A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with
Expressive Memory

Nandita Vijaykumar
Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko
Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons, Onur Mutlu

RN
2
QAT
Y i“ 7 23S

Cal'ne ie UNIVERSITY OF
Mellor? ¥ TORONTO

University <A NVIDIA ETH

™,

,. -
S - 8
= - =
S = -
N w & e
= g2 | E
o mum < wd

,ﬂ_ ._ml r" ..Iﬂ -

,,,, 0 m = 0
= £ =
(7, = =

=3
= &
= —

ionality |

Funct

Performance?

Software
Hardware

Higher-level information is not visible to HW

S o e

Code Optimizations © E
\1, / Access Patterns
S o<

Data Type

100011111.. Instructions
101010011.. Memory Addresses

Software

Hardware

QD

> >3

.ﬂ.mm
— “ Q
e v E =
© I r

X = S

LiJ

iI0Nna

et
J
-
—]
| .

U)
= & Y
L

; L 5 5

£ Qo D ©

= © &
-
Da ¢
-

Virtual Memory

Software
Hardware

Outline

Why do we need a richer cross-layer abstraction?

Designing Expressive Memory (XMem)

Evaluation (with a focus on one use case)

Performance optimization in hardware

What we do today: We design hardware to infer and predict
program behavior to optimize for performance

Caches

Memory
Prefetchers Controllers
D ;
=1=
D ;
=
|!!|l

With a richer abstraction: SW can provide program
information can significantly help hardware

o ONNG Data ch
Data Structures Access Patterns /\ Type/Layout
Software
Hardware

Data
Placement 8

Prefetcher Data Compression

Benefits of a richer abstraction:

Express:

Data structures
Access semantics
Data types
Working set
Reuse

Access frequency

Optimizations:
Cache Management

Data Placement in DRAM
Data Compression
Approximation

DRAM Cache Management
NVM Management
NUCA/NUMA Optimizations

Optimizing for performance in software

10

What we do today: Use platform-specific optimizations to tune SW

Example: SW-based cache optimizations SW optimizations make

- . assumptions regarding
<> <> HW resources

Significant portability
and programmability
challenges

8MB cache 6MB cache 1

Tune '
working set l ’.'I

101
010
110

With a richer interface: HW can alleviate burden on SW

Working
Reuse

-

<>

7

SW only expresses
program information

System/HW handles
optimizing for specific
system details

e.g. exact cache size,
memory organization,

NUMA organization -

Benefits of a richer abstraction:

Express:

Data structures
Access semantics
Data types
Working set
Reuse

Access frequency

Cache Management
Data Placement in DRAM v'Performance

Data Compression
SW optimizations

Approximation
DRAM Cache Management v’ Programmability
NVM Management

NUCA/NUMA Optimizations

v’ Portabilit

13

SW information in HW is proven to be useful, but..

Lots of research on hints/directives to hardware and HW-SW co-designs
Cache hints, Prefetcher hints, Annotations for data placement, ...

Downsides:

Not scalable — can’t add new instructions for each optimization
Not portable — make assumptions about underlying resources

These downsides significantly limit adoption of otherwise useful
approaches
14

Our Goal:

Design a rich, general, unifying abstraction
between HW and SW for performance

15

Outline

Why do we need a richer cross-layer abstraction?
Designing Expressive Memory (XMem)

Evaluation (with a focus on one use case)

16

Key design goals

Supplemental and hint-based only
General and extensible
Architecture-agnostic

Low overhead

17

An Overview of Expressive Memory

Application
Interface to Application

System to summarize Expressive
and save program
information Memory

Interface to System/Architecture

Controller DRAM Cache

Memory

18

Challenge 1: Generality and architecture-agnosticism

General,
TNHELTTI —--= High-level
data type, access patterns, ... Interface to Application

Data structures,
Expressive Architecture-specific,

—"7 -
What to prefetch? Memory - Low-level
Which data to cache? Interface to System/Architecture

Memory
05 Controller DRAM Cache .

19

Challenge 2: Tracking changing program properties with
low overhead
Program behavior keeps changing: Application

- Data structures are accessed differently
in different phases

- New data structures are allocated Expressive Memory

Dynamic interface that continually ‘1'
tracks program behavior
System/Architecture

We want to convey lots of information!

Potentially very high storage/communication overhead at run time

A new HW-SW abstraction

Application
Software

Hardware

System/Architecture

21

The Atom: A closer look

tfon to convey program semantics

Unique Atom ID

1) Data Value Properties:
INT, FLOAT, CHAR,...
COMPRESSIBLE, APPROXIMABLE
2) Access Properties:
Read-Write Characteristics
Access Pattern
Access Intensity (“Hotness”)
3) Data Locality:
Working Set
Reuse

4).... 22

Atom: X

Program
Attributes

Valid/invalid at current
execution point

The three Atom operators

Atom

1) CREATE -
rogram

2) MAP/UNMAP

3) ACTIVATE/DEACTIVATE

23

Using Atoms to express program semantics

Memory Region A
(3D Array)

A =malloc (size);
Atom1 = CreateAtom(“INT”", “Reqular”’, ...);

MapAtom(Atom1, A, size);
ActivateAtom(Atom1);

Attributes cannot be changed

Atom2 = CreateAtom(“INT", “lrreqular’, ...);
UnMapAtom(Atom1, A, size);

MapAtom(Atom2, A, size);
ActivateAtom(Atom2); 24

Implementing the Atom

Compile Time (CREATE)

