR3.We find that most of our applications do not exploit enough
bank-level parallelism to overcome the increased access latency.

(2) The high-bandwidth HMC does not outperform DDR3 for most single-threaded and several mul-
tithreaded applications.This is becauseHMC’s design trade-offs fundamentally limit opportunities
for exploiting spatial locality (due to its 97% smaller rowwidth than DDR3), and the aforementio-
ned applications are unable to exploit the additional bank-level parallelism provided by HMC. For
example, single-threaded desktop and scientific applications actually perform 5.8%worsewith
HMC than with DDR3, on average, even though HMC offers 87.4% more memory bandwidth.
HMC provides significant performance improvements over other DRAM types in cases where
application spatial locality is low (or is destroyed) and bank-level parallelism is high, such as for
highly-memory-intensive multiprogrammedworkloads.

(3) While low-power DRAM types (i.e., LPDDR3, LPDDR4, Wide I/O, Wide I/O 2) typically perform
worse than standard-power DRAM for most memory-intensive applications, some low-power DRAM
types perform well when bandwidth demand is very high. For example, on average, LPDDR4
performs only 7.0%worse than DDR3 for multiprogrammed desktop workloads, while consuming
68.2% less energy. Similarly, we find thatWide I/O 2, another low-power DRAM type, actually
performs 2.3% better than DDR3 on average for multimedia applications, asWide I/O 2 provides
more opportunities for parallelismwhile maintaining lowmemory access latencies.

(4) The best DRAM type for a heterogeneous system depends heavily on the predominant function(s)
performed by the system.We study three types of applications for heterogeneous systems: multi-
media acceleration, network acceleration, andGPGPU applications. First, multimedia acceleration
benefits most from high-throughput memories that exploit a high amount of spatial locality,
running up to 21.6% faster with GDDR5 and 14.7% faster with HBM than with DDR3, but only
5.0% faster with HMC (due to HMC’s limited ability to exploit spatial locality). Second, network
acceleration memory requests are highly bursty and do not exhibit significant spatial locality,
making network acceleration a good fit for HMC’s very high bank-level parallelism (with a mean

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:4 Saugata Ghose et al.

performance increase of 88.4% over DDR3). Third, GPGPU applications exhibit a wide range of
memory intensity, but memory-intensive GPGPU applications typically take advantage of spatial
locality due to memory coalescing [8, 23], making HBM (26.9% higher on average over DDR3) and
GDDR5 (39.7%) more effective for GPGPU applications than other DRAM types such as DDR3 and
HMC.

(5) Several common OS routines (e.g., file I/O, process forking) perform better with memories such
as DDR3 and GDDR5, which have lower access latencies than the other memory types that we
study. This is because the routines exhibit very high spatial locality, and do not benefit from high
amounts of bank-level parallelism. Since OS routines are used across most computer systems in a
widespread manner, we believe that DRAM designers must work to reduce the access latency.
Our recommendation goes against the current trend of increasing the latency in order to deliver
other benefits.
We hope and expect that the results of our rigorous experimental characterization will be informa-

tive and useful for application developers, system architects, and DRAM architects alike. To foster
further work in both academia and industry, we release the applications and multiprogrammed
workloads that we study as a newmemory benchmark suite [160], along with our heavily-modified
memory simulator [161].

This paper makes the following contributions:
• We perform the first comprehensive study of the interaction betweenmodern DRAM types and
modern workloads. Our study covers the interactions of 115 applications and workloads from six
different application families with nine different DRAM types. We are the first, to our knowledge,
to (1) quantify how new DRAM types (e.g., Wide I/O, HMC, HBM) compare to commonplace
DDRx and LPDDRxDRAM types across awide variety ofworkloads, and (2) report findingswhere
newer memories often performworse than older ones.

• To our knowledge, this paper is the first to perform a detailed comparison of the memory access
behavior between desktop/scientific applications, server/cloud applications, heterogeneous sy-
stem applications, GPGPU applications, and OS kernel routines. These insights can help DRAM
architects, system designers, and application developers pinpoint bottlenecks in existing systems,
and can inspire newmemory, system, and application designs.

• Wemake several new observations about the combined behavior of various DRAM types and
different families of workloads. In particular, we find that newmemory types, such as DDR4 and
HMC, make a number of underlying design trade-offs that cause them to perform worse than
older DRAM types, such as DDR3, for a variety of applications. In order to aid the development of
newmemory architectures and new system designs based on our observations, we release our
extensively-modified memory simulator [161] and a memory benchmark suite [160] consisting of
our applications and workloads.

2 BACKGROUND & MOTIVATION
In this section, we provide necessary background on basic DRAM design and operation (Section 2.1),
and on the evolution of newDRAM types (Section 2.2).

2.1 Basic DRAM Design & Operation
Figure 1 (left) shows the basic overview of a DRAM-based memory system. Thememory system is
organized in a hierarchical manner. The highest level in the hierarchy is amemory channel. Each
channel has (1) its own bus to the host device (e.g., processor), and (2) a dedicatedmemory controller
that interfaces between the DRAMand the host device. A channel connects to one ormore dual inline

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:5

memory modules (DIMMs). EachDIMM containsmultiple DRAM chips. A DRAM row typically spans
across several of these chips, and all of the chips containing the row perform operations in lockstep
with each other. Each group of chips operating in lockstep is known as a rank. Inside each rank, there
are several banks, where each bank is a DRAM array. Each bank can operate concurrently, but the
banks share a single memory bus. As a result, the memory controller must schedule requests such
that operations in different banks do not interfere with each other on the memory bus.

Processor
Core Core

Memory
Controller

DRAM Module
Rank
. . .Chip Chip

memory
channel

Row Buffer

DRAM cell

activation

Fig. 1. Memory hierarchy (left) and bank structure (right).

ADRAM bank typically consists of thousands of rows of cells, where each cell contains a capacitor
and an access transistor. To start processing a request, the controller issues a command to activate the
row containing the target address of the request (i.e., open the row to perform reads andwrites), as
shown in Figure 1 (right). The row buffer latches the opened row, at which point the controller sends
read and write commands to the row. Each read/write command operates on one column of data at a
time. Once the read and write operations to the row are complete, the controller issues a precharge
command, to prepare the bank for commands to a different row. For more detail on DRAM operation,
we refer the reader to our prior works [19, 21, 92, 93, 97, 98, 105, 106, 109, 110, 115, 165, 166].

2.2 Modern DRAM Types
We briefly describe several commonly-used and emerging DRAM types, all of which we evaluate in
this work. Table 1 summarizes the key properties of each of these DRAM types. We provide more
detail about each DRAM type in Appendix A.

Table 1. Key properties of the nine DRAM types evaluated in this work.

DRAM Type Standard Power Low Power
DDR3 DDR4 GDDR5 HBM HMC LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Data Rate (MT/s) 2133 3200 7000 1000 2500 2133 3200 266 1067
Clock Freq. (MHz) 1067 1600 1750 500 1250 1067 1600 266 533

Maximum 68.3 102.4 224.0 128.0 320.0 68.3 51.2 17.0 34.1Bandwidth (GBps)
Channels/Ranks 4/1 4/1 4/1 8/1 1/1 4/1 4/1 4/1 4/2per Channel

Banks per Rank 8 16 16 16 256 8 16 4 8(32 vaults)
Channel Width (bits) 64 64 64 128 32 64 64 128 64

Row Buffer Size 8KB 8KB 8KB 2KB 256B 8KB 4KB 2KB 4KB
Row Hit/Miss 15.0/26.3 16.7/30.0 13.1/25.1 18.0/32.0 16.8/30.4 21.6/40.3 26.9/45.0 30.1/38.9 22.5/41.3Latencies (ns)

Min. Row Conflict 37.5 43.3 37.1 46.0 44.0 59.1 61.9 67.7 60.0
Latency† (ns)

†See Section 4 for definition.

2.2.1 DDR3 and DDR4. DDR3 [73] is the third generation of DDRx memory, where a burst of
data is sent on both the positive and negative edge of the bus clock to double the data rate. DDR3
contains eight banks of DRAM in every rank. DDR4 [79] increases the number of banks per rank, to
16, by introducing bank groups, a new level of hierarchy in the DRAM subsystem. Due to the way in
which bank groups are connected to I/O, a typical memory access takes longer in DDR4 than it did
in DDR3, but the bus clock frequency is significantly higher in DDR4, which enables DDR4 to have
higher bandwidth.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:6 Saugata Ghose et al.

2.2.2 Graphics DDR5 (GDDR5). Similar to DDR4, GDDR5 [77] doubles the number of banks over
DDR3 using bank groups. However, unlike DDR4, GDDR5 does so by increasing the die area and
energy over DDR3 instead of the memory latency. GDDR5 also increases memory throughput by
doubling the amount of data sent in a single clock cycle, as compared to DDR3.

2.2.3 High Bandwidth Memory (HBM). High Bandwidth Memory [1, 74] is a 3D-stacked me-
mory [108, 117] that provides high throughput. designed for devices such as GPUs. Unlike GDDR5,
which uses faster clock frequencies to increase throughput, HBM connects 4–8 memory channels to
a single DRAM device to service manymore requests in parallel.

2.2.4 Wide I/O and Wide I/O 2. Wide I/O [72] andWide I/O 2 [75] are 3D-stacked memories that
are designed for low-power devices such as mobile phones. Similar to HBM,Wide I/O andWide I/O 2
connect multiple channels to a single DRAM device [90], but have fewer (2–4) channels and contain
fewer banks (8) than HBM in order to lower energy consumption.

2.2.5 Hybrid Memory Cube (HMC). The Hybrid Memory Cube [59, 69, 148, 157] is a 3D-stacked
memory with more design changes compared to HBM andWide I/O. AnHMC device (1) performs
request scheduling inside the device itself, as opposed to relying on an external memory controller
for scheduling; and (2) partitions the DRAMarray intomultiple vaults, which are small, vertical slices
of memory of which each contains multiple banks. The vault-based structure significantly increases
the amount of bank-level parallelism inside the DRAM device (with 256 banks in total), but greatly
reduces the size of a row (to 256 bytes). The HMC specification [59] provides an alternate mode,
which we callHMC-Alt, that uses a different address mapping than the default mode to maximize the
limited spatial locality available in the smaller DRAM rows.

2.2.6 LPDDR3 and LPDDR4. LPDDR3 [76] and LPDDR4 [78] are low-power variants of DDR3
and DDR4, respectively. These DRAM types lower power consumption by using techniques such as a
lower core voltage, two voltage domains on a single chip, temperature-controlled self refresh, deep
power-downmodes, reduced chip width, and fewer (1–2) chips per DRAMmodule [124] than their
standard-power counterparts. These trade-offs increase the memory access latency, and limit the
total capacity of the low-power DRAM chip.

2.3 Motivation
As DRAM scaling is unable to keep pace with processor scaling, there is a growing need to improve
DRAM performance. Today, conventional DDRx DRAM types suffer from three major bottlenecks.
First, priorworks have shown that the underlying designused byDDR3andDDR4 remains largely the
sameas earlier generations ofDDRmemory, and as a result, theDRAMaccess latencyhas not changed
significantly over the last decade [20, 21, 107, 109, 110, 170]. Second, it is becoming increasingly
difficult to increase the density of thememory chip, due to a number of challenges thatDRAMvendors
face when they scale up the size of the DRAM array [83, 97, 115, 116, 121, 134, 136, 139]. Third, DDRx
connects to the host processor using a narrow, pin-limited off-chip channel, which restricts the
available memory bandwidth.
As we describe in Section 2.2, new DRAM types contain a number of key changes to mitigate

one or more of these bottlenecks. Due to the non-obvious impact of such changes on application
performance and energy consumption, there is a need to perform careful characterization of how
various applications behave under each newDRAM type, and how this behavior compares to the
application behavior under conventional DDRx architectures. Our goal in this paper is to rigorously
characterize, analyze, and understand the complex interactions between several modern DRAM
types and a diverse set of modern applications, through the use of detailed simulationmodels and
newmetrics that capture the sources of these interactions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:7

3 METHODOLOGY
We characterize the nine different DRAM types on 87 different single-threaded andmultithreaded
applications [5, 6, 10, 12, 24, 27, 36, 38, 43, 53, 55, 66, 144, 164, 173, 183, 184, 191], and 28 multipro-
grammedworkloads, using a heavily-modified version of Ramulator [96], a detailed and extensible
open-source DRAM simulator. Many of these applications come from commonly-used benchmark
suites, including SPEC CPU2006 [173], CORAL [183] and CORAL-2 [184], PARSEC [10], the Yahoo
Cloud Suite [27], MediaBench II [43], Mars [53], Rodinia [24], LonestarGPU [12], IOzone [66], and
Netperf [55].
We categorize each of our applications into one of six families: desktop/scientific [10, 173, 183,

184], server/cloud [5, 6, 27, 36, 38, 191], multimedia acceleration [43], network acceleration [144],
GPGPU [12, 24, 53], and OS routines [55, 66, 164]. Tables 3–6 in Appendix C provide a complete list of
the 87 applications that we evaluate. We use these 87 applications to assemble our multiprogrammed
workloads, which we list in Tables 7 and 8 in Appendix C.

For our desktop/scientific and multimedia applications, we record per-core traces using Intel’s
Pin software [118], which uses dynamic binary instrumentation to analyze real CPU behavior at
runtime. These traces are collected using a machine containing an Intel Core i7-975K processor [62]
and running theUbuntu Server 14.04 operating system [13]. In order to accurately record the behavior
of multithreaded desktop/scientific applications, we make use of a modified Pintool [149], which
accurately captures synchronization behavior across threads. Wemodify this Pintool to generate
traces thatarecompatiblewithRamulator, and to recordaseparate trace foreach thread. Inorder to test
the scalability of the multithreaded applications that we study [10, 183, 184], we run the applications
and our modified Pintool on a machine that contains dual Intel Xeon E5-2630 v4 processors [63],
providing us with the ability to execute 40 threads concurrently. These machines run Ubuntu Server
14.04, and contain 128 GB of DRAM.We have open-sourced our modified Pintool [160] along with
our modified version of Ramulator [161].
For our server/cloud applications and OS routines, we collect per-core traces using the Bochs

full system emulator [101] in order to record both user-mode and kernel-mode memory operations.
Though priorworks often overlook kernel-modememory operations, recent studies reveal thatmany
programs spend the majority of of their execution time in kernel mode [150, 178]. Unfortunately,
Pin cannot capture kernel-mode operations, so we cannot collect truly-representative traces using
Pin. We use Bochs [101] because it emulates both user-mode and kernel-mode operations. As we are
constrained to using the processor models available in Bochs, we choose the Intel Core i7-2600K [61],
which is the closest available to the i7-975K processor [62] we use with Pin. The emulator runs the
Ubuntu Server 16.04 operating system [14].
Our network accelerator applications are collected from a commercial network processor [144].

We add support in Ramulator to emulate the injection rate of requests from the network, by limiting
the total number of requests that are in flight at any given time. For each workload, we evaluate
four different rates: 5 in-flight requests, 10 in-flight requests, 20 in-flight requests, and 50 in-flight
requests.
For GPGPU applications, we integrate Ramulator into GPGPU-Sim [8], and collect statistics in

Ramulator as the integrated simulator executes. We collect all results using the NVIDIA GeForce
GTX 480 [143] configuration. We have open-sourced our integrated version of GPGPU-Sim and
Ramulator [159].
All of the traces that we record include the delays incurred by each CPU instruction during

execution, and we replay these traces with our core and cache models in Ramulator.Wemake several
modifications toRamulator to improve thefidelity of our experiments for all applications.Wedescribe
our modifications in Appendix B.With our modifications, Ramulator provides near-identical results

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:8 Saugata Ghose et al.

(with an average error of only 6.1%; see Appendix B) to a simulator with a detailed, rigorously-
validated out-of-order processor core model [11], while being significantly faster (9.8× on average
for SPEC CPU2006 benchmarks; see Appendix B).We have open-sourced our modified version of
Ramulator [161] and a benchmark suite consisting of our application traces [160].
Table 2 shows the system configuration parameters used for all of our experiments. For all of the

DRAM types, wemodel a 4GB capacity, distributed across channels and ranks as listed in Table 1,
and use the widely-used FR-FCFSmemory scheduler [155, 197], with 32-entry read and write queues.
For all DRAM types except HMC, we use cache line interleaving [80, 94, 98, 156, 193] for the physical
address, where consecutive cache lines are interleaved across multiple channels (and then across
multiple banks within a channel) to maximize the amount of memory-level parallelism. Cache
line interleaving is used by processors such as the Intel Core [64], Intel Xeon [65, 112], and IBM
POWER9 [60] series. The HMC specification [59] explicitly specifies two fixed interleavings for the
physical address. The first interleaving, which is the default for HMC, interleaves consecutive cache
lines across multiple vaults, and then across multiple banks. The second interleaving, which we use
for HMC-Alt (see Section 2.2.5), interleaves consecutive cache lines only across multiple vaults. For
each DRAM type currently in production, we select the fastest frequency variant of the DRAM type
on themarket today (see Table 1 for key DRAMproperties), as we can find reliable latency and power
information for these products. As timing parameters for HMC have yet to be publicly released, we
use the information provided in prior work [69, 89] to model the latencies.

Table 2. Evaluated system configuration.

