
A Flexible Software-Based Framework for
Online Detection of Hardware Defects

Kypros Constantinides, Student Member, IEEE, Onur Mutlu, Member, IEEE,

Todd Austin, Member, IEEE, and Valeria Bertacco, Member, IEEE

Abstract—This work proposes a new, software-based, defect detection and diagnosis technique. We introduce a novel set of

instructions, called Access-Control Extensions (ACE), that can access and control the microprocessor’s internal state. Special

firmware periodically suspends microprocessor execution and uses the ACE instructions to run directed tests on the hardware. When a

hardware defect is present, these tests can diagnose and locate it, and then activate system repair through resource reconfiguration.

The software nature of our framework makes it flexible: testing techniques can be modified/upgraded in the field to trade-off

performance with reliability without requiring any change to the hardware. We describe and evaluate different execution models for

using the ACE framework. We also describe how the proposed ACE framework can be extended and utilized to improve the quality of

post-silicon debugging and manufacturing testing of modern processors. We evaluated our technique on a commercial chip-

multiprocessor based on Sun’s Niagara and found that it can provide very high coverage, with 99.22 percent of all silicon defects

detected. Moreover, our results show that the average performance overhead of software-based testing is only 5.5 percent. Based on

a detailed register transfer level (RTL) implementation of our technique, we find its area and power consumption overheads to be

modest, with a 5.8 percent increase in total chip area and a 4 percent increase in the chip’s overall power consumption.

Index Terms—Reliability, hardware defects, online defect detection, testing, online self-test, post-silicon debugging, manufacturing

test.

Ç

1 INTRODUCTION

THE impressive growth of the semiconductor industry
over the last few decades is fueled by continuous silicon

scaling, which offers smaller, faster, and cheaper transistors
with each new technology generation. However, challenges
in producing reliable components in these extremely dense
technologies are growing, with many device experts
warning that continued scaling will inevitably lead to
future generations of silicon technology being much less
reliable than present ones [4], [53]. Processors manufac-
tured in future technologies will likely experience failures
in the field due to silicon defects occurring during system
operation. In the absence of any viable alternative technol-
ogy, the success of the semiconductor industry in the future
will depend on the creation of cost-effective mechanisms to
tolerate silicon defects in the field (i.e., during operation).

The challenge—tolerating hardware defects. To tolerate
permanent hardware faults (i.e., silicon defects) encountered
during operation, a reliable system requires the inclusion of
three critical capabilities: 1) mechanisms for detection and
diagnosis of defects, 2) recovery techniques to restore correct
system state after a fault is detected, and 3) repair mechan-
isms to restore correct system functionality for future
computation. Fortunately, research in chip-multiprocessor
(CMP) architectures already provides for the latter two

requirements. Researchers have pursued the development
of global checkpoint and recovery mechanisms; examples of
these include SafetyNet [52] and ReVive [42], [39]. These
low-cost checkpointing mechanisms provide the capabilities
necessary to implement system recovery. Additionally, the
highly redundant nature of future CMPs will allow low-cost
repair through the disabling of defective processing ele-
ments [48]. With a sufficient number of processing re-
sources, the performance of a future parallel system will
gracefully degrade as manifested defects increase.

Given the existence of low-cost mechanisms for system
recovery and repair, the remaining major challenge in the
design of a defect-tolerant CMP is the development of low-
cost defect detection techniques. Existing online hardware-
based defect detection and diagnosis techniques can be
classified into two broad categories: 1) continuous: those that
continuously check for execution errors and 2) periodic:
those that periodically check the processor’s logic.

Existing defect tolerance techniques and their short-
comings. Examples of continuous techniques are Dual
Modular Redundancy (DMR) [51], lockstep systems [27],
and DIVA [2]. These techniques detect silicon defects by
validating the execution through independent redundant
computation. However, independent redundant computa-
tion requires significant hardware cost in terms of silicon
area (100 percent extra hardware in the case of DMR and
lockstep systems). Furthermore, continuous checking con-
sumes significant energy and requires part of the power
envelope to be dedicated to it. In contrast, periodic
techniques check periodically the integrity of the hardware
without requiring redundant execution [50]. These techni-
ques rely on checkpointing and recovery mechanisms that
provide computational epochs and a substrate for spec-
ulative unchecked execution. At the end of each computa-
tional epoch, the hardware is checked by on-chip testers. If

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009 1063

. K. Constantinides, T. Austin, and V. Bertacco, are with the University of
Michigan, Ann Arbor, 2260 Hayward, 2773 CSE, MI 48109.
E-mail: {kypros, austin, valeria}@umich.edu.

. O. Mutlu is with the Carnegie Mellon University, 5000 Forbes Avenue,
ECE-HH-A305, Pittsburgh, PA 15213. E-mail: onur@cmu.edu.

Manuscript received 18 Feb 2008; revised 30 Aug. 2008; accepted 20 Nov.
2008; published online 20 Mar. 2009.
Recommended for acceptance by C. Bolchini.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-02-0078.
Digital Object Identifier no. 10.1109/TC.2009.52.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

the hardware tests succeed, the results produced during the
epoch are committed and execution proceeds to the next
computational epoch. Otherwise, the system is deemed
defective and system repair and recovery are required.

The on-chip testers employed by periodic defect tolerance
techniques rely on the same Built-In-Self-Test (BIST) techni-
ques that are used predominantly during manufacturing test
[7]. BIST techniques use specialized circuitry to generate test
patterns and validate the responses generated by the
hardware. There are two main ways to generate test patterns
on chip: 1) by using pseudorandom test pattern generators
and 2) by storing on-chip previously generated test vectors
that are based on a specific fault model. Unfortunately, both
of these approaches have significant drawbacks. The first
approach does not follow any specific testing strategy
(targeted fault model), and therefore, requires extended
testing times to achieve good fault coverage [7]. The second
approach not only requires significant hardware overhead
[10] to store the test patterns on chip but also binds a specific
testing approach (i.e., fault model) into silicon. On the other
hand, as the nature of wearout-related silicon defects and the
techniques to detect them are under continuous exploration
[17], binding specific testing approaches into silicon might be
premature, and therefore, undesirable.

As of today, hardware-based defect tolerance techniques
have one or both of the following two major disadvantages:

1. Cost: They require significant additional hardware to
implement a specific testing strategy.

2. Inflexibility: They bind specific test patterns and a
specific testing approach (e.g., based on a specific
fault model) into silicon. Thus, it is impossible to
change the testing strategy and test patterns after the
processor is deployed in the field. Flexible defect
tolerance solutions that can be upgraded in the field
are very desirable.

High-level overview of our approach. Our goal in this
work is to develop a low-cost, flexible defect tolerance
technique that can be modified and upgraded in the field. To
this end, we propose to implement hardware defect
detection and diagnosis in software. In our approach, the
hardware provides the necessary substrate to facilitate
testing and the software makes use of this substrate to
perform the testing. We introduce specialized Access-
Control Extension (ACE) instructions that are capable of
accessing and controlling virtually any portion of the
microprocessor’s internal state. Special firmware periodi-
cally suspends microprocessor execution and uses the ACE
instructions to run directed tests on the hardware and detect
if any component has become defective.

Fig. 1 shows how the ACE framework fits in the
hardware/software stack below the operating system layer.

Our approach provides particularly wide coverage, as it not
only tests the internal processor control and instruction
sequencing mechanisms through software functional testing,
but it can also check all datapaths, routers, interconnect, and
microarchitectural components by issuing ACE instruction
test sequences.

2 WHY DOES SILICON FAIL? A BRIEF OVERVIEW

OF SILICON FAILURE MECHANISMS

We first provide a brief overview of the silicon failure
mechanisms that motivate the solution we propose in this
work. The interested reader can refer to [14], [44], [49], [54],
[23] for a detailed treatment of these mechanisms.