Load Time (CREATE)

Run Time (MAP and ACTIVATE)

25

Compile Time (CREATE)

A = malloc (size);

P
CreateAtom(V'INT”, “Reqular”, ...); r9ra

High overhead operations are handled at compile time

reateAtom()'IN
UnMapAtom(Atom1, A, size);

MapAtom(Atom2, A, size); (Atom Segment

ActivateAtom(Atom2); in Object File 26

Load Time (CREATE)
A/_ (3 | Atom Segment

(Architecture-agnostic,\ in Object File

 general

4)
Architecture-specific,

low-level
_

J

0S

Attribute Translator

Cache
Controllers Memory

Atom
ID

Attributes

Controller

27

Run Time (MAP and ACTIVATE)

A = malloc (size); Applicatir | ~
Atom1 = CreateAtom(“INT”, “Regular’, ...); Design challenge:
; om1, A, size): Holw to do tI:us (vl\r;th
ow overhead?
(ctivateAtomDitom1); New insts in ISA y

Atom2 = CreateAtom(“INT’, “lrreqular’, ...); Memory
‘ . Caches -
tom, A’ size); - Controller X ...
Prefetcher § DRAM Cache

28

Outline

Why do we need a richer cross-layer abstraction?

Designing Expressive Memory (XMem)

Evaluation (with a focus on one use case)

29

A fresh approach to traditional optimizations

Express: Optimizations:

P P HW optimizations
Data structures
Access semantics Data Placement in DRAM
Data types Data Compression

Approximation SW optimizations
Reuse DRAM Cache Management v’ Programmability
Access frequency NVM Management
couee NUCA/NUMA Optimizations

30

Use Case 1: Improving portability of SW cache
optimization
SW-based cache optimizations try to fit the working set in the cache

Examples: hash-join partitioning, cache tiling, stencil pipelining

GEERPN SRR NG

) 4 —

Methodology (Use Case 1)

Evaluation Infrastructure: Zsim, DRAMSim2
Workloads: Polybench
System Parameters:

Core: 3.6 GHz, Westmere-like 000, 4-wide issue, 128-entry ROB

L1 Cache: 32KB Inst and 32KB Data, 8 ways, 4 cycles, LRU

L2 Cache: 128KB private per core, 8 ways, 8 cycles, DRRIP

L3 Cache: 8MB (1MB/core, partitioned), 16 ways, 27 cycles, DRRIP

Prefetcher: Multi-stride prefetcher at L3, 16 strides

Memory: DRAM DDR3-1066, 2 channels, 1 rank/channel, 8 banks/rank, 17GB/s
(2.1GB/s/core), FR-FCFS, open-row policy

32

Correctly sizing the working set is critical

Gemm

114 /> Cache Thrashing
/'\ N

Execution
Time !) 1%
0.6 -

——

Bigger is better 0 6 12 18
(more reuse) - Tile Size (kB) —>

Optimal tile size depends on available cache space:
This causes portability and programmability challenges

33

Leveraging Expressive Memory for cache tiling

SW expresses program-level

Map tile to an atom, specifying high reuse and tile s@é semantic information

HW manages cache space
? to optimize for performance

ize < available cache space: default policy
If tile size > available cache space: pin a part of the tile, prefetch the rest
id thrashing)

34

Cache tiling with Expressive Memory

T 1.4 Gemm
Execution
I 47%
ime
| 0.6
0 6 12 18

Tile Size (kB) —>
Knowledge of locality semantics enables more intelligent cache management
Improves portability and programmability

35

Normalized Exec. Time

Results across more workloads

correlation gemm jacobi-2D dynprog mvt jacobi-1D
1.7 - 11 4 . L2 15 - ;
/’ o TTTTTT \\I’—’—— L B ;
4 4 0.7 -
I,, + }/ \ 0.8 H 1 \..-l‘/
. T 0.9 | ~ 0.3 T T 0.6 T T 0.5 T T
0 100 200 0 9 18 5 35 65 0o 2 4 2 32 62 0 1 50
trisolv lu ‘ .
13 - 6.2 - - 19 - trmm gramschmidt floyd-warshall gesummv
¢ ' 1.5 ~ 1.7 1.1 -
. / 4.2 - 'p \\ === T I~ -
- .] - [] \\'o'--
\)/ 29 - ,,/ 0.8 \ o1 - 1.4 | 09 |
N) P Sae== 1.1 r
07 ! ! I 02 ! ! 04 ' ' ' 05 T] 08 T T | 07 T 1
0 50 100150 0 10 1000 0 10 20 30 0O 70 140 O 30 60 0 500 1000
Tile Size in kB :
--- Baseline
— Expressive Memory

36

More in the paper

Use Case 2: Leveraging data structure semantics to enable more
intelligent 05-based page placement

More details on the implementation
Overhead analysis

Other use cases of XMem

37

Conclr=-- ; -
General and architecture-agnosticinterface

Software to SW}O express prqgram semantics

Higher-level

Expressive
ISA Program Mpem or
Virtual Memory YT ENTE X
“XMem

P

Key program information toaid "=

Hardware gyctam/HW components in optimization 7%=

38

A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with
Expressive Memory

Nandita Vijaykumar
Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko
Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons, Onur Mutlu

& 4

T
SoRT
"3.5%\\"

- UNIVERSITY OF
Carnegie % TORONTO SFU
Mellon *
University &invibiA. ETH i