Processor
x86-64 ISA, 128-entry instruction window, 4-wide issue
single-threaded/multiprogrammed: 4 cores, 4.0GHz
multithreaded: 20 cores, 2 threads per core, 2.2GHz

Caches
per-core L1: 64 kB, 4-way set associative
per-core L2: 256 kB, 4-way set associative
shared L3: 2MB for every core, 8-way set associative

Memory 32/32-entry read/write request queues, FR-FCFS [155, 197],
Controller open-page policy, cache line interleaving [80, 94, 98, 156, 193]

We integrate DRAMPower [16], an open-source DRAM power profiling tool, into Ramulator
such that it can perform power profiling while Ramulator executes. To isolate the effects of DRAM
behavior, we focus on the power consumed byDRAM instead of total system power.We report power
numbers only for the DRAM types for which vendors have publicly released power consumption
specifications [126–129, 168], to ensure the accuracy of the results that we present.

4 CHARACTERIZATION METRICS

Performance Metrics.Wemeasure single-threaded application performance using instructions
per cycle (IPC). For multithreaded applications, we show parallel speedup (i.e., the single-threaded
execution timedivided by the parallel execution time),which accounts for synchronization overheads.
For multiprogrammedworkloads, we useweighted speedup [169], which represents the job throug-
hput [42].We verify that trends for other metrics (e.g., harmonic speedup [119], which represents the
inverse of the job turnaround time) are similar. To quantify thememory intensity of an application,we
use the number ofmisses per kilo-instruction (MPKI) issued by the last-level cache for that application
to DRAM.
Our network accelerator workloads are collected from a commercial network processor [144],

which has a microarchitecture different from a traditional processor. We present performance results
for the network accelerator in terms of sustained memory bandwidth.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:9

ParallelismMetrics. Prior works have used eithermemory-level parallelism (MLP) [26, 47, 137, 152,
181] or bank-level parallelism (BLP)] [95, 103, 135, 180] to quantify the amount of parallelism across
memory requests. Unfortunately, neither metric fully represents the actual parallelism exploited in
DRAM.MLPmeasures the average number of outstanding memory requests for an application, but
this does not capture the amount of parallelism offered by the underlying hardware. BLPmeasures
the average number of memory requests that are actively being serviced for a single thread during a
given time interval.While BLP can be used to compare the bank parallelismused by one threadwithin
an interval to the usage of another thread, it does not capture the average bank parallelism exploited
by all concurrently-executing threads and applications across the entire execution,which can provide
insight intowhether the additional banks present in bymany of theDRAM types (compared toDDR3)
are being utilized.
We define a newmetric, called bank parallelism utilization (BPU), which quantifies the average

number of banks in main memory that are being used concurrently. To measure BPU, we sample
the number of active banks for every cycle that the DRAM is processing a request, and report the
average utilization of banks:

BPU =
∑

i # active banks in cycle i
cycles memory is active

(1)

A larger BPU indicates that applications are making better use of the bank parallelism available in
a particular DRAM type. Unlike MLP and BLP, BPU fully accounts for (1) whether requests from
any thread contend with each other for the same bank, and (2) howmuch parallelism is offered by
the memory device. As we see in our analysis (Sections 5–9), BPU helps explain why somememory-
intensive applications do not benefit from high-bandwidth memories such as HMC, while other
memory-intensive applications do benefit.
Contention Metrics.An important measure of spatial and temporal locality in memory is the row
buffer hit rate, also known as row buffer locality. To quantify the row hit rate, prior works count the
number of row buffer hits and the number of row buffer misses, which they define as any request
that does not hit in the currently-open row. Unfortunately, this categorization does not distinguish
between misses where a bank does not have any row open, and misses where a bank is currently
processing a request to a different row (i.e., a row buffer conflict). This distinction is important, as a
row buffer conflict typically takes longer to service than a row buffer miss, as a conflict must wait to
issue a precharge operation, and may also need to wait for an earlier request to the bank to complete.
A row buffer conflict takes at least as much as double the row miss latency, when the conflicting
request arrives just after a request with a row miss starts accessing the DRAM. Table 1 lists the
minimum row buffer conflict latency for each DRAM type, assuming that no prior memory request
has already issued the precharge operation for the conflicting row. Note that if there is more than
one pending memory request that needs to access the conflicting row, the row buffer conflict latency
could be even higher.

To accurately capture row buffer locality, we introduce a new characterizationmethodologywhere
we break downmemory requests into: (1) row buffer hits; (2) row buffer misses, which only include
misses for a DRAM request where the bank does not have any row open; and (3) row buffer conflicts,
which consist of misses where another row is currently open in the bank and must be closed (i.e.,
precharged) first. Row buffer conflicts provide us with important information about how the amount
of parallelism exposed by a DRAM type can limit opportunities to concurrently serve multiple
memory requests, which in turn hurts performance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:10 Saugata Ghose et al.

5 SINGLE-THREADED/MULTIPROGRAMMED DESKTOP AND SCIENTIFIC
PROGRAMS

We first study the memory utilization, performance, and DRAM energy consumption of our tested
DRAM types on single-threaded desktop and scientific applications from the SPEC 2006 benchmark
suite [173], and onmultiprogrammed bundles of these applications.

5.1 Workload Characteristics
Using the DDR3 memory type, we study the memory intensity of each workload. The workloads
encompass a wide range of intensity, with some CPU-bound applications (e.g., gamess, calculix)
issuingmemory requests only infrequently, and othermemory-bound applications (e.g.,mcf) issuing
over 15 last-level cache (i.e., L3) misses per kilo-instruction (MPKI). The workloads also exhibit a
large range of row buffer locality, with row buffer hit rates falling anywhere between 2.4–53.1% (see
Appendix D.1).

We study the relationship between the performance (IPC) andmemory intensity (MPKI) of the
desktop and scientific applications (see Appendix D.1 for details and plots). In general, we observe
that the IPC decreases as the MPKI increases, but there are two notable exceptions: namd and gobmk.
To understand these exceptions, we study the amount of bank parallelism that an application is able
to exploit by using the BPUmetricwe introduced in Section 4 (seeAppendixD.1 for BPU values for all
applications). In our configuration, DDR3has 32 banks spread across fourmemory channels. Formost
applications with lowmemory intensity (i.e., MPKI < 4.0), the BPU for DDR3 is very low (ranging
between 1.19 and 2.01) due to the low likelihood of having many concurrent memory requests. The
two exceptions are namd and gobmk, which have BPUvalues of 4.03 and 2.91, respectively. The higher
BPU values at low memory intensity imply that these applications exhibit more bursty memory
behavior, issuing requests in clusters. Thus, they could benefit more when a DRAM type offers a
greater amount of bank parallelism (compared to a DRAM type that offers reduced latency).

From the perspective ofmemory, we find that there is no discernible difference between applicati-
ons with predominantly integer computation and applications with predominantly floating point
computation (see Appendix D.1). As a result, we do not distinguish between the two in this section.

5.2 Single-Thread Performance
Figure 2 (top) shows the performance of the desktop workloads under each of our standard-power
DRAM types, normalized to the performance of each workload when using a DDR3-2133 memory.
Along thex-axis, theapplicationsare sortedbyMPKI, fromleast togreatest.Wemake twoobservations
from these experiments.

OBSERVATION 1:
DDR4 does not perform better than DDR3

for the vast majority of our desktop/scientific applications.

Even thoughDDR4has 50%higher bandwidth thanDDR3 and contains double the number of banks
(64 in our four-channel DDR4 configuration vs. 32 in our four-channel DDR3 configuration), DDR4
performs 0.2%worse thanDDR3, on average across all of our desktop and scientific applications, aswe
see in Figure 2 (top). The best performance with DDR4 is formcf, with an improvement of only 0.5%
over DDR3.We find that both major advantages of DDR4 over DDR3 (i.e., greater bandwidth, more
banks) are not useful to our applications. Figure 3 shows the BPU for three representative workloads
(libquantum,mcf, and namd). Across all of our applications, we find that there is not enough BPU
to take advantage of the 32 DDR3 banks, let alone the 64 DDR4 banks.mcf has the highest BPU, at

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:11

0.75

1.00

1.25

1.50

1.75

ga
m
es
s

po
vr
ay

ca
lcu

lix
h2

64
re
f

pe
rlb

en
ch

hm
m
er

bz
ip
2

sje
ng

sp
hi
nx
3

na
m
d

as
ta
r

go
bm

k
ze
us
m
p

ca
ct
us
AD

M gc
c

om
ne

tp
p

so
pl
ex

bw
av
es

Ge
m
sF
DT

D
m
ilc

lib
qu

an
tu
m

m
cfIP

C
No

rm
al

ize
d

to
 D

DR
3 DDR4 GDDR5 HBM HMC HMC-Alt

0.4
0.6
0.8
1.0
1.2
1.4

ga
m

es
s

po
vr

ay
ca

lcu
lix

h2
64

re
f

pe
rlb

en
ch

hm
m

er
bz

ip
2

sje
ng

sp
hi

nx
3

na
m

d
as

ta
r

go
bm

k
ze

us
m

p
ca

ct
us

AD
M gc
c

om
ne

tp
p

so
pl

ex
bw

av
es

Ge
m

sF
DT

D
m

ilc
lib

qu
an

tu
m

m
cfIP

C
No

rm
al

ize
d

to
 D

DR
3 LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Fig. 2. Performance of desktop and scientific applications for standard-power (top) and low-power (bottom)
DRAM types, normalized to DDR3.

0
2
4
6
8

10

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

libquantum mcf namd

Fig. 3. BPU for representative desktop/scientific applications.

5.33 in DDR4, still not enough to benefit from the additional banks. Instead, desktop and scientific
applications are sensitive to thememory latency. Applications are hurt by the increased access latency
in DDR4 (11/14% higher in DDR4 for a row hit/miss than in DDR3), which is a result of the bank
group organization (which does not exist in DDR3; see Section 2.2).

OBSERVATION 2:
HMC performs significantly worse than DDR3 when a workload
can exploit row buffer locality and is not highly memory intensive.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:12 Saugata Ghose et al.

From Figure 2 (top), we observe that few standard-power DRAM types can improve performance
across all desktop and scientific applications over DDR3. Notably, we find that HMC actually results
in significant slowdowns over DDR3 for most of our single-threaded applications. Averaged across all
workloads, HMC performs 5.8% worse than DDR3. To understand why, we examine the row buffer
locality of our applications when running with different memory types. Recall from Section 2.2 that
HMC reduces row buffer locality in exchange for a much greater number of banks (256 in HMC
vs. 32 in DDR3) and much greater bandwidth (4.68× the bandwidth of DDR3). We already see in
Figure 3 that, with the exception of mcf, HMC cannot provide significant BPU increases for our
single-threaded applications, indicating that the applications cannot take advantage of the increased
bank count and higher bandwidth.

Figure 4 shows the row buffer locality (see Section 4) for our three representative applications. As
we observe from the figure, HMC eliminates nearly all of the row hits that other memories attain in
libquantum and namd. This is a result of the row size in HMC, which is 97% smaller than the row size
in DDR3. This causes manymore rowmisses to occur, without significantly affecting the number of
row conflicts. As a result, the average memory request latency (across all applications) in HMC is
25.6% higher than that in DDR3. The only application with a lower average memory request latency
in HMC ismcf, because the majority of its memory requests in all DRAM types are row conflicts
(see middle graph in Figure 4). Thus, due to its low spatial locality and high BPU,mcf is the only
application that sees a significant speedup with HMC (63.4% over DDR3).

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

libquantum mcf namd

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

Fig. 4. Breakdown of row buffer locality for representative single-threaded desktop/scientific applications.

Unlike HMC, GDDR5 successfully improves the performance of all of our desktop and scientific
applications with higher memory intensity. This is because GDDR5 delivers higher bandwidth at a
lower latency than DDR3 (see Table 1), which translates into an average performance improvement
of 6.4%. In particular, for applications with high memory intensity (i.e., MPKI > 15.0), GDDR5 has an
average speedup of 16.1%, as these applications benefit most from a combination of higher memory
bandwidth and lower memory request latencies.

Figure 2 (bottom) shows the performance of the desktop and scientific applications when we use
low-power or mobile DRAM types. In general, we note that as the memory intensity (i.e., MPKI) of
an application increases, its performance with low-power memory decreases compared to DDR3. In
particular, LPDDR3 and LPDDR4 performworse because they take longer to complete a memory
request, increasing the latency for a rowmiss over DDR3 and DDR4 by 53.2% and 50.0%, respectively
(see Table 1). Wide I/O DRAM performs significantly worse than the other DRAM types, as (1) its
much lower clock frequency greatly restricts its overall throughput, and (2) its row hit latency is
longer. Wide I/O 2 offers significantly higher row buffer locality and lower hit latency thanWide I/O.
As a result, applications such as namd and libquantum performwell underWide I/O 2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:13

We conclude that even though single-threaded desktop and scientific applications display a wide
range of memory access behavior, they generally need DRAM types that offer (1) low access latency
and (2) high row buffer locality.

5.3 Multiprogrammed Workload Performance
We combine the single-threaded applications into 20 four-core multiprogrammedworkloads (see
Table 7 in Appendix C for workload details), to study how the memory access behavior changes.
Figure 5 shows the performance of the workloads (sorted byMPKI) with each DRAM type.We draw
out three findings from the figure.

0.8
1.0
1.2
1.4
1.6
1.8
2.0

bu
nd

le
 D

19
 (1

.7
)

bu
nd

le
 D

16
 (8

.4
)

bu
nd

le
 D

17
 (2

4.
8)

bu
nd

le
 D

18
 (3

2.
6)

bu
nd

le
 D

14
 (4

0.
2)

bu
nd

le
 D

12
 (5

0.
0)

bu
nd

le
 D

11
 (7

1.
3)

bu
nd

le
 D

13
 (7

2.
9)

bu
nd

le
 D

15
 (1

02
.5

)
bu

nd
le

 D
8

(1
03

.6
)

bu
nd

le
 D

5
(1

24
.5

)
bu

nd
le

 D
6

(1
25

.6
)

bu
nd

le
 D

9
(1

67
.4

)
bu

nd
le

 D
2

(1
88

.1
)

bu
nd

le
 D

10
 (1

93
.1

)
bu

nd
le

 D
4

(2
21

.1
)

bu
nd

le
 D

7
(2

29
.3

)
bu

nd
le

 D
0

(2
63

.2
)

bu
nd

le
 D

1
(2

74
.6

)
bu

nd
le

 D
3

(2
97

.5
)

No
rm

al
ize

d
W

ei
gh

te
d

Sp
ee

du
p DDR4 GDDR5 HBM HMC HMC-Alt

0.2
0.4
0.6
0.8
1.0
1.2

bu
nd

le
 D

19
bu

nd
le

 D
16

bu
nd

le
 D

17
bu

nd
le

 D
18

bu
nd

le
 D

14
bu

nd
le

 D
12

bu
nd

le
 D

11
bu

nd
le

 D
13

bu
nd

le
 D

15
bu

nd
le

 D
8

bu
nd

le
 D

5
bu

nd
le

 D
6

bu
nd

le
 D

9
bu

nd
le

 D
2

bu
nd

le
 D

10
bu

nd
le

 D
4

bu
nd

le
 D

7
bu

nd
le

 D
0

bu
nd

le
 D

1
bu

nd
le

 D
3

No
rm

ali
ze

d
W

eig
ht

ed
 Sp

ee
du

p LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Fig. 5. Performance of multiprogrammed desktop and scientific workloads for standard-power (top) and
low-power (bottom) DRAM types, normalized to DDR3. MPKI listed in parentheses.

OBSERVATION 3:
Multiprogrammed workloads with high aggregate memory intensity benefit significantly

from HMC, due to a combination of high BPU and poor row buffer locality.

First, for multiprogrammed workloads, HMC performs better than the other DRAM types despite
its significantly smaller rowbuffer size.Onaverage,HMC improves systemperformance (asmeasured
by weighted speedup) by 17.0% over DDR3. Note that while some workloads do very well under
HMC (with the greatest performance improvement being 83.1% for bundle D7), many workloads
with lower memory intensity (i.e., MPKI < 70) still perform slightly worse than they do under DDR3

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:14 Saugata Ghose et al.

(with the greatest performance loss being 3.4% for bundle D12).We find twomajor reasons for HMC’s
high performance with multiprogrammedworkloads: poor row buffer locality and high BPU.

The row buffer locality of the multiprogrammedworkloads is much lower than that of the single-
threaded applications. Figure 6 shows row buffer locality for three representative workloads. For
bundle D9, which has anMPKI of 167.4, the row buffer hit rate never exceeds 5.6% on anyDRAM type.
We observe that for all of our workloads, the vast majority of memory accesses are row conflicts. This
is because each application in a multiprogrammed workload accesses a different address space, and
these competing applications frequently interfere with each other when they conflict in banks or
channels within the shared DRAM, as also observed in prior works [50, 52, 98, 110].

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

bundle D11 bundle D9 bundle D7

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

Fig. 6. Breakdown of row buffer locality for representative multiprogrammed desktop/scientific workloads.

With HMC, we find that the BPU of highly-memory-intensive workloads is significantly higher
than the BPUwithDDR3. Figure 7 shows the BPU for the three representativeworkloads. Bundle D11,
which has anMPKI of 71.3, does not issue enough parallel memory requests, limiting its BPU. For
bundle D7, which has a much higher MPKI of 229.3, concurrent memory requests are distributed
across the memory address space, as three out of the four applications in the workload (libquantum,
mcf, andmilc) are memory intensive (i.e., MPKI ≥ 4.0 for single-threaded applications). As a result,
with HMC, the workload achieves 2.05× the BPU that it does with DDR3.

0
5

10
15
20
25

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

bundle D11 bundle D9 bundle D7

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

Fig. 7. BPU for representative multiprogrammed desktop/scientific workloads.