Time-dependent wearout:

. Electromigration: Due to the momentum transfer
between the current-carrying electrons and the host
metal lattice, ions in a conductor can move in the
direction of the electron current. This ion movement
is called electromigration [14]. Gradually, this ion
movement can cause clustered vacancies that can
grow into voids. These voids can eventually grow
until they block the current flow in the conductor.
This leads to increased resistance and propagation
delay, which, in turn, leads to possible device failure.
Other effects of electromigration are fractures and
shorts in the interconnect. The trend of increasing
current densities in future technologies increases the
severity of electromigration, leading to a higher
probability of observing open and short-circuit
nodes over time [18].

. Gate Oxide Wearout: Thin gate oxides lead to
additional failure modes as devices become subject
to gate oxide wearout (or Time-Dependent Di-
electric Breakdown, TDDB) [14]. Over time, gate
oxides can break down and become conductive. If
enough material in the gate breaks down, a
conduction path can form from the transistor gate
to the substrate, essentially shorting the transistor
and rendering it useless [18], [23]. Fast clocks, high
temperatures, and voltage scaling limitations are
well-established architectural trends that aggravate
this failure mode [54].

. Hot Carrier Degradation (HCD): As carriers move
along the channel of an MOSFET and experience
impact ionization near the drain end of the device, it
is possible that they gain sufficient kinetic energy to
be injected into the gate oxide [14]. This phenomen-
on is called Hot Carrier Injection. Hot carriers can
degrade the gate dielectric, causing shifts in thresh-
old voltage and eventually device failure. HCD is
predicted to worsen for future thinner oxide and
shorter channel lengths [23].

Transistor infant mortality. Extreme device scaling also
exacerbates early transistor failures. Early transistor failures
are caused by weak transistors that escape postmanufactur-
ing validation tests. These weak transistors work initially,
but they have dimensional and doping deficiencies that
subject them to much higher stress than robust transistors.
Quickly (within days to months), they will break down
from stress and render the device unusable. Traditionally,
early transistor failures have been reduced through
aggressive burn-in testing, where, before being placed in
the field, devices are subjected to high voltage and
temperature testing to accelerate the failure of weak

1064 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 1. The ACE framework fits in the hardware/software stack below the

operating system.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

transistors [7]. Those that survive the burn-in testing are
likely to be robust devices, thereby ensuring a long product
lifetime. However, in the deep-submicron regime, burn-in
becomes less effective as devices are subject to thermal
runaway effects, where increased temperature leads to
increased leakage current, which, in turn, leads to even
higher temperatures [37]. The end result is that aggressive
burn-in of deep-submicron silicon can destroy even robust
devices. Manufacturers are forced to either sacrifice yield
by deploying aggressive burn-in testing or experience more
frequent early failures in the field by using less aggressive
burn-in testing.

Manufacturing defects that escape testing. Optical
proximity effects, airborne impurities, and processing
material defects can all lead to the manufacturing of faulty
transistors and interconnect [44]. Moreover, deep-submicron
gate oxides have become so thin that manufacturing
variation can lead to currents penetrating the gate, rendering
it unusable [49]. Even small amounts of manufacturing
variation in the gate oxide could render the device unusable.
The problem of manufacturing defects is compounded by
the immense complexity of current designs. Design com-
plexity makes it more difficult to test for defects during
manufacturing. Vendors are forced to either spend more
time with parts on the tester, which reduces profits by
increasing time-to-market, or risk the possibility of untested
defects escaping to the field. Moreover, in highly complex
designs, many defects are not testable without additional
hardware support. As a result, even in today’s manufactur-
ing environment, untestable defects can escape testing and
manifest themselves later on in the field.

Our goal. To overcome the possible errors caused by the
aforementioned silicon failure mechanisms, our goal in this
work is to develop a flexible, low-cost silicon defect detection
and diagnosis technique. We next describe our technique in
detail.

3 SOFTWARE-BASED DEFECT DETECTION

AND DIAGNOSIS

A key challenge in implementing a software-based defect
detection and diagnosis technique is the development of
effective software routines to check the underlying hard-
ware. Commonly, software routines for this task suffer
from the inherent inability of the software layer to observe
and control the underlying hardware, resulting in either
excessively long test sequences or poor defect coverage.
Current microprocessor designs allow only minimal access
to their internal state by the software layer; often all that
software can access consists of the register file and a few
control registers (such as the program counter (PC), status
registers, etc.). Although this separation provides protec-
tion from malicious software, it also largely limits the
degree to which stock hardware can utilize software to test
for silicon defects.

To overcome this limited accessibility, we propose
architectural support through an extension to the proces-
sor’s ISA. Our extension adds a set of special instructions
enabling full observability and control of the hardware’s
internal state. These ACE instructions are capable of read-
ing/writing from/to any part of the microprocessor’s
internal state. ACE instructions make it possible to probe
underlying hardware and systematically and efficiently
assess if any hardware component is defective.

3.1 An ACE-Enhanced Architecture

A microprocessor’s state can be partitioned into two parts:
accessible from the software layer (e.g., register file, PC,
etc.) or not accessible (e.g., reorder buffer, load/store
queues, etc.). An ACE-enhanced microarchitecture allows
the software layer to access and control (almost) all of the
microprocessor’s state. This is done by using ACE instruc-
tions that copy a value from an architectural register to any
other part of the microprocessor’s state and vice versa.

This approach inherently requires the architecture to
access the underlying microarchitectural state. To provide
this accessibility without a large hardware overhead, we
leverage the existing scan chain infrastructure. Most modern
processor designs employ full hold-scan techniques to aid
and automate the manufacturing testing process [30], [62].
Fig. 2 shows a typical scan flip-flop design [38], [30]. The
system flip-flop is used during the normal operating mode,
while the scan portion is used during testing to load the
system with test patterns and to read out the test responses.
Our approach extends the existing scan chain using a
hierarchical, tree-structured organization to provide fast
software access to different microarchitectural components.

ACE domains and segments. In our ACE extension
implementation, the microprocessor design is logically
partitioned into several ACE domains. An ACE domain
consists of the state elements and combinational logic
associated with a specific part of the microprocessor. Each
ACE domain is further subdivided into ACE segments as
shown in Fig. 3a. Each ACE segment includes only a fixed
number of storage bits, which is the same as the width of an
architectural register (64 bits in our design).

ACE instructions. Using this hierarchical structure, ACE
instructions can read or write any part of the micropro-
cessor’s state. Table 1 shows a description of the ACE
instruction set extensions.

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1065

Fig. 2. A typical scan flip-flop (adapted from [38]).

Fig. 3. The ACE Architecture: (a) the chip is logically partitioned into
multiple ACE domains. Each ACE domain includes several ACE
segments. The union of all ACE segments comprises the full chip’s
state (excluding SRAM structures). (b) Data are transferred from/to the
register file to/from an ACE segment through the bidirectional ACE tree.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

ACE_set copies a value from an architectural register to
the scan state (scan portion in Fig. 2) of the specified ACE
segment at-speed (i.e., at the processor’s clock frequency).
Similarly, ACE_get loads a value from the scan state of the
specified ACE segment to an architectural register at-speed.
These two instructions can be used for manipulating the
scan state through software-accessible architectural state.
The ACE_swap instruction is used for swapping the scan
state with the processor state (system flip-flops) of the ACE
segment by asserting both the UPDATE and the CAPTURE
signals (see Fig. 2).

Finally, ACE_test is a test-specific instruction that
performs a three-cycle atomic operation for orchestrating
the actual testing of the underlying hardware (see Section 3.2
for example).

In order to avoid any malicious use of the ACE
infrastructure, ACE instructions are privileged instructions
that can be used only by ACE firmware. ACE firmware
routines are special applications running between the
operating system layer and the hardware in a trusted
mode, similarly to other firmware, such as device drivers.

ACE tree. During the execution of an ACE instruction,
data need to be transferred from the register file to any part
of the chip that contains microarchitectural state. In order to
avoid long interconnect, which would require extra
repeaters and buffering circuitry, the data transfer between
the register file and the ACE segments is pipelined through
the ACE tree as shown in Fig. 3b. At the root of the ACE tree
is the register file while the ACE segments are its leaves. At
each intermediate tree level, there is an ACE node that is
responsible for buffering and routing the data based on the
executed operation. The ACE tree is a bidirectional tree
allowing data transfers from the register file to the ACE
segments and back.

Design complexity. We believe that since the ACE Tree is
a regular structure that routes data from the register file to
the scan chains and vice versa, its implementation and
insertion into the microprocessor implementation can be
automated by CAD tools, similar to the way that scan chains
are automatically implemented and inserted in current
microprocessors today. The main intrusive portion of the
ACE Tree that needs interaction with existing processor
components are the additional read/write ports needed to
connect the root of the ACE Tree to the processor register file.
Similarly, the ACE instruction set extensions are likely not
intrusive to the microarchitecture since their operations are
relatively simple and their implementation does not affect
the implementation of other instructions in the ISA.

3.2 ACE-Based Online Testing

ACE instruction set extensions make it possible to craft
programs that can efficiently and accurately detect the
underlying hardware defects. The approach taken in
building test programs, however, must have high coverage,
even in the presence of defects that might affect the
correctness of ACE instruction execution and test programs.
This section describes how test programs are designed.

ACE testing and diagnosis. Special firmware periodi-
cally suspends normal processor execution and uses the
ACE infrastructure to perform high-quality testing of the
underlying hardware. A test program exercises the under-
lying hardware with previously generated test patterns and
validates the test responses. Both the test patterns and the
associated test responses are stored in physical memory.
The pseudocode of a firmware code segment that applies a
test pattern and validates the test response is shown in
Fig. 4. First, the test program stops normal execution and
uses the ACE_set instruction to load the scan state with a
test pattern (Step 1). Once the test pattern is loaded into the
scan state, a three-cycle atomic ACE_test instruction is
executed (Step 2). In the first cycle, the processor state is
loaded with the test pattern by swapping the processor state
with the scan state. The next cycle is the actual test cycle,
where the combinational logic generates the test response.
In the third cycle, by swapping again the processor state
with the scan state, the processor state is restored while the
test response is copied to the scan state for further
validation. The final phase (Step 3) of the test routine uses
the ACE_get instruction to read and validate the test
response from the scan state. If a test pattern fails to
produce the correct response at the end of Step 3, the test
program indicates which part of the hardware is defective1

and disables it through system reconfiguration [48], [13].
Given this software-based testing approach, the firm-

ware designer can easily change the level of defect coverage
by varying the number of test patterns. As a test program
executes more patterns, coverage increases. We use auto-
matic test pattern generation (ATPG) tools [7] to generate
compact test pattern sets adhering to specific fault models.

Basic core functional testing. When performing ACE
testing, there is one initial challenge to overcome: ACE
testing firmware relies on the correctness of a set of basic core
functionalities that loads test patterns, executes ACE
instructions, and validates the test response. If the core has
a defect that prevents the correct execution of the ACE
firmware, then ACE testing cannot be performed reliably. To
bypass this problem, we craft specific programs to test the
basic functionalities of a core before running any ACE testing
firmware. If these programs do not report success in a timely
manner to an independent auditor (e.g., the operating
system running on the other cores), then we assume that
an irrecoverable defect has occurred on the core and we
permanently disable it. If the basic core functionalities are
found to be intact, finer grained ACE testing can begin.

1066 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

TABLE 1
The ACE Instruction Set Extensions

1. By interpreting the correspondence between erroneous response bits
and ACE domains.

Fig. 4. ACE firmware: Pseudocode for 1) loading a test pattern,

2) testing, and 3) validating the test response.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

3.3 ACE Testing in a Checkpointing
and Recovery Environment

We incorporate the ACE testing framework within a
multiprocessor checkpointing and recovery mechanism
(e.g., SafetyNet [52] or ReVive [42]) to provide support for
system-level recovery. When a defect is detected, the system
state is recovered to the last checkpoint (i.e., correct state)
after the system is repaired.

In a checkpoint/recovery system, the release of a
checkpoint is an irreversible action. Therefore, the system
must execute the ACE testing firmware at the end of each
checkpoint interval to test the integrity of the whole chip. A
checkpoint is released only if ACE testing finds no defects.
With this policy, the performance overhead induced by
running the ACE testing firmware depends directly on the
length of the checkpoint interval, that is, longer intervals
lead to lower performance overhead. We explore the trade-
off between checkpoint interval size and ACE testing
performance overhead in Section 5.4.

3.4 Algorithmic Flow of ACE-Based Online Testing

Table 2 shows the flow of ACE-Based Online testing in a
checkpointing and recovery environment with single-
threaded execution. Other execution models are examined
in the next section. Two points are worth noting in the
algorithm. First, a lightweight context switch is performed
from the application thread to the ACE testing thread at the
beginning of the test and vice versa at the end of the test.
Lightweight context switching [1], [28] in a single cycle is
supported by many simultaneously multithreaded proces-
sors today, including Sun’s UltraSPARC T1. If lightweight
context switch support is not available, then a pipeline
flush is required. Our results show that context switch
penalty, even if it is hundreds of cycles, only negligibly
increases the overhead of ACE testing. Second, if the basic
core functional test fails, the core is disabled and execution
traps to the system software. If the ACE firmware test fails,
the system software performs defect diagnosis to localize
the defect. To do so, the system software maps the ACE
segments that fail to match the expected test response to
specific hardware components (i.e., the combinational logic
driving the flip-flops of the ACE segments). If reconfigur-
ability support is provided within those hardware compo-
nents, the ACE firmware can pinpoint these components to

be disabled. Since our focus is on flexible defect detection,
we leave fault analysis and recovery to future work.

3.5 ACE Testing Execution Models

Single-threaded sequential ACE testing. The simplest
execution model for ACE testing is to implement the ACE
testing process at the end of each checkpoint interval. In this
execution model, the application runs normally on the
processor until the buffering resources dedicated to the
checkpoint are full and a new checkpoint needs to be taken.
At this point, a context switch between the application
process and the ACE testing process happens. If the ACE
testing routine deems the underlying hardware defect free,
a new checkpoint of the processor state is taken and the
execution of the application process is resumed. Otherwise,
system repair and recovery are triggered. Fig. 5a illustrates
this single-threaded sequential execution model.

SMT-based ACE testing. In processors that support
simultaneous multithreading (SMT) execution [47], [21],
[59], it is possible for the ACE firmware to run simulta-
neously with the application threads running on separate
execution contexts. This execution model is illustrated in
Fig. 5b and could be higher performance since it overlaps the
latency of ACE testing with actual application execution.

Fortunately, the majority of the instructions used by the
ACE testing firmware do not entail any synchronization
requirements between the ACE testing thread and the other
threads running on the processor. For example, the ACE
instructions used to load a test pattern into the scan state
(ACE_set) or read and validate a test response (ACE_get)
do not affect the execution of other threads running on the
processor. The work performed by these instructions can be
fully overlapped with application execution.

However, the ACE_test instruction momentarily
changes the microarchitectural state of the entire processor,
and thus, affects the normal execution of all running threads.
To avoid the incorrect execution of other running threads
when an ACE_test instruction is executed by the ACE
testing thread, all other threads need to pause execution.
This is implemented by using simple synchronization
hardware that pauses execution of all other threads (i.e.,
stalls their pipelines) when an ACE_test instruction starts
execution and resumes their execution once the test instruc-
tion is completed. Note that during testing, the processor’s
microarchitectural state is stored in the scan state. The
microarchitectural state gets restored right after the test cycle
(see Section 3.1) enabling the seamless resumption of normal
processor execution.

The advantage of the SMT-based ACE testing model is
its lower performance overhead compared to single-
threaded sequential ACE testing. The disadvantage is that
this model requires a separate SMT context to be present in

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1067

TABLE 2
Algorithmic Flow of ACE-Based Testing
in a Checkpoint/Recovery Environment

Fig. 5. Different execution models of ACE testing: (a) Illustrates ACE
testing in a single-threaded sequential execution model, where the ACE
testing thread is run exclusively after application execution. (b) The ACE
testing thread runs simultaneously with the application in a 2-way SMT
execution environment. (c) ACE testing is interleaved with application
execution and run in the shadow of L2 cache misses.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

the underlying processor. Note that to guarantee correct
recovery, with this execution model, the recovery mechan-
ism needs to buffer the last two checkpoints.