Second, unlike HMC, which does not performwell for most non-memory-intensivemultiprogram-
med workloads, GDDR5 improves performance for all 20 of our multiprogrammed workloads. This
is because GDDR5 provides a balanced combination of lowmemory latencies, high bank parallelism,
and high bandwidth. However, GDDR5’s balance across these metrics is not enough to maximize
the performance of our highly-memory-intensive workloads, which require very high bandwidth,
and thus GDDR5’s average performance improvement over DDR3 onmultiprogrammed workloads,
13.0%, is lower than that of HMC (17.0%).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:15

Third, some low-powerDRAMtypes canprovide energy savings (see Section 5.4) formultiprogram-
med workloadswithout sacrificing performance. From Figure 5 (bottom), we observe that LPDDR4
andWide I/O 2 perform competitively with DDR3 for highly-memory-intensive workloads. This
is because both DRAM types provide higher amounts of parallelism and bandwidth than DDR3,
and the highly-memory-intensive applications make significant use of the available parallelism and
memory bandwidth, which lowers application execution time. As a result, such applications are not
significantly impacted by the increased memory access latency in LPDDR4 andWide I/O 2.

We conclude that for multiprogrammed workloads, DRAM types that provide high bank parallelism
and bandwidth can significantly improve performance when a workload exhibits (1) high memory
intensity, (2) high BPU, and (3) poor row buffer locality.

5.4 DRAM Energy Consumption
We characterize the energy consumption of our desktop and scientific workloads for the DRAM
types that we have accurate power models for (i.e., datasheet values for power consumption that
are provided by vendors for actual off-the-shelf parts). Figure 8 shows the average DRAM energy
consumption by DDR3, DDR4, GDDR5, LPDDR3, and LPDDR4 for our single-threaded applications
andmultiprogrammedworkloads, normalized to the energy consumption of DDR3.Wemake two
new observations from the figure.

0.0
0.5
1.0
1.5
2.0
2.5

No
rm

al
ize

d
En

er
gy

Single-Threaded Multiprogrammed

Fig. 8. Mean DRAM energy consumption for single-threaded (left) and multiprogrammed (right) desktop
and scientific applications, normalized to DDR3.

OBSERVATION 4:
LPDDR3/4 reduce DRAM energy consumption by as much as 54–68% over DDR3/4, but

LPDDR3/4 provide worse performance for single-threaded applications, with their performance
loss increasing as the memory intensity increases.

For all of our desktop/scientific workloads, LPDDR3/4 consume significantly less energy than
DDR3/4 due to the numerous low-power features incorporated in their design (see Section 2.2).
In particular, as we discuss in Appendix E, standby power is the single largest source of power
consumption for these workloads, and LPDDR3/4 incorporate a number of optimizations to reduce
standby power. Unfortunately, these optimizations lead to increased memory request latencies (see
Table 1). This, in turn, hurts the overall performance of single-threaded applications, as we see in
Figure 2 (bottom). GDDR5 makes the opposite trade-off, with reduced memory request latencies
and thus higher performance, but at the cost of 2.15×more energy than DDR3 for single-threaded
applications.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:16 Saugata Ghose et al.

OBSERVATION 5:
For highly-memory-intensive multiprogrammed workloads, LPDDR4 provides significant energy

savings over DDR3 without sacrificing performance.

For multiprogrammed workloads, LPDDR4 delivers a 68.2% reduction in energy consumption, on
average across all workloads, while losing only 7.0% performance compared toDDR3 (see Section 5.3).
This is because LPDDR4 compensates for its higher memory request latency over DDR3 by having a
greater number of banks. As we discuss in Section 5.3, highly-memory-intensive multiprogrammed
workloads can achieve a high BPU, which allows them to take advantage of the increased bank
parallelismavailable inLPDDR4.Asacomparison,LPDDR3stillperformspoorlywith theseworkloads
because it has lower bandwidth and a lower bank count than LPDDR4. In contrast, GDDR5 provides
higher throughput than LPDDR4, and due to the high memory intensity of multiprogrammed
workloads, the workloads complete much faster with GDDR5 than DDR3 (13.0% higher performance
on average; see Section 5.3). The increased performance of GDDR5 comes at the cost of consuming
only 25.6% more energy on average than DDR3, which is a much smaller increase than what we
observe for the single-threaded applications.

We conclude that (1) low-power DRAM variants (LPDDR3/4) are effective at reducing overall DRAM
energy consumption, especially for applications that exhibit high BPU; and (2) the performance
improvements of GDDR5 come with a significant energy penalty for single-threaded applications, but
with a smaller penalty for multiprogrammed workloads.

6 MULTITHREADED DESKTOP AND SCIENTIFIC PROGRAMS
Manymodern applications, especially in the high-performance computing domain, launch multiple
threads on a machine to exploit the thread-level parallelism available in multicore systems. We
evaluate the following applications:
• blackscholes, canneal, fluidanimate, raytrace, bodytrack, facesim, freqmine, streamcluster, and
swaptions from PARSEC 3.0 [10], and

• miniFE, quicksilver, and pennant from CORAL [183]/CORAL-2 [184].

6.1 Workload Characteristics
Multithreaded workloads often work on very large datasets (e.g., several gigabytes in size) that are
partitioned across the multiple threads. Amajor component of multithreaded application behavior
is how the application scales with the number of threads. This scalability is typically a function of
(1) howmemory-bound an application is, (2) howmuch synchronization must be performed across
threads, and (3) how balanced the work done by each thread is.

We provide a detailed experimental analysis of the IPC andMPKI of themultithreaded applications
in Appendix D.2. From the analysis, we find that these applications have a narrower IPC range
than the single-threaded desktop applications. This is often because multithreaded applications are
designed to strike a careful balance between computation and memory usage, which is necessary to
scale the algorithms to large numbers of threads. Due to this balance, memory-intensive multithre-
aded applications have significantly higher IPCs compared to memory-intensive single-threaded
desktop/scientific applications, even as we scale the number of threads. For example, the aggregate
MPKI ofminiFE increases from 11.5 with only one thread to 68.1 with 32 threads, but its IPC per
thread remains around 1.5 (for both one thread and 32 threads). The relatively high IPC indicates that
the application is not completely memory-bound even when its MPKI is high.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:17

6.2 Performance
Tostudyperformanceandscalability,weevaluate1, 2, 4, 8, 16, and32 thread runsof eachmultithreaded
application on each DRAM type. All performance plots show parallel speedup, normalized to one-
thread execution on DDR3, on the y-axis, and the thread count (in log scale) on the x-axis. For brevity,
we do not show individual results for each application.We find that the applications generally fall
into one of three categories: (1)memory-agnostic, where the application is able to achieve near-linear
speedupacrossmost threadcounts for allDRAMtypes; (2) throughput-bound memory-sensitive,where
the application is highly memory-intensive, and has trouble approaching linear speedup for most
DRAM types; and (3) irregular memory-sensitive, where the application is highly memory-intensive,
and its irregular memory access patterns allow it to benefit from either lower memory latency or
higher memory throughput.
Memory-Agnostic Applications. Six of our applications are memory-agnostic: blackscholes,
raytrace, swaptions, quicksilver, pennant, and streamcluster. Figure 9 shows the performance of
quicksilver across all thread counts, which is representative of thememory-agnostic applications.We
draw out three findings from the figure.

0

8

16

24

32

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

8

16

24

32

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Fig. 9. Performance of quicksilver for standard-power (left) and low-power (right) DRAM types, normalized
to single-thread performance with DDR3.

First, regardless of the DRAM type, the performance of quicksilver scales well with the thread
count, with no tapering of performance improvements for the standard-power DRAM types (i.e.,
DDR3/4, GDDR5, HBM, HMC). This is because memory-agnostic applications have relatively low
MPKI values (see Appendix D.2), even at high thread counts (e.g., quicksilver has an MPKI of 20.9
at 32 threads). Therefore, all of the standard-power DRAM types are able to keep up as the thread
counts increase, and the memory-agnostic applications do not benefit significantly from one DRAM
type over another.
Second, like many of our memory-agnostic applications, quicksilver does not have a fully-linear

speedup at 32 threads. This is because when the number of threads increases from 1 to 32, the row hit
rate decreases significantly (e.g., for DDR3, from 83.1% with one thread to 7.2% with 32 threads), as
shown in Figure 10, due to contention among the threads for shared last-level cache space and shared
DRAM banks. The significantly lower row hit rate results in an increase in the average memory
request latency. Two of our memory-agnostic applications (swaptions and pennant) maintain higher
row hit rates (e.g., 46.6% for pennant at 32 threads; not shown) because they have significantly
lower memory intensity (i.e., MPKI < 3 at 32 threads) than our other memory-agnostic applications,
generating less contention at the last-level cache andDRAMbanks. As a result, these two applications
have a fully-linear speedup at 32 threads.

Third, due to thememory-agnostic behavior of these applications, there is no discernible difference
in performance between standard-powerDRAMtypes, LPDDR3/4, andWide I/O2.Given theminimal

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:18 Saugata Ghose et al.

0%
25%
50%
75%

100%
M

em
or

y
Re

qu
es

ts Row Hits Row Misses Row Conflicts

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

quicksilver facesim miniFE1 thread

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

quicksilver facesim miniFE32 threads

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

Fig. 10. Breakdown of row buffer locality for three representative multithreaded applications.

memory needs of these applications, the increased latencies and reduced bandwidth of low-power
DRAM types do not have a significant impact on the applications in most cases.1 Based on these
observations, we believe that the LPDDR3/4 andWide I/O 2 low-power DRAM types are promising
to use formemory-agnostic applications, as they can lower the DRAMpower consumptionwith little
impact on performance.
Throughput-Bound Memory Sensitive Applications. Five of our applications are throughput-
bound memory-sensitive: bodytrack, canneal, fluidanimate, facesim, and freqmine. Figure 11 shows the
performance of facesim across all thread counts, which is representative of the throughput-bound
memory-sensitive applications. These applications become highly memory-intensive (i.e., they have
very high aggregate MPKI values) at high thread counts. As more threads contend for the limited
shared space in the last-level cache, the cache hit rate drops, placing greater pressure on the memory
system. This has two effects. First, since the memory requests are generated across multiple threads,
where each thread operates on its ownworking set of data, there is little spatial locality among the
requests that are waiting to be serviced by DRAM at any given time. As we see in Figure 10, facesim
does not exploit row buffer locality at 32 threads. Second, because of their highmemory intensity
and poor spatial locality, these applications benefit greatly from amemory like HMC, which delivers
higher memory-level parallelism and higher bandwidth than DDR3 at the expense of spatial locality
and latency. As Figure 11 shows, (1) the performance provided by the other memories cannot scale at
the rate provided by HMC at higher thread counts; and (2) HMC outperforms even GDDR5 andHBM,
which in turn outperform other DRAM types.
Irregular Memory-Sensitive Applications.Only one application is irregular memory-sensitive:
miniFE. Figure 12 shows the performance ofminiFE across all thread counts.miniFE operates on
sparse matrices, which results in irregular memory access patterns that compilers cannot easily

1The one exception is Wide I/O, for which performance scaling begins to taper off at 32 threads. Wide I/O’s poor scalability
is a result of its combination of high memory access latency and a memory bandwidth that is significantly lower than the
other DRAM types (see Table 1).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:19

0
4
8

12
16
20
24

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

4

8

12

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Fig. 11. Performance of facesim for standard-power (left) and low-power (right) DRAM types, normalized to
single-thread performance with DDR3.

optimize. One result of this irregular behavior is low BPU at all thread counts, corroborating similar
observations by priorwork [180] forminiFE and other irregularmultithreadedworkloads. As a result,
for smaller problem sizes (e.g., 32 x 32 x 32 forminiFE),miniFE becomes memory-latency-bound,
and behaves much like our single-threaded desktop applications in Section 5. We draw out two
findings from Figure 12. First,miniFEwith a 32 x 32 x 32 problem size benefits most from traditional,
low-latency memories such as DDR3/4 and GDDR5, while it fails to achieve such high benefits with
throughput-oriented memories such as HMC and HBM. In fact, just as we see for memory-agnostic
applications, many of the low-power memories outperform HMC and HBM at all thread counts.
Second, as the core count increases,miniFE benefits more from highmemory throughput and high
bank-level parallelism. As a result, while the performance improvement with DDR3 starts leveling
off after 16 threads, the performance improvements with HBM andwith HMC continue to scale at
32 threads. Unlike DDR3, DDR4 continues to scale as well, as DDR4 provides higher throughput and
more banks than DDR3.

0

8

16

24

32

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

6

12

18

24

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Fig. 12. Performance of miniFE with a 32 x 32 x 32 problem size for standard-power (left) and low-power
(right) DRAM types, normalized to single-thread performance with DDR3.

The irregular behavior ofminiFE changes as the problem size grows. Figure 13 shows the per-
formance ofminiFE as we increase the problem size to 64 x 64 x 64.We observe that as the number
of threads increases, the scaling trends look significantly different than they do for the smaller 32
x 32 x 32 problem size (Figure 12). For reference, with a single thread and with the DDR3 DRAM
type, the 64 x 64 x 64 problem size takes 13.6x longer than the 32 x 32 x 32 problem size. The larger
problem size putsmore pressure on the cache hierarchy and thememory subsystem (e.g., thememory
footprint increases by 449%; see Table 3 in Appendix C), which causesminiFE to transition from
memory-latency-bound to memory-throughput-bound. As a result, when the number of threads in-
creases, lower-throughputDRAM types such asDDR3 andDDR4 become the bottleneck to scalability,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:20 Saugata Ghose et al.

limiting parallel speedup at 32 threads to only 6.1x. Likewise, we observe that all of our low-power
DRAM types cannot deliver the throughput required byminiFE at high thread counts. In contrast,
HMC can successfully take advantage of the high throughput and high contention between threads,
due to its large number of banks and high bandwidth. As a result, HMC reaches a parallel speedup of
17.3x at 32 threads, with no drop-off in its scalability as the number of threads increases from 1 to 32.
This behavior is similar to what we observe for throughput-boundmemory-sensitive applications
(e.g., the performance of facesim in Figure 11).

0
4
8

12
16
20

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

2

4

6

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Fig. 13. Performance of miniFE with a 64 x 64 x 64 problem size for standard-power (left) and low-power
(right) DRAM types, normalized to single-thread performance with DDR3.

OBSERVATION 6:
The behavior of multithreaded applications with irregular memory access patterns

depends on the problem size.

At small problem sizes, these applications are latency-bound,
and thus benefit from DRAM types that provide low latency.

As the problem size increases, these applications become throughput-bound,
behaving like the throughput-bound memory-sensitive applications,
and thus benefit from DRAM types that provide high throughput.

We conclude that the ideal DRAM type for a multithreaded application is highly dependent on
the application behavior, and that for many such applications, such as memory-agnostic or irregular
memory-sensitive applications with smaller problem sizes, low-power DRAM types such as LPDDR4
can perform competitively with standard-power DRAM types.

7 SERVER AND CLOUDWORKLOADS
Server and cloud workloads are designed to accommodate very large data sets, and can often coordi-
nate requests betweenmultiple machines across a network.We evaluate the following workloads
with representative inputs:
• themap and reduce tasks [34] for grep,wordcount, and sort, implemented using Hadoop [5] for
scalable distributed processing (we use fourmap threads for each application);

• YCSB [27] OLTP (OnLine Transaction Processing) server workloads A–E, and the background
process forked byworkload A to write the log to disk (bgsave), executing on the Redis in-memory
key-value store [191];

• anApache server [6], which services a series of wget requests from a remote server;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:21

• Memcached [38], using a microbenchmark that inserts key-value pairs into a memory cache; and
• theMySQL database [36], using a microbenchmark that loads the sample employeedb database.

7.1 Workload Characteristics
From our analysis, we find that while server and cloudworkloads tend to work on very large datasets
(e.g., gigabytes of data), the workloads are written to maximize the efficiency of their on-chip cache
utilization. As a result, these applications only infrequently issue requests to DRAM, and typically
exhibit lowmemory intensity (i.e., MPKI < 10) and high IPCs.We show IPC plots for these workloads
in Appendix D.3.
For each of our Hadoop applications, we find that the fourmap threads exhibit near-identical

behavior. As a result, we show the characterization of only one out of the fourmap threads (map 0) in
the remainder of this section.

7.2 Single-Thread Performance
Figure 14 shows the performance of single-threaded applications for server and cloud environments
when run on our evaluated DRAM types, normalized to DDR3.We find that none of our workloads
benefit significantly from using HBM, HMC, or Wide I/O 2. These DRAM types sacrifice DRAM
latency to provide high throughput. Since our workloads have lowmemory bandwidth needs, they
are unable to benefit significantly from this additional throughput.

0.8

0.9

1.0

1.1

1.2

IP
C

No
rm

al
ize

d
to

 D
DR

3 DDR4 GDDR5 HBM HMC HMC-Alt

0.6
0.7
0.8
0.9
1.0
1.1

IP
C

No
rm

al
ize

d
to

 D
DR

3 LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Fig. 14. Performance of server/cloud applications for standard-power (top) and low-power (bottom) DRAM
types, normalized to DDR3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:22 Saugata Ghose et al.

OBSERVATION 7:
Due to their low memory intensity and poor BPU, most of the server and cloud workloads

that we study do not benefit significantly from high-throughput memories.

To understand why high-throughput memories do not benefit these applications, we focus on
YCSB (the leftmost six workloads in Figure 14). For these workloads, we observe that as the memory
intensity increases, HMC performs increasingly worse compared to DDR3.We find that the YCSB
workloads exhibit low BPU values (never exceeding 1.80). Figure 15 shows the BPU (left) and row
buffer locality (right) forworkload A: server, as a representative YCSB workload. Due to the low BPU
of theworkload across all DRAM types, the high number of banks provided byHBM,HMC, andWide
I/O are wasted. HMC also destroys the row hits (and thus lower access latencies) that other DRAM
types provide, resulting in a significant performance loss of 11.6% over DDR3, on average across the
YCSBworkloads. HMC avoids performance loss for applications that have high BPU, such as themap
process for grep (with a BPU of 18.3; not shown). However, such high BPU values are not typical for
the server and cloud workloads we examine.

0.0
0.5
1.0
1.5
2.0

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts

Row Hits
Row Misses
Row Conflicts

DD
R3

DD
R4

GD
DR

5
HB

M
HM

C
HM

C-
Al

t
LP

DD
R3

LP
DD

R4
W

id
e

I/O
W

id
e

I/O
 2

Fig. 15. BPU (left) and row buffer locality (right) of workload A: server.

We find two effects of the lowmemory intensity and low BPU of server and cloud workloads. First,
theseworkloadsarehighly sensitive tomemoryrequest latency.The limitedmemory-levelparallelism
exposes the latency of a memory request to the processor pipeline [32, 44, 99, 138, 140, 141, 152].
Second, the performance loss due to using the low-power DRAM types is mainly due to the increased
memory access latencies, and not reduced throughput. For example, as we observe in Figure 14
(bottom), Wide I/O’s performance loss is comparable to the performance loss with other low-power
DRAM types for many of our server and cloud workloads, even though the available bandwidth of
Wide I/O is only 25% of the bandwidth available with LPDDR4 (see Table 1).

We conclude that the server and cloud workloads we evaluate are highly sensitive to the memory
access latency, and are not significantly impacted by memory throughput.

7.3 Multiprogrammed Performance
We combine the single-threaded server and cloud applications into eight four-coremultiprogrammed
workloads (see Table 8 in Appendix C for workload details). Figure 16 shows the performance of
executing four-core multiprogrammed workloads for our YCSB workload bundles (Y0–Y4) and
Hadoop workload bundles (H0–H2) with each DRAM type.We identify two trends from the figure.
First, we observe that the multiprogrammed YCSB workloads see little benefit from high-

throughput memories, much like the single-threaded YCSB applications. One exception to this
is when theworkloads run onGDDR5,which provides amean speedup of 10.2% overDDR3 due to the
increased memory intensity (and thus higher memory bandwidth demand) of the multiprogrammed

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:23

0.9
1.0
1.1
1.2
1.3
1.4

No
rm

. W
ei

gh
te

d
Sp

ee
du

p DDR4 GDDR5 HBM HMC HMC-Alt

YCSB + Redis Hadoop

0.4

0.6

0.8

1.0

1.2

No
rm

. W
eig

ht
ed

 Sp
ee

du
p LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Fig. 16. Performance of multiprogrammed server/cloud workloads for standard-power (top) and low-power
(bottom) DRAM types, normalized to performance with DDR3. MPKI listed in parentheses.

workloads. On low-power DRAM types, the multiprogrammed YCSBworkloads experience larger
performance drops over DDR3 than the single-threaded applications. For LPDDR3, LPDDR4, and
Wide I/O 2, the performance drop ranges between 14.5% and 17.2%. ForWide I/O, the performance
drop is even worse, with an average drop of 33.3%. Because the multiprogrammed workloads are
morememory-intensive than the single-threaded applications, the reduced throughput of low-power
DRAM types compared to DDR3 has a greater negative impact on the multiprogrammed workloads
than on the single-threaded applications.

Second, we observe that HMC significantly improves the performance of the Hadoop workloads,
because the working sets of the individual applications in each workload conflict with each other in
the last-level CPU cache. This increases the last-level cache miss rate, which in turn significantly
increases the memory intensity compared to the memory intensity of the single-threaded Hadoop
applications. Due to the increased memory intensity, the queuing latency of memory requests make
up a significant fraction of the DRAM access latency. For example, on DDR3, queuing accounts for
77.2% of the total DRAMaccess latency forworkload H0 (not shown). HMC is able to alleviate queuing
significantly for the multiprogrammedHadoopworkloads compared to DDR3 (reducing it to only
23.8% of the total DRAM access latency), similar to what we saw for multiprogrammed desktop and
scientific workloads in Section 5.3. On average, with HMC, the Hadoop workloads achieve 2.62× the
BPU, with an average performance improvement of 9.3% over DDR3.

We conclude that the performance of multiprogrammed server and cloud workloads depends highly
on the interference that occurs between the applications in the workload, and that HMC provides
performance benefits when such application interference results in high memory intensity.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:24 Saugata Ghose et al.

7.4 DRAM Energy Consumption

OBSERVATION 8:
For server and cloud workloads, LPDDR3 and LPDDR4 greatly minimize

standby power consumption without imposing a large performance penalty.

Figure 17 shows the DRAM energy consumption for the single-threaded andmultiprogrammed
server and cloud workloads. GDDR5 consumes a significant amount of energy (2.65× the energy
consumed by DDR3 for single-threaded applications, and 2.23× for multiprogrammedworkloads).
Given the modest performance gains over DDR3 (3.8% for single-threaded applications, and 9.4% for
multiprogrammed workloads), GDDR5 is much less energy efficient than DDR3. This makes GDDR5
especiallyunsuitable for adatacenter setting,where energy consumptionandefficiencyarefirst-order
design concerns. In contrast, we find that LPDDR3/LPDDR4 save a significant amount of DRAM
energy (58.6%/61.6% on average), while causing only relatively small performance degradations for
single-threaded applications compared to DDR3 (8.0%/11.0% on average). Thus, we believe LPDDR3
and LPDDR4 can be competitive candidates for the server and cloud environments, as they have
higher memory energy efficiency than DDR3.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

al
ize

d
En

er
gy

Single-Threaded Multiprogrammed

Fig. 17. Mean DRAM energy consumption for single-threaded (left) andmultiprogrammed (right) server/cloud
applications, normalized to DDR3.

We conclude that low-power DRAM types can be viable options to improve energy efficiency in server
and cloud environments, while DRAM types such as GDDR5 are not as energy efficient as DDR3.

8 HETEROGENEOUS SYSTEMWORKLOADS
In this section, we study the performance and energy consumption of workloads that are representa-
tive of those that run on three major types of processors and accelerators in heterogeneous systems,
such as systems-on-chip (SoCs) andmobile processors: (1)multimedia acceleration, whichwe approx-
imate using benchmarks from theMediaBench II suite for JPEG-2000 and H.264 video encoding and
decoding [43]; (2) network acceleration, for which we use traces collected from a commercial network
processor [144]; and (3) general-purpose GPU (GPGPU) applications from theMars [53], Rodinia [24],
and LonestarGPU [12] suites.

8.1 Multimedia Workload Performance
Multimedia accelerators are designed to perform high-throughput parallel operations on media
content, such as video, audio, and image processing [43]. Often, the content is encoded or decoded in
a streamingmanner, where pieces of the content are accessed frommemory and processed in order.
Multimedia accelerators typically work one file at a time, and tend to exhibit high spatial locality
due to the streaming behavior of their algorithms. The algorithms we explore are often bound by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:25

the time required to encode or decode each piece of media (e.g., a video frame).We find that JPEG
processing and H.264 encoding applications are highly compute-bound (i.e., MPKI < 5.0), and exhibit
very slow streaming behavior (i.e., the requests are issued in a streaming fashion, but exhibit low
memory intensity). In contrast, we find that H.264 decoding exhibits a highly memory-bound fast
streaming behavior, with anMPKI of 124.5.

OBSERVATION 9:
Highly-memory-intensive multimedia applications benefit from

high-bandwidth DRAM types with wide rows.

Figure 18 shows theperformanceof themultimedia applicationsoneachDRAMtype, normalized to
DDR3.We draw out two findings from the figure. First, JPEG encoding/decoding and H.264 encoding
do not benefit from any of the high-bandwidth DRAM types, due to the applications’ lowmemory
intensity. The performance of some of these applications is actually hurt significantly by HMC, due
to HMC’s small row size and high access latencies. In contrast, the larger rowwidth ofWide I/O 2
allows these applications to experience modest speedups over DDR3, by increasing the row hit rate.

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

IP
C

No
rm

al
ize

d
to

 D
DR

3

DDR4 GDDR5 HBM
HMC HMC-Alt

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

IP
C

No
rm

al
ize

d
to

 D
DR

3

LPDDR3 LPDDR4
Wide I/O Wide I/O 2

Fig. 18. Performance of multimedia applications for standard-power (left) and low-power (right) DRAM types,
normalized to performance with DDR3. MPKI listed in parentheses.

Second, unlike the other multimedia applications, H.264 decoding performs significantly better
with certain high-bandwidthmemories:withGDDR5/HBM, its performance improves by 21.6%/14.7%
over DDR3.We find that GDDR5 and HBM cater well to H.264 decoding, as the application exhibits
highmemory intensity with highly-localized streaming access patterns, causing the majority of its
memory requests to be row hits. Due to its streaming nature, H.264 decoding still relies heavily on
DRAMtypeswithwide rows,which can take advantage of spatial locality.As a result, even though the
BPU of H.264 decoding increases in HMC by 177.2% over DDR3 (due to the distribution of streaming
requests across multiple banks), the application does not see large performance improvements with
HMC. The highly-localized access pattern also hurts the performance of H.264 decoding with DDR4.
Much like with DDR3, the application’s memory requests exploit spatial locality within a DDR4
DRAM row, but make use of only a limited amount of bank parallelism. As a result, the application
cannot take advantage of the additional banks in DDR4 over DDR3, and DDR4 slows downH.264
decoding by 2.6% compared to DDR3 due to its increased access latency.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:26 Saugata Ghose et al.

8.2 Network Accelerator Performance
The network accelerators we study handle a number of data processing tasks (e.g., processing
network packets, issuing network responses, storing the data in an application buffer). Such network
accelerators can be found in dedicated network processing chips, SoCs, and server chips [144].
Unlikemultimedia accelerators,which exhibit regular streaming access patterns, network accelerator
memory access patterns are dependent on the rate of incoming network traffic. A network accelerator
monitors traffic entering from the network adapter, performs depacketization and error correction,
and transfers the data to themainmemory system.As a result of its dependency on incoming network
traffic, thenetwork accelerator exhibits highly bursty behavior,where it occasionallywrites toDRAM,
but has a high memory intensity during each write burst.

OBSERVATION 10:
Network accelerators experience very high queuing latencies at DRAM even at low MPKI,

and benefit greatly from a high-bandwidth DRAM with large bank parallelism, such as HMC.

Figure 19 shows the sustained bandwidth provided by different memory types when running the
network accelerators, normalized to DDR3.We sweep the number of network accelerator requests
that are allowed to be in flight at any given time, to emulate different network injection rates.We find
that the network accelerator workloads behave quite differently than our other applications. Thanks
to the highly-bursty nature of the memory requests, the queuing latency accounts for 62.1% of the
total request latency, averaged across our workloads. For these workloads, HMC’s combination of
high available bandwidth and a very large number of banks allows it to increase the BPU by 2.28×
over DDR3, averaged across all of our workloads. This reduces the average queuing latency by 91.9%,
leading to an average performance improvement of 63.3% over DDR3. HMC-Alt combinesHMC’s low
queuing latencies with improved row locality, which better exploits the large (i.e., multi-cache-line)
size of each network packet. As a result, HMC-Alt performs 88.4% better than DDR3, on average.

0

1

2

3

4

BW
 N

or
m

al
ize

d
to

 D
DR

3

DDR4 GDDR5 HBM
HMC HMC-Alt

0

1

2

3

4

BW
 N

or
m

al
ize

d
to

 D
DR

3

LPDDR3 LPDDR4
Wide I/O Wide I/O 2

Fig. 19. Network accelerator bandwidth (BW) for standard-power (left) and low-power (right) DRAM types,
normalized to BW with DDR3. Maximum in-flight requests listed after the trace name, and MPKI listed in
parentheses.

We conclude that SoC accelerators benefit significantly from high-bandwidth memories (e.g., HMC,
GDDR5), but the diverse behavior of the different types of accelerators (e.g., multimedia vs. network)
makes it difficult to identify a single DRAM type that performs best across the board.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:27

8.3 GPGPU Application Performance
We study ten applications from the Mars [53], Rodinia [24], and LonestarGPU [12] suites. These
applications have diverse memory intensities, with last-level cacheMPKIs ranging from 0.005 (dmr)
to 25.3 (sp). Figure 20 shows the performance of the applications.

0.5
1.0
1.5
2.0
2.5
3.0

dm
r (

0.
0)

iix
 (0

.0
)

hs
 (0

.4
)

bp
 (0

.4
)

ss
 (1

.1
)

bh
 (2

.2
)

m
st

 (3
.9

)
sc

 (5
.4

)
bf

s (
14

.0
)

sp
 (2

5.
3)

No
rm

al
ize

d
IP

C

DDR4 GDDR5 HBM
HMC HMC-Alt 3.54

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

dm
r iix hs bp ss bh m

st sc bf
s sp

No
rm

ali
ze

d
IP

C

LPDDR3 LPDDR4
Wide I/O Wide I/O 2

Fig. 20. Performance of GPGPU applications for standard-power (left) and low-power (right) DRAM types,
normalized to DDR3. MPKI in parentheses.

We draw out two key findings from the figure. First, we find that for our applications that are
not memory intensive (MPKI < 1 for GPGPU applications), all of our DRAM types perform near
identically. Second, six of our applications (ss, bh,mst, sc, bfs, sp) are memory intensive, and benefit
significantly from executing on a systemwith high-bandwidth DRAM types (i.e., GDDR5, HBM, or
HMC). On average, the IPC of memory-intensive GPGPU applications is 39.7% higher with GDDR5,
26.9% higher with HBM, and 18.3% higher with both HMC and HMC-Alt, compared to DDR3. Unlike
the other applications we study, the memory-intensive GPGPU applications also see significant
performance improvements with DDR4, which provides an average performance improvement of
16.4% over DDR3.

A large reason for the high speedups of the memory-intensive GPGPU workloads with high-
bandwidth DRAM types ismemory coalescing [8, 23]. In a GPU, the memory controller coalesces (i.e.,
combines) multiple memory requests that target nearby locations in memory into a single memory
request. This is particularly useful for GPU andGPGPU applications, where a large number of threads
operate in lockstep, and often operate on neighboring pieces of data. Memory coalescing exploits
the spatial locality between multiple threads, in order to reduce pressure on the memory system
and reduce queuing delays. The coalesced memory requests take significant advantage of the high
bandwidth available in GDDR5, and the additional bank parallelism available in DDR4. Coalescing is
particularly helpful for sc, where the memory requests are highly bound by the available memory
bandwidth [100]. This leads to very high speedups on GDDR5 (253.6%) for sc over DDR3.
Unlike the other memory-intensive applications, memory requests from sp are typically not

coalesced [23] (i.e., requests from multiple threads cannot be combined easily to exploit locality).
Without coalescing, the application issues many requests at once to DRAM, and, thus, performs best
when it is run on a DRAM type that can provide both high bandwidth and high bank parallelism to
service many requests concurrently, such as HBM or HMC. As a result, for sp, HBM outperforms
GDDR5 by 8.3%, andHMC outperforms GDDR5 by 11.3%. HMC andHMC-Alt performwithin 0.2% of
each other, as sp does not have significant locality for HMC-Alt to exploit for additional performance
benefits.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:28 Saugata Ghose et al.

We conclude that for memory-intensive GPGPU applications, GDDR5 provides significant perfor-
mance improvements as long as memory requests can be coalesced, while HBM and HMC improve
performance even more when memory requests are not coalesced because both of these DRAM types
provide high bank parallelism.

8.4 DRAM Energy Consumption

OBSERVATION 11:
For the accelerators that have high memory throughput requirements, GDDR5 provides much
greater energy efficiency (i.e., large performance gains with a small energy increase) than DDR3.

Figure 21 shows the normalized energy consumption for the three major types of heterogeneous
systemworkloads thatwe study: (1)multimedia acceleration, (2) networkacceleration, and (3)GPGPU
applications, averaged across all applications of each type. Overall, for multimedia acceleration and
GPGPU applications, we observe that GDDR5 consumes more than double the energy of the other
memory types, while for network acceleration, GDDR5 consumes only 24.8% more energy than
DDR3.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

al
ize

d
En

er
gy

Multimedia GPGPUNetwork

Fig. 21. Mean DRAM energy consumption for multimedia (left) and network (right) acceleration, normalized
to DDR3.

Upon closer inspection, however, we find that for the set of heterogeneous system applications
that require high memory throughput (H.264 decoding, all of our network acceleration traces, sc,
bfs, and sp), GDDR5’s energy consumption comes with large performance benefits. Figure 22 shows
the energy consumption of the high-throughput multimedia and GPGPU applications (see Figure 21
for the network accelerator energy). Averaged across these high-throughput applications, GDDR5
consumes only 31.4% more energy than DDR3, while delivering a performance improvement of
65.6% (not shown). In the extreme case, for sc, GDDR5 consumes only 20.2%more energy than DDR3
to provide a 253.6% speedup. For such accelerator applications, where high memory throughput
is combined with high spatial locality, we conclude that GDDR5 can be significantly more energy
efficient than the other DRAM types.
We conclude that certain types of accelerators can achieve higher energy efficiency (i.e., large

performance increases with a small energy increase) than with DDR3, by using aggressive DRAM types
such as GDDR5, when the accelerators perform tasks that require high memory throughput.