Interleaved ACE testing in the shadow of L2 misses.
When the ACE testing thread is sharing the processor
resources with other critical applications, it is important to
avoid penalizing the performance of these critical applica-
tions due to hardware testing. Performance penalties can be
reduced by allowing the ACE testing thread to execute only
when the processor resources are unutilized by the perfor-
mance critical threads. An example scenario is to execute the
ACE testing thread when the processor is stalled waiting for
an L2 cache miss to complete, i.e., in the shadow of L2 cache
misses. This execution scenario is illustrated in Fig. 5c.

In the execution model, the processor suspends the
execution of the application and context switches into the
ACE testing thread when the application incurs an
L2 cache miss due to its oldest instruction. The context
switch is similar to the lightweight context switches used in
switch-on-event multithreading [1], [28]. When the L2 miss
is fully serviced, the processor context switches back to the
application and suspends the execution of the ACE thread.
Under this execution policy, the ACE testing thread utilizes
resources that would otherwise be unutilized. However, it
is possible that the full ACE testing might not be completed
in the shadow of L2 misses because the application might
not incur enough L2 cache misses. If that is the case, the
remaining portion of the ACE testing thread is executed at
the end of the checkpoint interval.

The advantage of the ACE testing model is that it does not
require a separate SMT context and can possibly provide
lower performance overhead than sequential ACE testing.
On the other hand, if L2 misses are not common in an
application, the model can degenerate into single-threaded
sequential ACE testing. As with the SMT-based model, to
guarantee correct recovery with this execution model, the
recovery mechanism needs to buffer the last two checkpoints.

4 EXPERIMENTAL METHODOLOGY

To evaluate our software-based defect detection technique,
we used the OpenSPARC T1 architecture, the open source
version of the commercial UltraSPARC T1 (Niagara)
processor from Sun [55], as our experimental testbed.

First, using the processor’s RTL code, we divided the
processor into ACE domains. We made the partition based
on functionality, where each domain comprises a basic
functionality module in the RTL code. When dividing the
processor into ACE domains, we excluded modules that are
dominated by SRAM structures (such as caches) because
such modules are already protected with error-coding
techniques such as ECC. Fig. 6 shows the processor modules
covered by the ACE framework (note that the L1 caches
within each core are also excluded).

Next, we used the Synopsys Design Compiler to synthe-
size each ACE domain using the Artisan IBM 0.13 �m
standard cell library. We used the Synopsys TetraMAX
ATPG tool to generate the test patterns.

Fault models. In our studies, we explored several single-
fault models: stuck-at, N-detect, and path-delay. The stuck-
at fault model is the industry standard model for test
pattern generation. It assumes that a circuit defect behaves
as a node stuck at 0 or 1. However, previous research has
shown that the test pattern sets generated using the
N-detect fault model are more effective for both timing
and hard failures, and present higher correlation to actual

circuit defects [36], [17]. In the N-detect test pattern sets,
each single stuck-at fault is detected by at least N different
test patterns. In addition to the stuck-at and N-detect fault
models, we also generate test pattern sets using the path-
delay fault model [7]. The path-delay fault model we use is
the built-in path-delay fault model in the Synopsys
TetraMAX commercial ATPG tool [56].

Benchmarks. We used a set of benchmarks from the
SPEC CPU2000 suite to evaluate the performance overhead
and memory logging requirements of ACE testing. All
benchmarks were run with the reference input set.

Microarchitectural simulation. To evaluate the perfor-
mance overhead of ACE testing, we modified the SESC
simulator [45] to simulate a SPARC core enhanced with the
ACE framework. The simulated SPARC core is a six-stage
in-order core (with 16 KB IL1 and 8 KB DL1 caches) running
at 1 GHz [55]. For each simulation run, we skipped the first
billion instructions and then performed cycle-accurate
simulation for different checkpoint interval lengths (10 M,
100 M, and 1 B dynamic instructions). To obtain the number
of clock cycles needed for the ACE testing, we simulated a
process that was emulating the ACE testing functionality.
For the SMT experiments, we use a separate thread that
runs the ACE testing software and we use a round-robin
thread fetch policy. For these experiments, the simulation
terminates when the ACE thread finishes testing and at least
one of the other threads executes 100 M instructions. The
thread combinations simulated for these experiments were
determined randomly. Unless otherwise stated, we evaluate
the single-threaded sequential execution model for ACE
testing in our experiments.

Experiments to determine memory logging require-
ments. To evaluate the memory logging storage require-
ments of coarse-grained checkpointing, we used the Pin x86
binary instrumentation tool [35]. We wrote a Pin tool that
measures the amount of storage needed to buffer the cache
lines written back from L2 cache to main memory during a
checkpoint interval, based on the ReVive checkpointing
scheme [42]. Benchmarks were run to completion for these
experiments. Section 5.4 presents the memory logging
overhead of our technique.

Performance overhead of I/O-intensive applications.
An irreversible I/O operation (e.g., sending a packet to a
network interface) requires the termination of a checkpoint
before it is executed. If such operations occur frequently,
they can lead to consistently short checkpoint intervals, and

1068 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 6. ACE coverage of the OpenSPARC T1 processor: Modules that

are dominated by SRAM structures, such as on-chip caches, are not

covered by ACE testing since they are already protected by ECC.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

therefore, high performance overhead for our proposal. To
investigate the performance overhead due to such frequent
I/O operations, we simulated some I/O-intensive filesys-
tem and network processing benchmarks. We evaluated
microbenchmarks Bonnie and IOzone to exercise the
filesystem by performing frequent disk read/write opera-
tions. We also used NetPerf benchmarks [20] to exercise the
network interface by performing very frequent packet
send/receive operations. In addition to the Netperf suite,
we evaluated three other benchmarks, NetIO, NetPIPE, and
ttcp, which are commonly used to measure the network
performance. In these experiments, the execution of an
irrecoverable I/O operation is preceded by a checkpoint
termination and the new checkpoint interval begins right
after the execution of the I/O operation. Section 5.5 presents
our results.

RTL implementation. We implemented the ACE tree
structure in RTL using Verilog in order to obtain a detailed
and accurate estimate of the area and power consumption
overheads of the ACE framework. We synthesized our
design of the ACE tree using the same tools, cell library,
and methodology that we used for synthesizing the Open-
SPARC T1 modules, as described earlier in this section.
Section 5.6 evaluates and quantifies the area overhead of the
ACE framework while Section 5.7 evaluates its power
consumption.

5 EXPERIMENTAL EVALUATION

5.1 Basic Core Functional Testing

Before running the ACE testing firmware, we first run a
software functional test to check the core for defects that
would prevent the correct execution of the testing firmware.
If this test does not report success in a timely manner to an
independent auditor (i.e., the OS running on other cores),
the test is repeated to verify that the failing cause was not
transient. If the test fails again, then an irrecoverable core
defect is assumed, the core is disabled, and the targeted
tests are canceled.

The software functional test we used to check the core
consists of three self-validating phases. The total size of the
software functional test is approximately 700 dynamic
instructions. To evaluate the effectiveness of the basic core
test, we performed a stuck-at fault injection campaign on
the gate-level netlist of a synthesized five-stage in-order
core (similar to the SPARC core with the exception of
multithreading support). Fig. 7 shows the distribution of the

outcomes of the fault injection campaign. Overall, the basic
core test successfully detected 62.14 percent of the injected
faults. The remaining 37.86 percent of the injected faults lie
in parts of the core’s logic that do not affect the core’s
capability of executing simple programs such as the basic
core test and the ACE testing firmware. ACE testing
firmware will subsequently test these untested areas of
the design to provide full core coverage.

5.2 ACE Testing Latency, Coverage,
and Storage Requirements

An important metric for measuring the efficiency of our
technique is how long it takes to fully check the underlying
hardware for defects. The latency of testing an ACE domain
depends on 1) the number of ACE segments it consists of
and 2) the number of test patterns that need to be applied.
In this experiment, we generate test patterns for each
individual ACE domain in the design using three different
fault models (stuck-at, path-delay, and N-detect) and the
methodology described in Section 4. Table 3 lists the
number of test instructions needed to test each of the major
modules in the design (based on the ACE firmware code
shown in Fig. 4).