9 COMMON OS ROUTINES
We collect several traces capturing common kernel-mode activities for different benchmarks:
• IOzone [66], a file system benchmark suite that tests a number of I/O performance tasks (Tests
0–12);

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:29

0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

al
ize

d
En

er
gy

H.264 decode spbfssc

Fig. 22. DRAM energy consumption for high-memory-throughput multimedia and GPGPU applications,
normalized to DDR3.

• Netperf [55], which tests TCP/UDP network calls (UDP_RR, UDP_STREAM, TCP_RR,
TCP_STREAM);

• bootup [164], a representative phase of the boot operation in the Debian operating system;
• forkbench [164], a microbenchmark trace that creates a 64MB array of random values, forks itself,
and has its child process update 1K random pages; and

• shell [164], a microbenchmark trace of a Unix shell script that runs find on a directory tree and
executes ls on each subdirectory.

9.1 Workload Characteristics
While the OS routines that we study perform a variety of different tasks, we find that they exhibit
very similar behavior.We depict the row buffer locality of the routineswithDDR3DRAM in Figure 23.
From the figure, we find that most of the routines have exceptionally high row buffer locality, with
row buffer hit rates greater than 75%. This behavior occurs becausemany of theOS routines are based
on files and file-like structures, and these files are often read or written in large sequential blocks.
This causes the routines to access most, if not all, of the data mapped to an OS page (and therefore
to the open DRAM row that houses the page). We also observe that memory requests from these
routines reach the DRAM at regular time intervals, as opposed to in bursts. The regularly-timed
memory requests reduce the peak throughput demand on DRAM.

0%
25%
50%
75%

100%

sh
el

l
bo

ot
up fo
rk

UD
P_

RR
TC

P_
RR

UD
P_

ST
RE

AM
TC

P_
ST

RE
AM

Te
st

 4
Te

st
 1

1
Te

st
 1

0
Te

st
 9

Te
st

 8
Te

st
 5

Te
st

 3
Te

st
 1

Te
st

 7
Te

st
 1

2
Te

st
 2

Te
st

 0
Te

st
 6M

em
or

y
Re

qu
es

ts Row Hits Row Misses Row Conflicts

Netperf IOzone, 64MB File

Fig. 23. DDR3 row buffer locality for OS routines.

9.2 Performance
Figure 24 shows the performance of the OS routines on standard-power DRAM types, normalized to
their performance under DDR3.We find that the overall performance of the routines is similar to the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:30 Saugata Ghose et al.

performance trends observed for server and cloud workloads (see Section 7.2): only GDDR5memory
outperforms DDR3 for the majority of routines. The other high-throughput memories are generally
unable to significantly improve performance (except HBM, for some workloads), and in many cases
actually hurt performance.

0.8

0.9

1.0

1.1

1.2
sh

el
l (

0.
2)

bo
ot

up
 (1

.1
)

fo
rk

be
nc

h
(4

9.
5)

UD
P_

RR
 (0

.1
)

TC
P_

RR
 (0

.1
)

UD
P_

ST
RE

AM
 (0

.1
)

TC
P_

ST
RE

AM
 (0

.1
)

Te
st

 4
 (3

.4
)

Te
st

 1
1

(4
.5

)
Te

st
 1

0
(4

.7
)

Te
st

 9
 (4

.7
)

Te
st

 8
 (4

.7
)

Te
st

 5
 (1

0.
1)

Te
st

 3
 (1

3.
3)

Te
st

 1
 (1

3.
6)

Te
st

 7
 (1

3.
7)

Te
st

 1
2

(1
5.

4)
Te

st
 2

 (1
5.

6)
Te

st
 0

 (1
5.

7)
Te

st
 6

 (1
6.

5)IP
C

No
rm

al
ize

d
to

 D
DR

3 DDR4 GDDR5 HBM HMC HMC-Alt

Netperf IOzone, 64MB File

Fig. 24. Performance of common OS routines for standard-power DRAM types, normalized to performance
with DDR3. MPKI listed in parentheses.

OBSERVATION 12:
OS routines benefit most from DRAM types with low access latencies

that exploit spatial locality (e.g., GDDR5).

Lower-latency DRAM types such as GDDR5 are best for OS routines due to (1) the serialized access
patterns of most of the routines (e.g., dependent memory requests) and (2) the regular time intervals
between DRAM requests (see Section 9.1). The regular, serialized accesses require lower latency to
be served faster and do not benefit from high memory throughput. As a result, DRAM types that
increase access latency to provide higher throughput often hurt the performance of OS routines.
This is particularly true of HMC, which greatly sacrifices row buffer locality with its narrow rows to
provide high bank parallelism (which OS routines typically cannot take advantage of due to their
low BPUs). As we show in Figure 24, if we employ our locality-aware addressing mode for HMC
(HMC-Alt), the performance of HMC improves for some (but not all) of the routines, as HMC-Alt
can exploit more of the high spatial locality present in OS routines than HMC. GDDR5 provides
the highest performance across all OS routines because it reduces latency over DDR3 while also
increasing bandwidth.

Figure 25 shows the performance of the commonOS routines on low-powerDRAM types.We draw
out four findings from the figure. First, we observe that the average performance loss from using
low-power DRAM types, compared to DDR3, can be relatively small. For example, LPDDR3 leads to
an average slowdown of only 6.6% over DDR3. Second, we observe that due to the high sensitivity of
OS routines toDRAMaccess latency, LPDDR4 causes a larger slowdown (9.6% on average overDDR3)
than LPDDR3 due to its higher access latency. Third, we observe that there are four routines where
Wide I/O 2 provides significant performance improvements over DDR3: Test 12, Test 2, Test 0, and
Test 6. This is becauseWide I/O 2 significantly increases the row hit rate. As Figure 23 shows, these
four routines have much lower row hit rates (an average of 56.1%) than the other routines in DDR3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:31

This is because the four routines have access patterns that lead to a large number of row conflicts.
Specifically, Test 12 reads data from a file and scatters it into multiple buffers using the preadv()
system call, while Test 2, Test 0, and Test 6 are dominated by write system calls that update both the
data and any associated metadata. The data and associated metadata often reside in different parts of
the memory address space, which leads to row conflicts in many DRAM types.Wide I/O 2 reduces
these row conflicts, and the average rowhit rate for these four routines increases to 91.0% (not shown).
Fourth, we observe that the performance reduction that forkbench experiences on low-power DRAM
types versus DDR3 is much larger than the reduction other routines experience. This is due to the
fact that forkbench is significantly more memory intensive (with anMPKI of 49.5) than the other OS
routines.

0.6

0.8

1.0

1.2

1.4

sh
el

l
bo

ot
up

fo
rk

be
nc

h
UD

P_
RR

TC
P_

RR
UD

P_
ST

RE
AM

TC
P_

ST
RE

AM
Te

st
 4

Te
st

 1
1

Te
st

 1
0

Te
st

 9
Te

st
 8

Te
st

 5
Te

st
 3

Te
st

 1
Te

st
 7

Te
st

 1
2

Te
st

 2
Te

st
 0

Te
st

 6IP
C

No
rm

ali
ze

d
to

 D
DR

3 LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Netperf IOzone, 64MB File

Fig. 25. Performance of common OS routines for low-power DRAM types, normalized to performance with
DDR3.

We conclude that OS routines perform better on memories that (1) provide low-latency access and
(2) exploit the high amount of spatial locality that exists in the memory access patterns of these routines.

9.3 DRAM Energy Consumption
Figure 26 shows the energy consumed by each of the DRAM types that we have accurate power
models for, normalized to DDR3 energy consumption, and averaged across all of the OS routines.
We find that the DRAM energy consumption trends of the OS routines is very similar to the trends
that we observed for desktop workloads in Section 5.4. Without a large improvement in average
performance, GDDR5 consumes 2.1xmore energy than DDR3, while LPDDR3/LPDDR4 consume
52.6%/58.0% less energy than DDR3.

0.0
0.5
1.0
1.5
2.0
2.5

DDR3 DDR4 GDDR5 LPDDR3 LPDDR4No
rm

al
ize

d
En

er
gy

Fig. 26. Mean DRAM energy consumption for common OS routines, normalized to DDR3.

LPDDR3/LPDDR4 incur a much smaller average performance loss (6.6%/9.6%; see Section 9.2) over
DDR3 for OS routines than for desktop and scientific applications. While both the OS routines and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:32 Saugata Ghose et al.

our desktop and scientific applications exhibit high row buffer locality and lowmemory intensity,
the average row buffer locality is higher for the OS routines, while the average memory intensity
is lower. As a result, LPDDR3 and LPDDR4 strike a better compromise between performance and
energy consumption for OS routines than they do for desktop and scientific applications.

We conclude that OS routines can attain high energy efficiency (i.e., large energy reductions with a
small performance impact), compared to DDR3, when run on low-power DRAM types that provide
large row sizes to exploit spatial locality (e.g., LPDDRx).

10 KEY TAKEAWAYS
From our detailed characterization, and from the twelve key observations that we make, we find that
there are a number of high-level lessons and takeaways that can be of use for future DRAMarchitects,
system architects, and programmers.We discuss the four most important (as we deem) takeaways
here.

(1) DRAM latency remains a critical bottleneck for many applications. For many of our
applications, we observe that the overall application performance degrades when the DRAM
access latency increases. These applications cannot easily take advantage of greatermemory-level
parallelismor highermemory throughput, often because thememory intensity of the applications
is not high enough to take advantage of the maximum bandwidth offered by DDR3. As a result,
even thoughmany newDRAM types offer higher bandwidth and higher bank parallelism than
DDR3, they do not significantly improve performance. In fact, in many cases, newDRAM types
reduce performance, because the increased bandwidth and bank parallelism they provide come at
the cost of higher latency.
For DRAM architects, this means that newer DRAM types require ways to bring down the
latency of a single access, which goes against the recent trend of increasing latency in order to
provide other benefits. Several recent works propose ways of reducing DRAM latency at low
cost [15, 18, 21, 25, 50, 52, 91, 98, 105, 109, 110, 164, 187, 192].We believe such approaches are very
promising and critical for modern and future applications, and we encourage the development of
more such novel latency reduction mechanisms for DRAM.
For system architects, there is a need to reconsider whether systems should be built with older,
lower-latency DRAM types such as DDR3 and GDDR5 instead of with newer, higher-throughput
DRAM types such as DDR4 and HMC. The use of memory controller mechanisms to reduce
DRAM latency is also promising [15, 21, 52, 91, 105, 109, 187, 192].

(2) Bank parallelism is not fully utilized by a wide variety of our applications.Aswe show
in our characterization, bank parallelism utilization (BPU; see Section 4) is a key indicator
of whether applications benefit from high-throughput and highly-parallel DRAM types such
as HBM and HMC. BPU expresses a combination of the memory intensity and the memory-
level parallelism of an application.While there are some applications (e.g., multiprogrammed
workloads, high-memory-intensity GPGPU applications) that have high BPU and benefit from
usingDRAMtypes such asHBMandHMC, a variety of our applications have lowBPU (e.g., single-
thread desktop/scientific applications, irregular memory-sensitive multithreaded applications,
and server/cloud applications), and thus do not experience appreciable performance gains with
HBM and HMC.
For DRAM architects, this indicates thatprovidingagreaternumberofbanks innewerDRAMtypes
may not provide significant gains for especially single-thread performance. For example, while
DDR4 doubles the number of banks over DDR3, the increased bank count requires architectural
changes (e.g., the introduction of bank groups; see Section 2.2 and Appendix A) that increase

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:33

access latency. An important (critical) thread with low BPU may not be able to overcome the
latency increase, and thus the additional banks would not benefit performance. We see this
behavior in several of our workloads, and thus their performance degrades when DDR4 is used
instead of DDR3.
For system architects, it may be useful to consider using cheaper DRAM types with fewer banks
(and also low latencies) in systems that run applications with low BPU.
We do note that there are several cases where row conflicts remain high even when BPU is low
(e.g., our example YCSB server workload in Figure 15, irregular memory-intensive multithreaded
workloads, cactusADM,omnetpp, andGemsFDTD).This canoccur ifmemoryrequestsareunevenly
distributed across thememory banks, causing some of the banks to be highly contended for while
other banks remain idle. For both DRAM architects and programmers, this indicates that there
are opportunities to change address interleavings, memory schedulers, memory allocation, and
program access patterns to make better use of the available bank-level parallelism.

(3) Spatial locality continues to provide significant performance benefits if it is exploited
by the memory subsystem.One of the more significant changes made in HMC versus other
DRAM types is the reduction of the row buffer size. A row in HMC (256 B) is 97% smaller than a
row in DDR3/DDR4 (8 kB). HMC uses the shorter row size to significantly increase bank-level
parallelism and memory throughput. Due to the limited BPU of many applications, the increased
parallelism and throughput only occasionally provide benefits when using HMC. In contrast
to bank parallelism, applications and virtual memory managers still try to maximize spatial
locality as much as they can. While most DRAM types exploit this spatial locality (by using large
rows to amortize the high penalty of a row conflict), HMC’s small rows are unable to effectively
capture much of this locality. As a result, HMC provides notable performance improvements
only in cases where spatial locality is low (or is destroyed), such as for highly-memory-intensive
multiprogrammed workloads where multiple applications significantly interfere with each other.
Otherwise, HMC can lead to large performance losses compared to other high-throughput
memories (e.g., GDDR5, HBM), and HMC often performs worse thanmost other DRAM types.
For DRAM architects, our observations indicate that new DRAM types that activate at a row
granularity should not reduce the rowwidth. A reduced rowwidth typically requires more row
activation operations for the same amount of data, which introduces a significant overhead that
cannot be (easily) amortized by other benefits (such as higher memory-level parallelism in HMC).

For programmers, applications should maximize the amount of spatial locality that they exploit,
as most DRAM types are designed to perform better with higher locality. This could require
(a) redesigning data structures to maximize spatial locality based on the application’s memory
access patterns, and (b) issuing fewer, larger memory allocation requests that the virtual memory
manager can attempt to allocate contiguously in the physical address space. Alternatively, for
programs that will execute on systems that make use of low-spatial-locality memories such as
HMC, programmers should take the poor hardware locality into account and perhaps rewrite
their applications to take better advantage of the large available bank-level parallelism.

(4) For some classes of applications, low-power memory can provide large energy sa-
vings without sacrificing significant performance. In particular, if we compare DDR3with
LPDDR4, we find that there are two types of memory behavior where LPDDR4 significantly
reduces DRAM energy consumption without a significant performance overhead. First, applicati-
ons with lowmemory intensity do not perform a large number of memory accesses. As a result,
despite the much higher access latency of LPDDR4 (45.0 ns for a rowmiss) over that of DDR3

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:34 Saugata Ghose et al.

(26.3 ns), such applications do not experience a significant impact on their overall execution time.
Second, applicationswith high BPU can take advantage of the larger number of banks in LPDDR4.
The greater number of banks in LPDDR4 (16 per rank) than in DDR3 (8 per rank) actually helps
LPDDR4 to (partially) overcome the overhead of additional latency.
For system architects, this means that there are a number of cases where they can deploy systems
that use LPDDR4 to reduce the system energy consumption with a small impact on system
performance, thereby improving energy efficiency.
For DRAM architects, there is a need to develop newDRAM types and subsystems that consume
low energy without impacting system performance across a broad range of applications.

11 RELATEDWORK
To our knowledge, this is (1) the first work to uncover new trends about and interactions between
different DRAM types and the performance and energy consumption of modern workloads, (2) the
most extensive study performed to date on the combinedDRAM–workload behavior, and (3) themost
comprehensive study to date that compares the performance of monolithic (i.e., 2D) and 3D-stacked
DRAM. No prior work presents a comprehensive study across such a wide variety of workloads (115
of them) and DRAM types (nine of them).We briefly discuss the most closely related works.
Cuppu et al. [28, 29] present a study of seven DRAM types and their interaction with a suite

of desktop and scientific applications. Their work, more than two decades old now, noted several
characteristics emerging from then-contemporary DRAM designs (many of which do not exist in the
field today), and made recommendations based on these insights. Similar to some of our findings,
Cuppu et al. recommend that memory latency needs to be reduced, and spatial locality needs to be
further exploited by the memory subsystem. Other recommendations from Cuppu et al. are more
relevant for the older DRAM types that they study, and in some cases do not apply to the modern
DRAM types that we study in this work. Later work by Cuppu and Jacob [30] studies the impact of
different memory channel configurations on application performance, which is orthogonal to the
characterizations that we perform.

Zhu and Zhang [196] study how various DRAM types can be optimized toworkwith simultaneous
multithreading (SMT) processors, but do not perform a broad characterization of applications. Zheng
and Zhu [195] compare the performance of DDR3 DRAM to DDR2 [71] and FB-DIMM [70] for 26
desktop and scientific applications. Gomony et al. [48] characterize three low-power DRAM types for
mobile systems, and propose a tool to select the right type for real-time mobile systems. All of these
studies predate the emergence of most of the DRAM types that we characterize (DDR4, LPDDR3,
LPDDR4, HBM, HMC,Wide I/O 2), do not evaluate energy consumption, and focus only on a limited
set of applications.
Li et al. [114] evaluate the performance and power of nine modern DRAM types, including two

versions each of HMC and HBM. However, unlike our wide range of applications, their evaluation
studies only 10 desktop and scientific applications. Furthermore, their memory configuration uses
row interleaving, which reduces the bank-level parallelism compared to manymodern systems that
use cache line interleaving [60, 64, 65, 80, 94, 98, 112, 156, 193].
Several works study the impact of new and existing memory controller policies on performance

(e.g., [7, 15, 17, 21, 31, 39, 40, 44, 52, 57, 67, 68, 81, 82, 84, 91, 94, 95, 102–106, 109, 115, 130–132,
135, 140, 142, 154–156, 163, 174–177, 185–187, 190, 192–194]). These works are orthogonal to our
study, which keeps controller policies constant and explores the effect of the underlying DRAM
type. Other works profile the low-level behavior of DRAM types by characterizing real DRAM
chips (e.g., [15, 19, 21, 45, 51, 85–88, 91–93, 97, 105, 109, 116, 145, 146, 151]). These works focus on
a single DRAM type (DDR3 or LPDDR4), and do not use real-world applications to perform their

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:35

characterization, since their goal is to understand device behavior independently of workloads. A
fewworks [58, 123, 162, 171, 172] perform large-scale characterization studies of DRAM errors in the
field. These works examine reliability in a specific setting (e.g., datacenters, supercomputers), and as
a result they do not focus on metrics such as performance or energy, and do not consider a broad
range of application domains.

A number of works study the memory access behavior of benchmark suites (e.g., [2, 10, 22, 53, 54,
122, 133, 167]). These works focus on only a single DRAM type. Conversely, several works propose
DRAM simulators and use the simulators to study the memory access behavior of a limited set of
workloads on several memory types [3, 46, 96, 113, 153, 158, 179]. None of these studies (1) take a
comprehensive look at aswide a range ofworkloads andDRAM types aswe do, or (2) evaluate energy
consumption.

12 CONCLUSION
It has become very difficult to intuitively understand howmodern applications interact with different
DRAM types. This is due to the emergence of (1) many newDRAM types, each catering to different
needs (e.g., high bandwidth, low power, high memory density); and (2) new applications that are
often data intensive. The combined behavior of each pair of workload and DRAM type is impacted by
the complex interaction between memory latency, bandwidth, bank parallelism, row buffer locality,
memory access patterns, and energy consumption. In this work, we perform a comprehensive
experimental study to analyze these interactions, by characterizing the behavior of 115 applications
and workloads across nine DRAM types.With the help of newmetrics that capture the interaction
betweenmemory access patterns and the underlying hardware, wemake 12 key observations and
draw out many new findings about the combined DRAM–workload behavior. We then provide a
number of recommendations for DRAM architects, system architects, and programmers. We hope
that our observations inspire the development of manymemory optimizations in both hardware and
software. To this end, we have released our toolchain with the hope that the tools can assist with
future studies and research onmemory optimization in both hardware and software.

ACKNOWLEDGMENTS
We thank our shepherd Evgenia Smirni and the anonymous reviewers for feedback.We thank the
SAFARI Research Groupmembers for feedback and the stimulating intellectual environment they
provide.We acknowledge the generous support of our industrial partners: Alibaba, Facebook, Google,
Huawei, Intel, Microsoft, and VMware. This research was supported in part by the Semiconductor
Research Corporation and the National Science Foundation.

REFERENCES
[1] Advanced Micro Devices, Inc., “High Bandwidth Memory (HBM) DRAM,” 2013.
[2] K. K. Agaram, S. W. Keckler, C. Lin, and K. S. McKinley, “Decomposing Memory Performance: Data Structures and

Phases,” in ISMM, 2006.
[3] J. Ahn, N. Jouppi, C. Kozyrakis, J. Leverich, and R. Schreiber, “Future Scaling of Processor-Memory Interfaces,” in SC,

2009.
[4] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A. Navaux, “SiNUCA: A Validated Micro-Architecture

Simulator,” in HPCC/CSS/ICESS, 2015.
[5] Apache Foundation, “Apache Hadoop,” http://hadoop.apache.org/.
[6] Apache Foundation, “Apache HTTP Server Project,” http://www.apache.org/.
[7] R. Ausavarungnirun, K. K. Chang, L. Subramanian, G. H. Loh, and O. Mutlu, “Staged Memory Scheduling: Achieving

High Performance and Scalability in Heterogeneous Systems,” in ISCA, 2012.
[8] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing CUDA Workloads Using a Detailed

GPU Simulator,” in ISPASS, 2009.
[9] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S. H. K. Narayanan, A. A. Chien, P. Hovland, and B. Norris,

“Exascale Workload Characterization and Architecture Implications,” in ISPASS, 2013.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:36 Saugata Ghose et al.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Characterization and Architectural
Implications,” Princeton Univ. Dept. of Computer Science, Tech. Rep. TR-811-08, 2008.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “gem5: A Multiple-ISA Full System Simulator with
Detailed Memory Model,” CAN, 2011.

[12] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of Irregular Programs on GPUs,” in IISWC, 2012.
[13] Canonical Ltd., “Ubuntu 14.04 LTS (Trusty Tahr),” http://releases.ubuntu.com/14.04/, 2014.
[14] Canonical Ltd., “Ubuntu 16.04 LTS (Xenial Xerus),” http://releases.ubuntu.com/16.04/, 2016.
[15] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and K. Goossens, “Exploiting Expendable

Process-Margins in DRAMs for Run-Time Performance Optimization,” in DATE, 2014.
[16] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson, N. Wehn, and K. Goossens, “DRAMPower:

Open-Source DRAM Power & Energy Estimation Tool,” http://www.drampower.info.
[17] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu, “Improving DRAM Performance

by Parallelizing Refreshes With Accesses,” in HPCA, 2014.
[18] K. K. Chang, P. J. Nair, S. Ghose, D. Lee, M. K. Qureshi, and O. Mutlu, “Low-Cost Inter-Linked Subarrays (LISA):

Enabling Fast Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.
[19] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and

O. Mutlu, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization,
Analysis, and Mechanisms,” in SIGMETRICS, 2017.

[20] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Memory Systems,” Ph.D. dissertation,
Carnegie Mellon Univ., 2017.

[21] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Under-
standing Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[22] M. J. Charney and T. R. Puzak, “Prefetching and Memory System Behavior of the SPEC95 Benchmark Suite,” IBM JRD,
1997.

[23] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian, “Managing DRAM Latency Divergence
in Irregular GPGPU Applications,” in SC, 2014.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in IISWC, 2009.

[25] J. Choi, W. Shin, J. Jang, J. Suh, Y. Kwon, Y. Moon, and L.-S. Kim, “Multiple Clone Row DRAM: A Low Latency and
Area Optimized DRAM,” in ISCA, 2015.

[26] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimizations for Exploiting Memory-Level Parallelism,” in
ISCA, 2004.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking Cloud Serving Systems with
YCSB,” in SoCC, 2010.

[28] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A Performance Comparison of Contemporary DRAM Architectures,” in
ISCA, 1999.

[29] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “High-Performance DRAMs in Workstation Environments,” in IEEE
Transactions on Computers, 2001.

[30] V. Cuppu and B. Jacob, “Concurrency, Latency, or System Overhead: Which Has the Largest Impact on Uniprocessor
DRAM-System Performance?” in ISCA, 2001.

[31] A. Das, H. Hassan, and O. Mutlu, “VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency,” in DAC,
2018.

[32] R. Das, O. Mutlu, T. Moscibroda, and C. Das, “Application-Aware Prioritization Mechanisms for On-Chip Networks,”
in MICRO, 2009.

[33] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory Power Management via Dynamic
Voltage/Frequency Scaling,” in ICAC, 2011.

[34] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in OSDI, 2004.
[35] R. Desikan, D. Burger, and S. W. Keckler, “Measuring Experimental Error in Microprocessor Simulation,” in ISCA,

2001.
[36] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “OLTP-Bench: An Extensible Testbed for Benchmarking

Relational Databases,” in VLDB, 2004.
[37] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging

Nonvolatile Memory,” TCAD, 2012.
[38] Dormando, “Memcached: High-Performance Distributed Memory Object Caching System,” http://memcached.org/.
[39] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-Aware Shared Resource Management for Multi-Core Systems,”

in ISCA, 2011.
[40] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt, “Parallel Application Memory

Scheduling,” in MICRO, 2011.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:37

[41] F. A. Endo, D. Coroussé, and H.-P. Charles, “Micro-Architectural Simulation of In-Order and Out-of-Order ARM
Microprocessors with gem5,” in SAMOS, 2014.

[42] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multiprogram Workloads,” IEEE Micro, 2008.
[43] J. Fritts and B. Mangione-Smith, “MediaBench II - Technology, Status, and Cooperation,” in The Workshop on Media

and Stream Processors, 2002.
[44] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via Processor-Side Load Criticality Information,”

in ISCA, 2013.
[45] S. Ghose, A. G. Yağlıkçı, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu, H. Hassan, K. K. Chang, N. Chatterjee, A. Agrawal,

M. O’Connor, and O. Mutlu, “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study,” in SIGMETRICS, 2018.

[46] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinski, H. Chen, R. Patti, B. Hold, C. Chakrabarti, T. Mudge, and D. Blaauw,
“Exploring DRAM Organizations for Energy-Efficient and Resilient Exascale Memories,” in SC, 2013.

[47] A. Glew, “MLP Yes! ILP No! Memory Level Parallelism, or Why I No Longer Care About Instruction Level Parallelism,”
in ASPLOS WACI, 1998.

[48] M. D. Gomony, C. Weis, B. Akesson, N. Wehn, and K. Goossens, “DRAM Selection and Configuration for Real-Time
Mobile Systems,” in DATE, 2012.

[49] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and More Flexible Program Phase Analysis,” JILP,
2005.

[50] H. Hassan, M. Patel, J. S. Kim, A. G. Yağlıkçı, N. Vijaykumar, N. M. Ghiasi, S. Ghose, and O. Mutlu, “CROW: A
Low-Cost Substrate for Improving DRAM Performance, Energy Efficiency, and Reliability,” in ISCA, 2019.

[51] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee, O. Ergin, and O. Mutlu, “SoftMC: A
Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[52] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and O. Mutlu, “ChargeCache: Reducing
DRAM Latency by Exploiting Row Access Locality,” in HPCA, 2016.

[53] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “Mars: A MapReduce Framework on Graphics Processors,” in
PACT, 2008.

[54] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millennium,” IEEE Computer, 2000.
[55] Hewlett-Packard, “Netperf: A Network Performance Benchmark (Rev. 2.1),” 1996.
[56] U. Holzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines.

Morgan & Claypool, 2009.
[57] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” in MICRO, 2004.
[58] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike Twice: Understanding the Nature of DRAM

Errors and the Implications for System Design,” in ASPLOS, 2012.
[59] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification 2.1,” 2015.
[60] IBM Corp., POWER9 Processor RegistersSpecification, Vol. 3, May 2017.
[61] Intel Corp., “Product Specification: Intel® Core™ i7-2600K,” https://ark.intel.com/products/52214/.
[62] Intel Corp., “Product Specification: Intel® Core™ i7-975 Processor Extreme Edition,” https://ark.intel.com/products/

37153/.
[63] Intel Corp., “Product Specification: Intel® Xeon® Processor E5-2630 v4,” https://ark.intel.com/products/92981/.
[64] Intel Corp., 7th Generation Intel® Processor Families for S Platforms and Intel® Core™ X-Series Processor Family Datasheet,

Vol. 1, December 2018.
[65] Intel Corp., Intel® Xeon® Processor E5-1600/2400/2600/4600 (E5-Product Family) Product Families Datasheet Vol. 2, May

2018.
[66] IOzone Lab, “IOzone Filesystem Benchmark,” http://www.iozone.org/, 2016.
[67] E. İpek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing Memory Controllers: A Reinforcement Learning

Approach,” in ISCA, 2008.
[68] C. Isen and L. John, “ESKIMO — Energy Savings Using Semantic Knowledge of Inconsequential Memory Occupancy

for DRAM Subsystem,” in MICRO, 2009.
[69] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Architecture Increases Density and Performance,” in

VLSIT, 2012.
[70] JEDEC Solid State Technology Assn., JESD206: FBDIMM Architecture and Protocol, January 2007.
[71] JEDEC Solid State Technology Assn., JESD79-2F: DDR2 SDRAM Standard, November 2009.
[72] JEDEC Solid State Technology Assn., JESD229: Wide I/O Single Data Rate (Wide I/O SDR) Standard, December 2011.
[73] JEDEC Solid State Technology Assn., JESD79-3F: DDR3 SDRAM Standard, July 2012.
[74] JEDEC Solid State Technology Assn., JESD235: High Bandwidth Memory (HBM) DRAM, October 2013.
[75] JEDEC Solid State Technology Assn., JESD229-2: Wide I/O 2 (WideIO2) Standard, August 2014.
[76] JEDEC Solid State Technology Assn., JESD209-3C: Low Power Double Data Rate 3 (LPDDR3) Standard, August 2015.
[77] JEDEC Solid State Technology Assn., JESD212C: Graphics Double Data Rate (GDDR5) SGRAM Standard, February 2016.
[78] JEDEC Solid State Technology Assn., JESD209-4B: Low Power Double Data Rate 4 (LPDDR4) Standard, March 2017.
[79] JEDEC Solid State Technology Assn., JESD79-4B: DDR4 SDRAM Standard, June 2017.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:38 Saugata Ghose et al.

[80] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez, “Balancing DRAM Locality and Parallelism in
Shared Memory CMP Systems,” in HPCA, 2012.

[81] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-Aware Memory Controller for Dynamically Balancing GPU
and CPU Bandwidth Use in an MPSoC,” in DAC, 2012.

[82] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “Exploiting Core Criticality for
Enhanced GPU Performance,” in SIGMETRICS, 2016.

[83] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi, “Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling,” in The Memory Forum, 2014.

[84] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-Page: A DRAM Page-Mode Scheduling Policy for the
Many-Core Era,” in MICRO, 2011.

[85] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in
DRAM,” in DSN, 2016.

[86] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

[87] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for Memory Content-Based Detection and
Mitigation of Data-Dependent Failures in DRAM,” CAL, 2016.

[88] S. Khan, C. Wilkerson, Z. Wang, A. Alameldeen, D. Lee, and O. Mutlu, “Detecting and Mitigating Data-Dependent
DRAM Failures by Exploiting Current Memory Content,” in MICRO, 2017.

[89] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-Centric System Interconnect Design with Hybrid Memory Cubes,” in
PACT, 2013.

[90] J. S. Kim, C. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J. G. Kim, H. Park, J. W. Ryu, K. Park, S. K.
Kang, S. Y. Kim, H. Kim, J. M. Bang, H. Cho, M. Jang, C. Han, J. B. Lee, K. Kyung, J. S. Choi, and Y. H. Jun, “A 1.2V
12.8GB/s 2Gb Mobile Wide-I/O DRAM with 4x128 I/Os Using TSV-Based Stacking,” in ISSCC, 2011.

[91] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the
Variation in Local Bitlines,” in ICCD, 2018.

[92] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency–Reliability Tradeoff in Modern DRAM Devices,” in HPCA, 2018.

[93] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Commodity DRAM Devices to Generate
True Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.

[94] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers,” in HPCA, 2010.

[95] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Memory Scheduling: Exploiting Differences
in Memory Access Behavior,” in MICRO, 2010.

[96] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simulator,” CAL, 2015.
[97] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in Memory

Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.
[98] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,”

in ISCA, 2012.
[99] N. Kırman, M. Kırman, M. Chaudhuri, and J. F. Martínez, “Checkpointed Early Load Retirement,” in HPCA, 2005.
[100] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski, T. Mudge, and S. Mahlke, “WarpPool: Sharing

Requests with Inter-Warp Coalescing for Throughput Processors,” in MICRO, 2015.
[101] K. Lawton, B. Denney, and C. Bothamy, “The Bochs IA-32 emulator project,” http://bochs.sourceforge.net, 2006.
[102] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Controllers,” in MICRO, 2008.
[103] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-Level Parallelism in the Presence of

Prefetching,” in MICRO, 2009.
[104] C. J. Lee, E. Ebrahimi, V. Narasiman, O. Mutlu, and Y. N. Patt, “DRAM-Aware Last-Level Cache Writeback: Reducing

Write-Caused Interference in Memory Systems,” Univ. of Texas at Austin, High Performance Systems Group, Tech.
Rep. TR-HPS-2010-002, 2010.

[105] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-
Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,”
in SIGMETRICS, 2017.

[106] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled Direct Memory Access: Isolating
CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[107] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,” Ph.D. dissertation, Carnegie Mellon
Univ., 2016.

[108] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-Layer Access: Improving 3D-Stacked
Memory Bandwidth at Low Cost,” TACO, 2016.

[109] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu, “Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case,” in HPCA, 2015.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:39

[110] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” in HPCA, 2013.

[111] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller, “Energy Management for Commercial Servers,”
Computer, 2003.

[112] LenovoGroup Ltd., “Intel Xeon Scalable Family BalancedMemoryConfigurations,” https://lenovopress.com/lp0742.pdf,
2017.

[113] A. Li, W. Liu, M. R. B. Kistensen, B. Vinter, H. Wang, K. Hou, A. Marquez, and S. L. Song, “Exploring and Analyzing
the Real Impact of Modern On-Package Memory on HPC Scientific Kernels,” in SC, 2017.

[114] S. Li, D. Reddy, and B. Jacob, “A Performance & Power Comparison of Modern High-Speed DRAM Architectures,” in
MEMSYS, 2018.