For the stuck-at fault model, the most demanding
module is the SPARC core, requiring about 150 K dynamic
test instructions to complete the test. Modules dominated
by combinational logic, such as the SPARC core, the DRAM
controller, the FPU, and the I/O bridge, are more demand-
ing in terms of test instructions. On the other hand, the
CPU-cache crossbar, which consists mainly of buffer queues
and interconnect, requires much fewer instructions to
complete the tests.

For the path-delay fault model, we generate test pattern
sets for the critical paths that are within 5 percent of the
clock period. The required number of test instructions to

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1069

Fig. 7. Fault coverage of basic core functional testing: The pie chart on the right shows the distribution of the outcomes of a fault injection campaign

on a five-stage in-order core running the purely software-based preliminary functional tests.

TABLE 3
Number of Test Instructions Needed to Test Each

of the Major Modules in the Design

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

complete the path-delay tests is usually less than or similar
to that required by the stuck-at model.

For the N-detect fault model, the number of test
instructions is significantly more than that needed for the
stuck-at model. This is because many more test patterns are
needed to satisfy the N-detect requirement. For values of
N higher than four, we observed that the number of test
patterns generated increases almost linearly with N , an
observation that is aligned with previous studies [36], [17].

Full test coverage. The overall chip test coverage for the
stuck-at fault model is 99.22 percent (shown in Table 3). The
test coverage for the two considered N-detect fault models
is slightly less than that of the stuck-at model, at
98.88 percent and 98.65 percent, respectively, (not shown
in Table 3 for simplicity).

Storage requirements for ATPG test patterns/responses.
Table 4 shows the storage requirements for the ATPG test
patterns and the associated test responses. The storage
requirements are shown separately for each major module
in the OpenSPARC T1 chip and for each fault model
considered in this work. Note that since there is resource
replication in the OpenSPARC T1 chip (e.g., there are eight
SPARC cores and four DRAM controllers on the chip), only
one set of the test patterns/responses is required to be stored
per resource. The least amount of test pattern storage is
required by the path-delay fault model (1.34 MB) while the
most demanding fault model is N-detect, where N ¼ 4,
which requires about 5 MB. The overall test pattern/
response storage requirement for all modules and all fault
models is 11.11 MB, which is similar to what is reported in
previous work [34]. In our scheme, the test patterns and
responses are stored in physical memory and loaded into the
register file during the testing phase. Therefore, for physical
memories of several gigabytes in modern processors, the
storage requirements of 11 MB is considered negligible.

5.3 Full-Chip Distributed Testing

In the OpenSPARC T1 architecture, the hardware testing
process can be distributed over the chip’s eight SPARC cores.
Each core has an ACE tree that spans over the core’s
resources and over parts of the surrounding noncore
modules (e.g., the CPU-cache crossbar, the DRAM control-
lers etc.). Therefore, each core is assigned to test its resources
and some parts of the surrounding noncore modules.

We distributed the testing responsibilities of the noncore
modules to the eight SPARC cores based on the physical
location of the modules on the chip (shown in Fig. 6).
Table 5 shows the resulting distribution. The most heavily
loaded pair of cores are cores two and four. Each of these
two cores is responsible for testing its own resources, one-
eighth of the CPU-cache crossbar, one-half of the DRAM

controller, and one-half of the I/O bridge, for a total of
468 K dynamic test instructions (for both stuck-at and path-
delay testing). The overall latency required to complete the
testing of the entire chip is driven by these 468 K dynamic
test instructions, since all the other cores have shorter test
sequences, and will therefore, complete their tests sooner.

5.4 Performance Overhead of ACE Testing

In this section, we evaluate the performance overhead of
ACE testing for the execution models described in
Section 3.5. For all experiments, we set the checkpoint
interval to 100 M instructions.

Single-threaded sequential ACE testing. With this
execution model, at the end of each checkpoint interval,
normal execution is suspended and ACE testing is
performed. In these experiments, the ACE testing firmware
executes until it reaches the maximum test coverage. The
four bars in the graph of Fig. 8 show the performance
overhead when the fault model used in ACE testing is

1. stuck-at,
2. stuck-at and path-delay,
3. N-detect (N ¼ 2) and path-delay, and
4. N-detect (N ¼ 4) and path-delay.

The minimum average performance overhead of ACE
testing is 5.5 percent and is observed when only the
industry-standard stuck-at fault model is used. When the
stuck-at fault model is combined with the path-delay fault
model to achieve higher testing quality, the average
performance overhead increases to 9.8 percent. As ex-
pected, when test pattern sets are generated using the
higher quality N-detect fault model, the average perfor-
mance overhead increases to 15.2 and 25.4 percent for N ¼ 2
and N ¼ 4, respectively.

Table 6 shows the trade-off between memory logging
storage requirements and performance overhead for check-
point intervals of 10 M, 100 M, and 1 B dynamic instructions.
Both log size and performance overhead are averaged over
all evaluated benchmarks. As the checkpoint interval size
increases, the required log size increases, but the performance

1070 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

TABLE 4
Test Pattern/Response Storage Requirements

per Fault Model and Design Module

TABLE 5
Number of Test Instructions Needed by Each Core Pair
in Full-Chip Distributed Testing: The Testing Process Is

Distributed over the Chip’s Eight SPARC Cores

Each core is assigned to test its resources and some parts of the
surrounding noncore modules as shown in this table.

Fig. 8. Performance overhead of ACE testing for a 100 M instruction

checkpoint interval.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

overhead of ACE testing decreases. From this experiment, we
conclude that checkpoint intervals in the order of hundreds of
millions of instructions are sustainable with reasonable
storage overhead, while providing an efficient substrate to
perform ACE testing with low performance overhead.

SMT-based ACE testing. Fig. 9 shows the performance
overhead when ACE testing is used in a 2-way SMT
processor with several SPEC CPU2000 benchmarks. The
ACE testing thread runs concurrently, on a separate SMT
context, with the benchmark that is evaluated. In this

execution model, when ACE testing checks for stuck-at
failures, the average performance overhead is 2.6 percent,
which is 53 percent lower than the 5.5 percent overhead
observed when testing is performed in a single-threaded
sequential execution environment. For other fault models,
the observed results follow a similar trend: the performance
overhead of SMT-based ACE testing is lower than the
performance overhead of single-threaded sequential ACE
testing. The performance overhead reduction observed
under the SMT-based execution model stems from better
processor resource utilization between the ACE testing
thread and the running application. This is a consequence
of the ACE testing thread simultaneously sharing the
processor resources instead of sequentially executing
exclusively on the processor. The latency of major portions
of ACE testing (loading and checking of test patterns) is
hidden by application execution.

In SMT-based ACE testing, the testing thread occupies
an SMT context. Although performing ACE-based testing
in an SMT environment can reduce the potential perfor-
mance overhead of testing, it is important also to evaluate
the system throughput loss due to the testing thread since
the extra SMT context utilized by the testing thread could
otherwise be utilized by another application thread. Fig. 10
shows the reduction in system throughput when the
testing thread competes for processor resources with other
threads in a 2-way and a 4-way SMT configuration. We
define system throughput as the number of instructions
per cycle executed by application threads (excluding the
testing thread).

We observe that for stuck-at testing, the system
throughput reduction in a 2-way SMT configuration is
limited to 3 percent. The highest throughput reduction,
24 percent, is observed in a 2-way SMT configuration when
high-quality testing is performed (N-Detect, N ¼ 4, in
combination with the path-delay fault model). We also
observe that when the number of SMT contexts increases to
4, the throughput reduction due to software-based testing
significantly reduces. This is because ACE testing occupies
only a single thread context in the SMT processor and other
thread contexts can still contribute to system throughput by
executing application threads.

Interleaved ACE testing in the shadow of L2 misses.
Fig. 11 shows the performance overhead when ACE testing
is run in the shadow of L2 cache misses. With this execution
model, whenever there is an L2 cache miss on the

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1071

Fig. 9. Performance overhead of SMT-based ACE testing.

Fig. 10. System throughput reduction due to SMT-based ACE testing.

Fig. 11. Performance overhead of interleaved ACE testing in the shadow of L2 cache misses.

TABLE 6
Memory Log Size and ACE Testing Performance Overhead for

Different Checkpoint Intervals

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

application thread, there is a lightweight context switch
with the ACE testing thread. The application thread
resumes execution after the L2 cache miss is served. In
the case that the checkpoint buffering resources are full
(signaling the end of the checkpoint interval) and the ACE
testing is not completed, the ACE testing thread starts
running exclusively on the processor resources and
executes the remaining of the ACE testing routine to
completion. The dark part of each bar in Fig. 11 shows the
fraction of ACE testing overhead that is due to testing
performed in the shadow of L2 cache misses, while the gray
part shows the fraction of ACE testing overhead that is due
to testing performed at the end of the checkpoint interval.
The overhead of testing that is performed in the shadow of
L2 cache misses is caused by the additional time taken to
switch between the application thread and the ACE testing
thread, and vice versa.

We observe that for some memory intensive benchmarks
that exhibit a high L2 cache miss rate, such as ammp and
mcf, the ACE testing routine was able to run in its entirety
in the shadow of L2 cache misses. For these benchmarks, we
observe an average performance overhead reduction of 57
and 43 percent, respectively, compared to single-threaded
sequential ACE testing. However, for the rest of the
benchmarks, we noticed that due to the low L2 cache miss
rate, there were very few opportunities to execute the ACE
testing thread in the shadow of L2 cache misses. These
benchmarks, depending on the amount of ACE testing
performed in the shadow of L2 cache misses, exhibit the
same or slightly less performance overhead when com-
pared to single-threaded sequential ACE testing.

Based on these experimental results, we conclude that
the interleaved ACE testing execution model benefits only
benchmarks that exhibit a high enough L2 cache miss rate
and provide enough opportunities for interleaved ACE
testing to utilize the processor resources more efficiently.
Different thread interleaving criteria other than L2 cache
misses could lead to higher benefits and affect more
uniformly all benchmarks. However, the overhead of
switching between the application thread and the ACE
testing thread should be kept low. We leave the design and
investigation of such criteria and low overhead context
switching to future work.

5.5 Overhead of ACE Testing
in I/O-Intensive Applications

In I/O-intensive applications, frequent I/O operations
significantly affect the performance overhead of check-
point-based system rollback and recovery. Several system
I/O operations are not reversible (e.g., sending a packet to a
network interface, writing to the display, or writing to the
disk), and thus, cause early checkpoint termination. Conse-
quently, frequent I/O operations lead to shorter checkpoint
intervals and more frequent hardware testing that can have
a negative impact on system performance. This section
evaluates the performance overhead of ACE testing under a
heavy I/O usage environment using I/O-intensive filesys-
tem and network processing benchmarks.

Fig. 12 shows the execution time overhead of ACE
testing for the stuck-at fault model and the stuck-at
combined with the path-delay fault model. Except for
three of the Netperf benchmarks, all benchmarks exhibit an
execution time overhead that ranges from 4 to 10 percent
for the stuck-at fault model and from 6 to 17 percent
when combined with the path-delay fault model. Note
that the overheads are very high (greater than 25 percent)

in some Netperf benchmarks because these benchmarks are
intentionally designed to stress-test the network interface
by executing a very tight loop that continuously sends and
receives packets to/from the network interface. Even with
these adversarial benchmarks, the performance overhead
of ACE testing is at most 27 percent with the stuck-at fault
model and 48 percent with the combined stuck-at and
path-delay fault models.

In this experiment, a checkpoint terminates whenever
there is a write operation to the filesystem or a send/
receive operation to the network interface (i.e., an irrecov-
erable I/O operation). This assumption is pessimistic. The
execution time overhead observed in this experiment can
significantly be reduced with more aggressive and intelli-
gent I/O handling techniques like I/O buffering [39] or I/O
speculation [40], which we do not consider in this work.
Furthermore, we note that heavily I/O-intensive applica-
tions, such as the Netperf benchmarks, constitute an
unfavorable running environment for the ACE testing
technique due to two reasons. First, if high performance
is desired when running such I/O intensive applications,
the system can alternatively reduce the test quality
requirements of ACE testing (or even completely switch it
off) and trade-off testing quality with performance. Second,
we note that such I/O intensive applications have very low
CPU utilization; therefore, there might be little need for
high-quality, high-coverage ACE testing of the CPU during
their execution.

5.6 ACE Tree Implementation and Area Overhead

The area overhead of the ACE framework is dominated by
the ACE tree. In order to evaluate this overhead, we
implemented the ACE tree for the OpenSPARC T1 archi-
tecture in Verilog and synthesized it with the Synopsys
Design Compiler. Our ACE tree implementation consists of
data movement nodes that transfer data from the tree root
(the register file) to the tree leaves (ACE segments) and vice
versa. In our implementation, each node has four children,
and therefore, in an ACE tree that accesses 32 kilobits (about
1/8 of the OpenSPARC T1 architecture), there are 42 internal
tree nodes and 128 leaf nodes, where each leaf node has four
64-bit ACE segments as children. Fig. 13a shows the
topology of the ACE tree configuration, which has the
ability to directly access any of the 32 kilobits. To cover the
whole OpenSPARC T1 chip with the ACE framework, we
used eight such ACE trees, one for each SPARC core. The
overall area overhead of the ACE framework configuration
(for all eight trees) is 18.7 percent of the chip area.

1072 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 12. Execution time overhead of ACE testing on I/O-intensive
filesystem and networking applications.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

In order to contain the area overhead of the ACE
framework, we propose a hybrid ACE tree implementation
that combines the direct processor state accessibility of the
previous implementation with the existing scan-chain
structure. In this hybrid approach, we divide the 32 K
ACE-accessible bits into sixty-four 512-bit scan chains. Each
scan chain has 64 bits that can be directly accessed through
the ACE tree. The reading/writing to the rest of the bits in
the scan chain is done by shifting the bits to/from the
64 directly accessible bits. Fig. 13b shows the topology of the
hybrid ACE tree configuration. The overall area overhead of
the ACE framework when using the hybrid ACE tree
configuration is 5.8 percent of the chip area.2

5.7 Power Consumption Overhead
of the ACE Framework

An important consideration in evaluating the ACE frame-
work is the degree to which the extra hardware increases
the baseline design’s power consumption envelope. To
evaluate this power consumption overhead for our design
on Sun’s OpenSPARC T1 chip multiprocessor, we first
estimated the power consumption of the baseline design
that lacks the ACE framework capabilities. We calibrated
the estimated power consumption with actual power
consumption numbers provided by Sun for each module
of the chip [32]. After we validated our power estimates for
the baseline OpenSPARC T1 design, we estimated the
additional power required by the ACE framework.

Power estimation methodology. Fig. 14a shows the major
design components of the OpenSPARC T1 and the metho-
dology/tools we used to estimate their power consumption.
We estimated the power consumption of the majority of
OpenSPARC T1 modules using the Synopsys Power
Compiler (part of the Synopsys Design Compiler package)
and the available RTL code for the design. Each module’s
RTL code is synthesized using the Design Compiler. The

resulting gate-level netlist is subsequently analyzed by the
Power Compiler to estimate the module’s power consump-
tion. To perform the synthesis and power consumption
analysis, we used the Artisan IBM 130 nm standard cell
library, characterized at typical conditions of 1.2 V (Vdd)
and 25�C average temperature. The average transistor
switching activity factor was set to 0.5.

For modules dominated by SRAM structures, such as the
on-chip caches, where logic synthesis and power analysis
using the RTL code is inefficient,3 we used existing tools
designed specifically to characterize SRAM modules. To
estimate the power consumption of the L1 and L2 caches,
we used the CACTI 4.2 tool [57], a tool with integrated
cache performance, area, and power models.