[115] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[116] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Profiling Mechanisms,” in ISCA, 2013.
[117] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors,” in ISCA, 2008.
[118] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building

Customized Program Analysis Tools with Dynamic Instrumentation,” in PLDI, 2005.
[119] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Throughput and Fairness in SMT Processors,” in ISPASS, 2001.
[120] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis, and M. Horowitz, “Towards Energy-Proportional

Datacenter Memory with Mobile DRAM,” in ISCA, 2012.
[121] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and

Future Directions for the Scaling of Dynamic Random-Access Memory (DRAM),” IBM JRD, 2002.
[122] J. D. McCalpin, “Memory Bandwidth andMachine Balance in Current High Performance Computers,” TCCANewsletter,

1995.
[123] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis

and Modeling of New Trends from the Field,” in DSN, 2015.
[124] Micron Technology, Inc., Technical Note TN-46-12: Mobile DRAM Power-Saving Features and Calculations, May 2009,

https://www.micron.com/~/media/documents/products/technical-note/dram/tn4612.pdf.
[125] Micron Technology, Inc., “DDR3 SDRAM Verilog Model, v. 1.74,” https://www.micron.com/-/media/client/global/

documents/products/sim-model/dram/ddr3/ddr3-sdram-verilog-model.zip, 2015.
[126] Micron Technology, Inc., 178-Ball 2E0F Mobile LPDDR3 SDRAM Data Sheet, April 2016.
[127] Micron Technology, Inc., 2Gb: x4, x8, x16 DDR3 SDRAM Data Sheet, February 2016.
[128] Micron Technology, Inc., 200-Ball Z01M LPDDR4 SDRAM Automotive Data Sheet, May 2018.
[129] Micron Technology, Inc., 4Gb: x4, x8, x16 DDR4 SDRAM Data Sheet, June 2018.
[130] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application to Multi-Core DRAM Controllers,” in

PODC, 2008.
[131] J. Mukundan and J. F. Martínez, “MORSE: Multi-objective Reconfigurable Self-Optimizing Memory Scheduler,” in

HPCA, 2012.
[132] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda, “Reducing Memory Interference in

Multicore Systems via Application-Aware Memory Channel Partitioning,” in MICRO, 2011.
[133] R. C. Murphy and P. M. Kogge, “On the Memory Access Patterns of Supercomputer Applications: Benchmark Selection

and Its Implications,” TC, 2007.
[134] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” in DATE, 2017.
[135] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing Both Performance and Fairness of

Shared DRAM Systems,” in ISCA, 2008.
[136] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[137] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for Efficient Processing in Runahead Execution Engines,” in ISCA, 2005.
[138] O. Mutlu, H. Kim, and Y. N. Patt, “Efficient Runahead Execution: Power-Efficient Memory Latency Tolerance,” IEEE

Micro, 2006.
[139] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2019.
[140] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” in MICRO, 2007.
[141] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An Alternative to Very Large Instruction

Windows for Out-of-Order Processors,” in HPCA, 2003.
[142] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair Queuing Memory Systems,” in MICRO, 2006.
[143] NVIDIA Corp., “GeForce GTX 480: Specifications,” https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-

480/specifications.
[144] NXP Semiconductors, “QorIQ Processing Platforms: 64-Bit Multicore SoCs,” https://www.nxp.com/products/

processors-and-microcontrollers/applications-processors/qoriq-platforms:QORIQ_HOME.
[145] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and Modeling On-Die Error Correction in Modern

DRAM: An Experimental Study Using Real Devices,” in DSN, 2019.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:40 Saugata Ghose et al.

[146] M. Patel, J. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions,” in ISCA, 2017.

[147] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute and Memory Power in High-
Performance GPUs,” in ISCA, 2015.

[148] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in HC, 2011.
[149] S. Pelley, “atomic-memory-trace,” https://github.com/stevenpelley/atomic-memory-trace, 2013.
[150] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. Anderson, and T. Roscoe, “Arrakis: The Operating

System Is the Control Plane,” TOCS, 2016.
[151] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh

for DRAM Systems,” in DSN, 2015.
[152] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-Aware Cache Replacement,” in ISCA, 2006.
[153] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A. McKee, P. Radojković, and E. Ayaguadé, “Another Trip to

the Wall: How Much Will Stacked DRAM Benefit HPC?” in MEMSYS, 2015.
[154] S. Rixner, “Memory Controller Optimizations for Web Servers,” in MICRO, 2004.
[155] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access Scheduling,” in ISCA, 2000.
[156] T. Rokicki, “Indexing Memory Banks to Maximize Page Mode Hit Percentage and Minimize Memory Latency,” HP

Laboratories Palo Alto, Tech. Rep. HPL-96-95, 1996.
[157] P. Rosenfeld, E. Cooper-Balis, T. Farrell, D. Resnick, and B. Jacob, “Peering Over the Memory Wall: Design Space and

Performance Analysis of the Hybrid Memory Cube,” Univ. of Maryland Systems and Computer Architecture Group,
Tech. Rep. UMD-SCA-2012-10-01, 2012.

[158] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate Memory System Simulator,” CAL, 2011.
[159] SAFARI Research Group, “GPGPUSim+Ramulator — GitHub Repository,” https://github.com/CMU-SAFARI/

GPGPUSim-Ramulator.
[160] SAFARI Research Group, “MemBen: A Memory Benchmark Suite for Ramulator — GitHub Repository,” https:

//github.com/CMU-SAFARI/MemBen.
[161] SAFARI Research Group, “Ramulator: A DRAM Simulator — GitHub Repository,” https://github.com/CMU-SAFARI/

ramulator.
[162] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild: A Large-Scale Field Study,” in SIGMETRICS,

2009.
[163] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “The Dirty-Block Index,” in ISCA,

2014.
[164] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.

Kozuch, and T. C. Mowry, “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in
MICRO, 2013.

[165] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C.
Mowry, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” in
MICRO, 2017.

[166] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,” in Advances in Computers, 2020, available as
arXiv:1905.09822 [cs.AR].

[167] S. Singh and M. Awasthi, “Memory Centric Characterization and Analysis of SPEC CPU2017 Suite,” in ICPE, 2019.
[168] SK Hynix Inc., 2Gb (64Mx32) GDDR5 SGRAM Data Sheet, November 2011.
[169] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Multithreading Processor,” in ASPLOS,

2000.
[170] Y. H. Son, S. O, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing Memory Access Latency with Asymmetric DRAM Bank

Organizations,” in ISCA, 2013.
[171] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi, “Feng Shui of Supercomputer Memory:

Positional Effects in DRAM and SRAM Faults,” in SC, 2013.
[172] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S. Gurumurthi, “Memory Errors in

Modern Systems: The Good, The Bad, and the Ugly,” in ASPLOS, 2015.
[173] Standard Performance Evaluation Corp., “SPEC CPU2006 Benchmarks,” http://www.spec.org/cpu2006/.
[174] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John, “Elastic Refresh: Techniques to Mitigate Refresh Penalties in

High Density Memory,” in MICRO, 2010.
[175] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The Virtual Write Queue: Coordinating DRAM and

Last-Level Cache Policies,” in ISCA, 2010.
[176] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing Performance, Fairness and Complexity

in Memory Access Scheduling,” TPDS, 2016.
[177] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting Memory Scheduler: Achieving High

Performance and Fairness at Low Cost,” in ICCD, 2014.
[178] B. Sun, X. Li, Z. Zhu, and X. Zhou, “Behavior Gaps and Relations between Operating System and Applications on

Accessing DRAM,” in ICECCS, 2014.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:41

[179] A. Suresh, P. Cicotti, and L. Carrington, “Evaluation of Emerging Memory Technologies for HPC, Data Intensive
Applications,” in CLUSTER, 2014.

[180] X. Tang, M. Kandemir, P. Yedlapalli, and J. Kotra, “Improving Bank-Level Parallelism for Irregular Applications,” in
MICRO, 2016.

[181] J. Tuck, L. Ceze, and J. Torrellas, “Scalable Cache Miss Handling for High Memory-Level Parallelism,” in MICRO, 2006.
[182] R. Ubal, B. Jand, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A Simulation Framework for CPU–GPU Computing,”

in PACT, 2012.
[183] United States Department of Energy, “CORAL Benchmark Codes,” https://asc.llnl.gov/CORAL-benchmarks/, 2014.
[184] United States Department of Energy, “CORAL-2 Benchmarks,” https://asc.llnl.gov/coral-2-benchmarks/, 2017.
[185] H. Usui, L. Subramanian, K. K. Chang, and O. Mutlu, “DASH: Deadline-Aware High-Performance Memory Scheduler

for Heterogeneous Systems with Hardware Accelerators,” TACO, 2016.
[186] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in DRAM (RAPID): Software Methods for

Quasi-Non-Volatile DRAM,” in HPCA, 2006.
[187] Y. Wang, A. Tavakkol, L. Orosa, S. Ghose, N. Mansouri Ghiasi, M. Patel, J. S. Kim, H. Hassan, M. Sadrosadati, and

O. Mutlu, “Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration,” in MICRO, 2018.
[188] M.Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for Power Management:

The IBM POWER7 Approach,” in HPCA, 2010.
[189] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan, “BOOM: Enabling Mobile Memory Based Low-Power

Server DIMMs,” in ISCA, 2012.
[190] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity Effective Memory Access Scheduling for Many-Core

Accelerator Architectures,” in MICRO, 2009.
[191] J. Zawodny, “Redis: Lightweight Key/Value Store That Goes the Extra Mile,” in Linux Magazine, 2009.
[192] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “Restore Truncation for Performance Improvement in Future DRAM

Systems,” in HPCA, 2016.
[193] Z. Zhang, Z. Zhu, and X. Zhang, “A Permutation-Based Page Interleaving Scheme to Reduce Row-Buffer Conflicts

and Exploit Data Locality,” in MICRO, 2000.
[194] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” in

MICRO, 2014.
[195] H. Zheng and Z. Zhu, “Power and Performance Trade-Offs in Contemporary DRAM System Designs for Multicore

Processors,” TC, 2010.
[196] Z. Zhu and Z. Zhang, “A Performance Comparison of DRAM Memory System Optimizations for SMT Processors,” in

HPCA, 2005.
[197] W. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That Maximizes Throughput by Allowing

Memory Requests and Commands to Be Issued Out of Order,” U.S. Patent No. 5,630,096, 1997.

APPENDIX
A BACKGROUND ONMODERN DRAM TYPES

DDR3.Double Data Rate (DDR3) [73] memory is the third generation of DDR DRAM. Each rank
in DDR3 consists of eight banks, which ideally allows eight memory requests to be performed in
parallel in a rank. All of the banks share a single memory channel, and the memory controller must
schedule resources to ensure that request responses do not conflict with each other on the channel
when each response is being sent fromDRAM to the processor. In order to reduce memory channel
contention and increase memory throughput, DDR3 transmits data on both the positive and negative
edges of the bus clock, which doubles the data rate by allowing a data burst (i.e., a piece of data) to be
transmitted in only half a clock cycle. In DDR3, eight 64-bit data bursts are required for each 64-byte
read request [73]. DDR3 was first released in 2007 [73], but continues to be one of the most popular
types of DRAM available on the market today due to its low cost. However, with the limited number
of banks per rank and the difficulties of increasing DDR3 bus clock frequencies, manufacturers no
longer aggressively increase the density of DDR3memories.
DDR4. DDR4 [79] has evolved from the DDR3 DRAM type as a response to solving some of the
issues of earlier DDR designs. A major barrier to DRAM scalability is the eight-bank design used
in DDR3memories, as it is becomingmore difficult to increase the size of the DRAM array within
each bank. In response to this, DDR4 employs bank groups [79], which enable DDR4 to double the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:42 Saugata Ghose et al.

number of banks in a cost-effective manner. A bank group represents a new level of hierarchy, where
it is faster to access two banks in two different bank groups than it is to access two banks within
the same group. This is a result of the additional I/O sharing that takes place within a bank group,
which reduces hardware cost but leads to conflicts when two requests access different banks in the
same bank group. One drawback of the DDR4 implementation of bank groups is that the average
memory access takes longer in DDR4 than it did in DDR3. DRAM vendors make the trade-off of
having additional bank-level parallelism and higher bus throughput in DDR4, which can potentially
offset the latency increase when an application effectively exploits bank-level parallelism.
GDDR5. Like DDR4, Graphics DDR5 (GDDR5) [77] memory uses bank groups to double the number
of banks. However, GDDR5 does sowithout increasing memory latency, instead increasing the die
area and energy. Due to these additional costs, GDDR5 is currently unable to support the memory
densities available in DDR4. GDDR5 increases memory throughput significantly over DDR3 by quad
pumping its data (i.e., it effectively sends four pieces of data in a single clock cycle, as opposed to
the two pieces sent by DDR3) [77]. In addition, GDDR5memories are clocked at a faster frequency.
This aggressive throughput is especially helpful for GPUs, as they often performmany data-parallel
operations that require high memory throughput. As a result, many GPUs use GDDR5memory.
3D-Stacked DRAM. Thanks to recent innovations, manufacturers are now able to build 3D-stacked
memories, where multiple layers of DRAM are stacked on top of one another. Amajor advantage of
3D stacking is the availability of through-silicon vias [108, 117], vertical interconnects that provide a
high-bandwidth interface across the layers. The High Bandwidth Memory (HBM), Wide I/O, and
Wide I/O 2 DRAM types exploit 3D stacking for different purposes. HBM [1, 74] is a response to
the need for improved memory bandwidth for GPUs without the high power costs associated with
GDDR5. HBM DRAM is clocked much slower than GDDR5, but connects four to eight memory
channels to a singleDRAMmodule. The large number of memory channels allows eachHBMmodule
to service a large number of requests in parallel without I/O contention. Wide I/O [72] andWide
I/O 2 [75] apply the same principle while targeting low-power devices (e.g., mobile phones) [90]. As
mobile devices are not expected to require as much throughput as GPUs,Wide I/O andWide I/O 2
have fewer memory channels connected to each stack, and use fewer banks than HBM and GDDR5.
The HybridMemory Cube (HMC) [59, 69, 148, 157] makes more radical changes to the memory

design. HMC is a 3D-stacked memory designed to maximize the amount of parallelism that DRAM
can deliver. It has increased access latencies in order to provide a significant increase in the number
of banks (256 in HMC v2.1 [59]). Instead of employing a traditional on-chip memory controller, a
processor using an HMC chip simply sends requests in FIFO order to the memory, over a high-speed
serial link. Unlike other DRAM types, all scheduling constraints in HMC are handled within the
memory itself, as the HMC memory controller in the logic layer of the memory chip performs
scheduling. To keep this scheduling logicmanageable, HMCpartitions its DRAM intomultiple vaults,
each of which consists of a small, multi-bank vertical slice of memory. To facilitate the partitioning of
memory into vaults, HMC reduces the size of each row inmemory from the typical 4–8 kB down to
256 bytes.
LPDDR3 and LPDDR4. In order to decrease the power consumed by DDRx DRAM, manufacturers
have created low-power (LP) variants, known as LPDDR3 and LPDDR4. LPDDR3 [76] reduces power
over DDR3 by using a lower core voltage, employing deep power-downmodes, and reducing the
number of chips used in each DRAMmodule. One drawback of the lower core voltage and the deep
power-downmode is that memory accesses take significantly longer on low-power memories (see
Table 1). LPDDR4 [78] achieves even greater power savings by cutting the width of each chip in
half with respect to LPDDR3. A smaller chip width leads to lower power consumption, but requires

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:43

LPDDR4 to perform double the number of data bursts (i.e., have higher latency) for each request to
keep the throughput intact.

B RAMULATOR MODIFICATIONS
Wecharacterize the differentDRAMarchitectures using a heavily-modified version of Ramulator [96].
Ramulator is a detailed and extensible open-source DRAM simulator [161]. We make several mo-
difications to Ramulator to improve the fidelity of our experiments. First, we implement a shared
last-level cache, to ensure that the initial contention betweenmemory requests from different cores
takes place before the requests reach memory, just as they would in a real computer. Second, we add
support for virtual-to-physical address translation. Third, we implement a faithful model of HMC
version 2.1 [59]. Our model accurately replicates the high-speed serial link in HMC, and includes a
logic layer where DRAM commands are scheduled.
Our modifications allow us to use application traces to drive the simple core model built into

Ramulator, as opposed to using a detailed CPU timing simulator to execute the application, without
losing accuracy. As a result, we can significantly reduce the total simulation time required (by an
average of 9.8×, with a range of 1.4%–24.7%, for our SPEC CPU 2006 benchmarks), and can simulate
applications with much larger memory footprints without the need for large computing resources.
We simulate a 4 GHz, 4-issue processor with a 128-entry reorder buffer, and an 8-way set associative
shared last-level cache (see Table 2 in Section 3). We have open-sourced our modified version of
Ramulator [161].
Validation.We validate our trace-based approach by comparing (a) the simple core model results
from our modified version of Ramulator with (b) results generated when we execute applications
using gem5 [11], a detailed, full-system, cycle-accurateCPU timing simulator.We integrate gem5 [11]
with the unmodified version of Ramulator to accurately model the memory system. Prior work [96]
has already validated the memory model in the unmodified Ramulator with a Verilog memory model
provided byMicron [125].
To perform our validation, we run all of our SPEC CPU2006 [173] applications using both our

trace-driven modified Ramulator and the full-system gem5 with Ramulator. We configure both
simulators to use the system configuration in Table 2. As we are interested in comparing trends
across applications and across memory types, we normalize the performance (i.e., execution time)
of each application to one benchmark (gamess). We find that normalized performance results from
our trace-driven modified Ramulator differ by an average of only 6.1% from the performance results
when using full-system gem5 and Ramulator. As other works have shown, much larger differences
between a simulation platform and the system beingmodeled by the simulator are still representative
of the behavior of the modeled system. For example, other popular and publicly-available simulators
that have been validated report average errors of 4.9% [41], 12–19% [4], 20% [182], and 19.5% [35].
We believe that our average validation error, which at 6.1% is on the lower end of this error range,
represents that the quantitative values generated by our simulator can be trusted, and that the general
observations that wemake are accurate.