This methodology is sufficient enough to estimate the
power consumption of most of the chip’s logic modules.
However, there are parts of the design whose power
consumption cannot be accurately estimated with these
tools. These include 1) numerous buses, wires, and repeaters
distributed all over the design, which are very hard to model
accurately using the Design and Power Compilers, unless
the design is fully placed and routed, 2) I/O pads of the chip.
In order to estimate the power consumption of these two
parts, we used values from the reported power envelope of
the commercial Sun UltraSPARC T1 design [32].

Results. The estimated power envelope for the whole
OpenSPARC T1 chip without the addition of the ACE
framework is 56.3 W.4 Fig. 14b shows the power consump-
tion for our enhanced OpenSPARC T1 design including the
ACE framework. The power envelope of the ACE-en-
hanced design is 58.5 W, where the power consumption of
the ACE framework is estimated to be 2.2 W. Thus, the
ACE framework consumes 4 percent of the design’s total
power. Our estimation assumes that the ACE framework is
enabled all the time while the chip is in operation.
However, as illustrated in the previous sections, the ACE
framework is actually used during very short testing
periods at the end of each checkpoint interval. Therefore,
we expect the actual power consumption and power
envelope overhead of the ACE framework to be signifi-
cantly lower than 4 percent, depending on the frequency
and length of testing (i.e., checkpoint interval size and time
spent in testing).

6 OTHER APPLICATIONS OF THE ACE FRAMEWORK

We believe that the ACE framework is a general framework
that can be used in several other applications to amortize its
hardware cost. We have recently shown that the ACE
framework can be utilized for the flexible detection of
hardware design bugs during online operation [11]. In this
section, we describe how the ACE framework can be used
in two other possible applications: post-silicon debugging
and manufacturing testing.

6.1 ACE Framework for Post-silicon Debugging

Post-silicon debugging is an essential and highly resource-
demanding phase that is on the critical path of the
microprocessor development cycle. Following product
tape-out (i.e., fabrication of the microprocessor design into
a silicon die), the post-silicon debugging phase checks if the

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1073

Fig. 14. Power consumption overhead of the ACE framework: (a) All
major design components and the methodology/tools used to estimate
the associated power consumption. (b) The power envelope of the
OpenSPARC T1 design enhanced with the ACE framework.

3. In logic synthesis, memory elements are synthesized into either latches
or flip-flops. Therefore, SRAM macrocells are implemented using memory
compilers instead of using the conventional logic synthesis flow.

4. Our estimate of the OpenSPARC T1 power is within 12 percent of the
reported power consumption of the commercial Sun Niagara design [32].

Fig. 13. ACE tree implementation: (a) Topology of a direct access ACE

tree. (b) Topology of a hybrid (partial direct access, partial scan chain)

ACE tree.

2. We found that the ACE tree’s impact on the processor’s clock cycle
time is negligible in both direct access and hybrid implementations.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

actual physical design of the product meets all the
performance and functionality specifications as they were
defined in the design phase. The goal of post-silicon
debugging is to find all design errors, also known as
design bugs, and to eliminate them through design changes
or other means before selling the product to the customer
[24], [22], [25].

The first phase of post-silicon debugging is to run
extended tests to validate the functional and electrical
operation of the design. The validation content commonly
consists of focused software test programs written to
exercise specific functionalities of the design or randomly
generated tests that exercise different parts of the design.
We refer to these test programs as the validation test suite.
These tests are applied under different operating conditions
(i.e., voltage, clock frequency, and temperature) in order to
electrically characterize the product. When the observed
behavior diverges from the expected prespecified correct
behavior (i.e., when a failure is found), further investigation
is required by the post-silicon debugging team. During a
failure investigation, the post-silicon debug engineer tries to
1) isolate the failure, 2) find the root cause of the failure,
and 3) fix the failure, using features hardwired into the
design to support debugging as well as tools external to the
design [24].

Motivation. The trends of higher device integration into
a single chip and the high complexity of modern processor
designs make the post-silicon debugging phase a signifi-
cantly costly process, both in terms of resources and time.
For modern processors, the post-silicon debugging phase
can easily cost $15-20 million and take six months to
complete [16]. The post-silicon debugging phase is esti-
mated to take up to 35 percent of the chip design cycle [8],
resulting in a lengthy time-to-market. As the level of device
integration continues to rise and the complexity of modern
processor designs increases [15], this problem will be
exacerbated leading to either 1) very expensive and long
post-silicon debugging phases, which would adversely
affect the processor cost and/or time-to-market or 2) more
buggy designs being released to the customers due to poor
post-silicon debugging [61], [46], which would likely
increase the fraction of chips that fail in the field.

There are two major challenges in the post-silicon
debugging of modern highly integrated processors. First,
because the internal signals of the microarchitecture have
limited observability to the testing software, it is difficult to
isolate a failure and find its root cause. Second, because the
hardware design is not easily or flexibly alterable by the
post-silicon debug engineer, it is difficult to evaluate
whether or not a potential fix to the design eliminates the
cause of the failure [25]. Existing techniques that are used to
address these two challenges are not adequate, as briefly
explained below.

Traditional techniques used to address the limited signal
observability problem are built-in scan chains [62], [25] and
optical probing tools [63]. Unfortunately, both have sig-
nificant shortcomings. The use of built-in scan chains to
monitor internal signals is very slow due to the serial nature
of external scan testing [19]. The effectiveness of optical
probing tools reduces with each technology generation as
direct probing becomes very difficult, if not impossible,
with more metal layers and smaller devices [60]. Further-
more, it is very hard to integrate these two techniques into
an automated post-silicon debugging environment [60].

The traditional technique used to evaluate design fixes
is the Focused Ion Beam (FIB) [24] technique, which

temporarily alters the design by physically changing the
metal layers of the chip. Unfortunately, FIB is limited in
two ways. First, FIB typically can only change metal layers
of the chip and cannot create any new transistors. There-
fore, some potential design fixes are not possible to make
or evaluate using this technology. Second, FIB’s effective-
ness is projected to diminish with further technology
scaling as the access to lower metal layers is becoming
increasingly difficult due to the introduction of more metal
layers in modern designs [8], [24].

Recently proposed mechanisms try to address the
limitations of these traditional techniques. Specifically,
recently proposed solutions suggest the use of reconfigur-
able programmable logic cores and flexible on-chip net-
works that will improve both signal observability and the
ability to temporally alter the design [43]. However, these
solutions have considerable area overheads [43] and still do
not provide complete accessibility to all of the processor’s
internal state [43].

Solution—ACE framework for post-silicon debugging.
The ACE framework can be an effective low-overhead
framework that provides the post-silicon debug engineers
with full accessibility and controllability of the processor’s
internal microarchitectural state at runtime. This capability
can be helpful to post-silicon debug engineers in isolating
design bugs and finding their root causes. Furthermore, once
a design bug is isolated and its causes have been identified,
the ACE framework can be used to dynamically overwrite
the microarchitectural state, and thus, emulate a potential
hardware fix. This allows the debug engineer to quickly
observe the effects of a potential design fix and verify its
correctness without any physical hardware modification.

Specifically, the event that triggers a failure investigation
by a post-silicon debug engineer is an incorrect design
output during the execution of the validation test suite.
However, by just observing the incorrect output, it is very
hard to pinpoint the root cause of the failure. Therefore,
further debugging of the failure is required. The first step in
this process is the reproduction of the conditions under
which the failure occurred. Once the failure is reproduced,
debugging tools can be used to analyze the design’s internal
state and pinpoint the design bug. This is where the ACE
firmware could be very useful to a post-silicon debug
engineer. The debug engineer can run the ACE firmware as
an independent thread (called the ACE debugging thread)
that runs in conjunction with the validation test thread to
identify the root cause of the failure and evaluate a potential
design fix. We first describe the required extensions to the
ACE framework to support post-silicon debugging using
the ACE firmware, then provide a detailed example of how
the debug engineer uses the ACE framework.

ACE instructions for post-silicon debugging. Table 7
shows the ACE instruction set extensions that enable the
synchronization between the validation test thread and the
ACE debugging thread.