C WORKLOAD DETAILS
We study 87 different applications, spread over a diverse range of uses. In our characterization,
we categorize our applications into one of six families: desktop/scientific [10, 173, 183, 184],
server/cloud [5, 6, 27, 36, 38, 191], multimedia acceleration [43], network acceleration [144],
GPGPU [12, 24, 53], and OS routines [55, 66, 164]. These applications have been collected from
awide variety of sources. The 87 evaluated applications are listed across four tables: Table 3 lists desk-
top/scientific applications (characterized in Sections 5 and 6); Table 4 lists server/cloud applications

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:44 Saugata Ghose et al.

(characterized in Section 7); Table 5 lists multimedia, network accelerator, and GPGPU applications
(characterized in Section 8); and Table 6 lists OS routines (characterized in Section 9). In each table,
we list the input size, and the total DRAM footprint of memory accesses performed in DRAM (i.e.,
the number of unique byte addresses that are read from or written to DRAM). Note that the DRAM
footprints consider only last-level cache misses to DRAM, and do not include anymemory accesses
that hit in the caches. As a result, the DRAM footprints that we report may be smaller than the
working set sizes reported in other works.

Table 3. Evaluated desktop/scientific applications.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

SPEC CPU2006

gamess ref 0.8MB
povray ref 1.0MB
calculix ref 1.1MB
h264ref ref 9.4MB
perlbench ref 20.4MB
hmmer ref 7.5MB
bzip2 ref 9.0MB
sjeng ref 166.0MB

sphinx3 ref 17.1MB
namd ref 39.9MB
astar ref 25.1MB
gobmk ref 25.6MB
zeusmp ref 128.0MB

cactusADM ref 166.5MB
gcc ref 91.2MB

omnetpp ref 145.6MB
soplex ref 58.0MB
bwaves ref 559.8MB

GemsFDTD ref 718.5MB
milc ref 362.0MB

libquantum ref 32.0MB
mcf ref 1673.0MB

PARSEC

blackscholes simmedium 3.8MB
canneal simmedium 2268.7MB

fluidanimate simmedium 350.5MB
raytrace simmedium 323.0MB
bodytrack simmedium 65.3MB
facesim simmedium 374.3MB
freqmine simmedium 503.3MB

streamcluster simmedium 72.1MB
swaptions simmedium 31.1MB

CORAL miniFE
32 x 32 x 32 52.5MB
64 x 64 x 64 288.1MB

CORAL-2 quicksilver Coral2_P1.inp, 4 x 4 x 4 56.6MB
pennant leblanc.pnt 8.6MB

We run our workloads to completion, with three exceptions. For our desktop benchmarks, we
identify a representative phase of execution using Simpoint [49]. During simulation, we warm up
the caches for 100 million instructions, and then run a 1-billion instruction representative phase.
We execute each GPGPU application until the application completes, or until the GPU executes
100 million instructions, whichever occurs first. For Netperf, we emulate 10 real-world seconds of
execution time for each benchmark.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:45

Table 4. Evaluated server/cloud applications.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

Hadoop

grep 1GB

map 0: 147.5MB
map 1: 149.2MB
map 2: 147.1MB
map 3: 145.9MB
reduce: 26.9MB

wordcount 1GB

map 0: 1332.2MB
map 1: 1307.3MB
map 2: 1308.2MB
map 3: 1360.3MB
reduce: 81.2MB

sort 1GB

map 0: 19.1MB
map 1: 19.9MB
map 2: 19.5MB
map 3: 21.0MB

YCSB + Redis

workload A — server: 217.9MB
bgsave: 195.0MB

workload B — server: 219.5MB
workload C — server: 218.6MB
workload D — server: 193.2MB
workload E — server: 27.0MB

—
MySQL employeedb 65.1MB

Memcached continuous insertions 177.4MB
Apache2 continuous wget() calls 200.0MB

Table 5. Evaluated heterogeneous system applications.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

MediaBench II

H.264 encode base_4CIF 10.2MB
H.264 decode base_4CIF 8.3MB

JPEG-2000 encode base_4CIF 24.4MB
JPEG-2000 decode base_4CIF 21.5MB

NXP Network Trace A — 0.7MB
Accelerator Trace B — 0.8MB

LonestarGPU

dmr r1M 0.1MB
bh 50K bodies 0.5 kB
mst USA-road-d.FLA 4.0MB
bfs rmat20 4.0MB
sp 4.2M literals, 1M clauses 34.3MB

Rodinia
hs 512 3.2MB
bp 64K nodes 4.9MB
sc 64K points 40.1MB

Mars iix 3 web pages 31.3 kB
ss 1024 x 256 6.0MB

In addition to our 87 applications listed in Tables 3–6, we assemble 28 multiprogrammed worklo-
ads for our desktop (Table 7) and server/cloud (Table 8) applications by selecting bundles of four
applications to represent varying levels of memory intensity. To ensure that we accurately capture
system-level contention, we restart any applications that finish until all applications in the bundle
complete. Note that we stop collecting statistics for an application once it has restarted.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:46 Saugata Ghose et al.

Table 6. Evaluated OS routines.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

Netperf

UDP_RR — 6.2MB
UDP_STREAM — 7.9MB

TCP_RR — 6.7MB
TCP_STREAM — 7.8MB

IOzone

Test 0 (write/re-write) 64MB file 110.7MB
Test 1 (read/re-read) 64MB file 107.2MB

Test 2 (random-read/write) 64MB file 111.8MB
Test 3 (read backwards) 64MB file 107.0MB
Test 4 (record re-write) 64MB file 41.9MB
Test 5 (strided read) 64MB file 108.1MB

Test 6 (fwrite/re-fwrite) 64MB file 112.3MB
Test 7 (fread/re-fread) 64MB file 109.2MB
Test 8 (random mix) 64MB file 42.8MB

Test 9 (pwrite/re-pwrite) 64MB file 42.7MB
Test 10 (pread/re-pread) 64MB file 44.1MB

Test 11 (pwritev/re-pwritev) 64MB file 42.0MB
Test 12 (preadv/re-preadv) 64MB file 112.7MB

—

shell — 4.3MB
bootup — 21.0MB

fork
64MB shared data, 22.8MB1K updates

Table 7. Multiprogrammed workloads of desktop and scientific applications. For each application, we indicate
what fraction of the applications in the workload are memory intensive (i.e., MPKI > 15.0).

Bundle Applications % Mem Memory
Name in Workload Intensive Footprint
D0 milc, GemsFDTD, mcf, libquantum 100% 5673.4MB
D1 bwaves, omnetpp, mcf, libquantum 100% 3304.3MB
D2 libquantum, bwaves, soplex,

GemsFDTD
100% 3698.6MB

D3 soplex, mcf, omnetpp, milc 100% 3512.2MB
D4 milc, mcf, GemsFDTD, h264ref 75% 5539.9MB
D5 soplex, omnetpp, milc, namd 75% 1801.9MB
D6 libquantum, omnetpp, bwaves, povray 75% 1377.3MB
D7 libquantum, mcf, milc, zeusmp 75% 3503.4MB
D8 omnetpp, GemsFDTD, cactusADM,

hmmer
50% 3141.0MB

D9 GemsFDTD, mcf, gamess, zeusmp 50% 4006.5MB
D10 milc, mcf, bzip2, h264ref 50% 3196.6MB
D11 bwaves, soplex, gamess, namd 50% 1095.1MB
D12 omnetpp, sjeng, namd, gcc 25% 1137.5MB
D13 GemsFDTD, hmmer, zeusmp, astar 25% 2643.0MB
D14 GemsFDTD, povray, sphinx3, calculix 25% 1341.7MB
D15 soplex, zeusmp, sphinx3, gcc 25% 502.4MB
D16 povray, astar, gobmk, perlbench 0% 188.4MB
D17 povray, bzip2, sphinx3, cactusADM 0% 345.9MB
D18 astar, sjeng, gcc, cactusADM 0% 1132.4MB
D19 calculix, namd, perlbench, gamess 0% 117.2MB

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:47

Table 8. Multiprogrammed workloads of server and cloud applications.

Application Bundle Applications Memory
Suite Name in Workload Footprint

YCSB + Redis

Y0 workload A: server, workload B:
server, workload C: server, wor-
kload D: server

1492.0MB

Y1 workload A: server, workload B:
server, workload C: server, wor-
kload E: server

1262.2MB

Y2 workload A: server, workload B:
server, workload D: server, wor-
kload E: server

1274.1MB

Y3 workload A: server, workload C:
server, workload D: server, wor-
kload E: server

1212.5MB

Y4 workload B: server, workload C:
server, workload D: server, wor-
kload E: server

889.9MB

Hadoop

H0 four grep: map processes with
different inputs

1726.9MB

H1 four wordcount: map processes
with different inputs

2240.3MB

H2 four sort:map processes with
different inputs

94.9MB

D DETAILEDWORKLOAD CHARACTERIZATION RESULTS
D.1 Single-Threaded Desktop/Scientific Applications
Figure 27 shows the instructions per cycle (IPC) for each of the desktop applications when run on
a system with DDR3 memory. The benchmarks along the x-axis are sorted in ascending order of
MPKI (i.e., memory intensity). As we discuss in Section 5.1, our desktop applications consist of both
applicationswith predominantly integer computations and applicationswith predominantly floating
point computations. Prior work shows that within the CPU, there is a notable difference in the
behavior of integer applications (typically desktop and/or business applications) from floating point
applications (typically scientific applications) [54]. From Figure 27, we observe that the performance
of the two groups is interspersed throughout the range of MPKIs and IPCs. Thus, we conclude that
there is nodiscernible difference between integer andfloatingpoint applications, from theperspective
of main memory.
We observe from Figure 27 that, in general, the overall IPC of desktop and scientific applications

decreases as theMPKI increases. However, there are two notable exceptions: namd and gobmk. We
discuss how these exceptions are the result of differences in bank parallelism utilization (BPU) in
Section 5.1. Figure 28 shows the BPU of each application when run with the DDR3 DRAM type.
Note that our DDR3 configuration, with four channels, and eight banks per channel, has a total
of 32 banks available. Thus, the theoretical maximum BPU is 32, though this does not account for
(1) request serialization for banks that share amemory channel or that are part of the samebankgroup,
or (2) maintenance operations such as refresh that reduce the bank parallelism of requests. As we
observe from the figure, none of our desktop and scientific applications come close to the maximum
BPU.We find that namd and gobmk exhibit much higher BPU values than other applications with
similar MPKI values. This indicates that these two applications often issue their memory requests in
clusters, i.e., they have bursty memory access patterns. As a result, these two applications exploit
memory-level parallelism (MLP), where the latencies of multiple memory requests are overlapped

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:48 Saugata Ghose et al.

0

1

2

3

4

IP
C

Fig. 27. IPC for desktop and scientific applications executing on a system with DDR3-2133 memory. In
parentheses, we show each benchmark’s MPKI, and whether the benchmark consists of predominantly
integer (INT) or floating point (FP) operations.

0

2

4

6

ga
m
es
s

po
vr
ay

ca
lcu

lix
h2

64
re
f

pe
rlb

en
ch

hm
m
er

bz
ip
2

sje
ng

sp
hi
nx
3

na
m
d

as
ta
r

go
bm

k
ze
us
m
p

ca
ct
us
AD

M gc
c

om
ne

tp
p

so
pl
ex

bw
av
es

Ge
m
sF
DT

D
m
ilc

lib
qu

an
tu
m

m
cf

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

Fig. 28. DDR3 BPU for single-threaded desktop/scientific applications.

with each other, better than other applications. This increased MLP reduces the application stall
time [32, 44, 99, 138, 140, 141, 152], which in turn increases the IPC of the application.
Figure 29 shows the row buffer locality of each single-threaded desktop/scientific application

when run on DDR3.We do not see a correlation between the memory intensity of an application and
its row buffer locality. This suggests that the locality is predominantly a function of the application’s
memory access patterns and row buffer size, and is not related to memory intensity (as expected). We
compare the row buffer locality under DDR3 to the row buffer locality with our other DRAM types
(not shown for brevity). We find that, with the exception of HMC (which reduces the rowwidth by
97%), row buffer locality characteristics remain similar across different DRAM types.

0%
25%
50%
75%

100%

ga
m

es
s

po
vr

ay
ca

lcu
lix

h2
64

re
f

pe
rlb

en
ch

hm
m

er
bz

ip
2

sje
ng

sp
hi

nx
3

na
m

d
as

ta
r

go
bm

k
ze

us
m

p
ca

ct
us

AD
M gc
c

om
ne

tp
p

so
pl

ex
bw

av
es

Ge
m

sF
DT

D
m

ilc
lib

qu
an

tu
m

m
cfM
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

Fig. 29. DDR3 row buffer locality for single-threaded desktop/scientific applications.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

Demystifying Complex Workload–DRAM Interactions: An Experimental Study 60:49

D.2 Multithreaded Desktop/Scientific Applications
To gain insight on limiting factors on the scalability of our multithreaded applications (see Section 6),
we study theMPKI and IPC of each applicationwhen run usingDDR3-2133, andwhen the application
runs with 1, 2, 4, 8, 16, and 32 threads. Figure 30 shows the per-thread IPC for all 12 applications,
when the applications are run with one thread and with 32 threads, and lists both the 1-thread and
32-threadMPKI (which quantifies the memory intensity of the application). We observe from the
figure that unlike our single-threaded desktop/scientific applications, many of our multithreaded
applications maintain a relatively high IPC even at 32 threads, despite the highmemory intensity.
This is often because multithreaded applications are designed to strike a careful balance between
computation and memory usage, which is necessary to scale the algorithms to large numbers of
threads. As a result, several memory-intensive multithreaded applications have significantly higher
IPCs when compared to single-threaded desktop/scientific applications with similar MPKI values.
We note that as a general trend, multithreaded applications with a higher MPKI tend to have a lower
IPC relative to multithreaded applications with a lower MPKI.

0

1

2

3

4

Pe
r-T

hr
ea

d
IP

C 1 thread 32 threads

Fig. 30. Per-thread IPC for multithreaded applications executing on a system with DDR3-2133 memory. In
parentheses, we show each benchmark’s 1-thread MPKI followed by its 32-thread MPKI.

As an example, we see thatminiFE becomes more memory-intensive as the number of threads
increases,with itsMPKI increasing from11.5with only one thread to 68.1with 32 threads.Despite this
increase in memory intensity, its per-thread IPC remains around 1.5, indicating that the application
is not completely memory-bound. Prior work [9] corroborates this behavior, with an analysis of
miniFE showing that in its two hotspot functions, the application spends about 40% of its time on
load instructions, but also spends about 40% of its time on integer or floating-point instructions. This
exemplifies the balanced approach between computation andmemory thatmost of ourmultithreaded
applications take, regardless of their memory intensity.

D.3 Server and Cloud Workloads
To characterize our server and cloud workloads (see Section 7), we study their performance and
memory intensity using the DDR3 DRAM type. Figure 31 shows the performance of each application
(IPC; see Section 4), and lists its MPKI. As we see from the figure, the IPC of all of the applications is
very high, with the lowest-performing application (Apache2) having an IPC of 1.9 (out of a maximum
possible IPC of 4.0). The high performance is a result of the lowmemory utilization of our server and
cloud workloads, which are highly optimized to take advantage of on-chip caches.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

60:50 Saugata Ghose et al.

0

1

2

3

4

IP
C

YCSB + Redis Hadoop
Fig. 31. IPC for server/cloud applications executing on a system with DDR3-2133 memory. In parentheses,
we show each benchmark’s MPKI.

E DRAM POWER BREAKDOWN
Figure 32 shows the breakdown of power consumed by the five DRAM types for which we have
accurate power models, averaged across all of our single-threaded applications and across our
multiprogrammed workloads from Section 5. We observe that all of the evaluated DRAM types
consume a large amount of standby power (we simulate a DRAM capacity of 4GB), with DDR3’s
standby power representing 77.8% of its total power consumption. As the density and capacity of
DRAM continues to increase, the standby power consumption is expected to grow as well. However,
the total power consumed varies widely between DRAM types. For example, for our single-threaded
desktop and scientific workloads, GDDR5 consumes 2.25x the power of DDR3, while LPDDR4
consumes 67.7% less power than DDR3.

0
500

1000
1500
2000
2500
3000
3500

DR
AM

 P
ow

er
 (m

W
) Standby Activate Precharge Read Write Refresh I/O

Single-Threaded Multiprogrammed
Fig. 32. Breakdown of mean DRAM power consumption when executing single-threaded (left) and multipro-
grammed (right) desktop and scientific applications.

Acrossallofourworkloads (includingotherworkloadcategories,notshownforbrevity),weobserve
three major trends: (1) standby power is the single biggest source of average power consumption
in standard-power DRAM types (because most of the DRAM capacity is idle at any given time);
(2) LPDDR3 and LPDDR4 cut down standby power consumption significantly, due to a number of
design optimizations that specifically target standby power (see Appendix A); and (3) workloads
with a high rate of row conflicts and/or rowmisses spend more power on activate and precharge
commands, as a new rowmust be opened for each conflict or miss.

Received August 2019; revised September 2019; accepted October 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 60. Publication date: December 2019.