The ACE_pause instruction pauses the execution of the
running validation test thread after it is executed for a given
number of clock cycles and switches execution to the ACE
debugging thread. The execution switch between the
validation test thread and the ACE debugging thread is
scheduled by setting an interrupt counter to the parameter
value of the ACE_pause instruction. This interrupt counter
decrements every clock cycle during the execution of the
validation test thread. Once the counter becomes zero, the
processor state and scan state get swapped, thus, taking a
snapshot of the running microarchitectural state of the

1074 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

validation testing thread into the scan state. In the same clock
cycle, execution is switched to the ACE debugging thread.

The ACE_return instruction returns execution from
the ACE debugging thread to the validation testing
thread and swaps the scan state with the processor state
in order to restore the microarchitectural state of the
validation test thread.

Post-silicon debugging example using the ACE frame-
work. Fig. 15 shows example of a possible ACE firmware
written to perform post-silicon debugging. Suppose that
the debug engineer runs a validation test program that
fails after 10,000 cycles of execution and the validation
engineer suspects that the bug is in the third ACE domain
of the core. Fig. 15 shows the pseudocode of the ACE
firmware written to analyze such a failure. The first
portion of the code (Fig. 15-left) pauses the execution of
the validation test program at the desired clock cycle; the
second portion (Fig. 15-middle) allows the debug engineer
to single-step the execution by one cycle to observe state
changes. Based on the information obtained by running
these portions of the code, the engineer devises a possible
fix. The third portion of the code (Fig. 15-right) is used by
the engineer to evaluate whether or not the design fix
would result in correct execution. We describe each code
portion of the ACE firmware in detail below.

The debugging process starts with the execution of the
ACE debugging firmware thread (Fig. 15-left). In this
thread, the first instruction is an ACE_pause instruction
that sets the interrupt counter to the clock cycle in which
detailed debugging is desired by the post-silicon debug
engineer. In the example shown in Fig. 15, the validation test
is set to be interrupted at clock cycle 10,000 (assuming that
this is the phase of the validation test, where the post-silicon
debug engineer suspects that the first error occurs). The
ACE_pause instruction is followed by an ACE_return

instruction. ACE_return switches execution from the ACE
debugging thread to the validation test thread, and thus, the
validation test program’s execution begins.

After 10,000 cycles into the execution of the validation
test thread, the validation test thread is interrupted. At this
point, 1) processor state is swapped with the scan state and
2) execution is switched from the validation test thread to
the ACE debugging thread. Once execution is transferred
to the ACE debugging thread, the post-silicon engineer
uses the ACE framework to investigate the microarchitec-
tural state of the validation test thread during clock cycle
10,000 (which is stored in the scan state). The example
scenario in Fig. 15 assumes that the suspected bug is in the
third ACE domain of the core. ACE_get instruction reads
the third ACE domain’s microarchitectural state and prints
it to the debugging console. We assume that the domain’s
microarchitectural state is checked by the debug engineer
and is found to be error free. Therefore, the debug
engineer decides to check the domain’s state in the next
clock cycle. In order to step the execution of the validation
test thread for one clock cycle, the interrupt counter is set
to one using the ACE_pause instruction, and the valida-
tion test thread’s execution is resumed with the execution
of the ACE_return instruction (Fig. 15-middle).

After one clock cycle of validation test execution,
control is transferred again to the ACE debugging thread
and the domain’s new microarchitectural state is checked
by the debug engineer. After inspecting the domain’s
microarchitectural state, the debug engineer finds that the
third bit of the domain’s sixth segment is a control signal
that should be a zero, but instead, it has the value of one.
Thus, the engineer pinpoints the root cause of the failure.
In order to verify that this is the only design bug that
affects the execution of the validation test thread, and that
fixing the specific control signal does not cause any other
erroneous side effects, the debug engineer modifies the
domain’s microarchitectural state and sets the control
signal to its correct value using the ACE_set instruction
(Fig. 15-right). Assuming that the whole validation test
takes 100,000 clock cycles to execute, the debug engineer
sets the next debugging interrupt to occur after 90,000 clock
cycles, which is right after the completion of the validation
test. At this point, the execution is transferred to the
validation test thread, which runs uninterrupted to
completion. After completion, the debug engineer checks
the final output to verify that the potential design bug fix
led to the correct output and there were not any erroneous
side effects due to the introduction of the bug fix. In the
case that the final output is incorrect, a new failure
investigation starts from the beginning and the debug
engineer writes another piece of firmware to investigate
the failure.

We would like to note the analogy between ACE
framework-based post-silicon debugging and conventional
software debugging. ACE_pause instruction is analogous to
setting a breakpoint in software debugging. ACE_return is
analogous to the low-level mechanism that allows switching
from the debugger to the main program code. Examining the
state of the processor and stepping hardware execution for
one cycle are analogous to examining the state of program
variables and single stepping in software debugging.
Finally, ACE framework’s ability to modify the state of the
processor while the test program is running is analogous to a
software debugger’s ability to modify memory state during
the execution of a software program that is debugged. We
note that, similar to a software debugging program, a
graphical interface can be designed to encapsulate the post-
silicon debugging commands to ease the use of ACE
firmware for post-silicon debugging.

Advantages. The results of the detailed debugging
process, demonstrated by the above example, are sometimes

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1075

Fig. 15. Example of ACE firmware pseudocode used for post-silicon
debugging.

TABLE 7
Additional ACE Instruction Set Extensions

for Post-silicon Debugging

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

achievable using traditional post-silicon debugging techni-
ques that were described previously. However, the use of
the ACE framework provides a promising post-silicon
debugging tool that can ease, shorten, and reduce the cost
of the post-silicon design process. The main advantages of
ACE framework-based post-silicon debugging are the
following:

1. It eases the debugging process: ACE framework-
based debugging is closer to software, very similar
to the software debugging process, and therefore, is
trivial to understand and use by the debug engineer.
This ease in debugging is achieved by providing
complete accessibility and controllability of the
hardware state to the debug engineer.

2. It can test potential design bug fixes without
physically and permanently modifying the under-
lying hardware. This reduces both the cost and
difficulty of post-silicon debugging by reducing the
manual labor involved in fixing the design bugs.

3. It can accelerate the post-silicon debugging process
because it does not require very slow procedures
such as scan-out of the whole microarchitectural
state or manual modification of the underlying
hardware using the aforementioned FIB technique
to evaluate potential design fixes.

6.2 ACE Framework for Manufacturing Testing
Manufacturing testing is the phase that follows chip
fabrication and screens out parts with defective or weak
devices. Today, most complex microprocessor designs use
scan chains as the fundamental design for test (DFT)
methodology. During the manufacturing testing phase,
the design’s scan chains are driven by external automatic
test equipment (ATE) that applies pregenerated test
patterns to check the chip under test [7]. During the
manufacturing testing phase, every single chip has to go
through this testing process multiple times at different
voltage, temperature, and frequency levels. Therefore, the
manufacturing testing cost for each chip can be as high as
25-30 percent of the total manufacturing cost [19].

Motivation. Although this testing methodology served
the semiconductor industry well for the last few decades, it
has started to face an increasing number of challenges due
to the exponential increase in the complexity of modern
microprocessors [15], a product of the continuous silicon
process technology scaling.

Specifically, the external ATE testers have a limited
number of channels to drive the design’s scan chains due
to package pin limitations [19]. Furthermore, the speed of
test pattern loading is limited by the maximum scan
frequency that is usually much lower than the chip’s
operating frequency [19], [7]. The limited throughput of the
scan interface between the external tester and the design
under test constitutes the main bottleneck. These limita-
tions in combination with the larger set of test patterns
required for testing modern multimillion gate designs lead
to longer time spent on the tester per chip. Even today, the
amount of time a chip spends on a tester can be several
seconds [19]. Considering that the amortized testing cost of
high-end test equipment is estimated to be at thousands of
dollars per hour [5], [19], the conventional manufacturing
testing process can be very cost-ineffective for micropro-
cessor vendors.

Alternative solutions. Logic BIST is a testing methodol-
ogy based on pseudorandom test pattern generation and
test response compaction. To speed up manufacturing

testing, logic BIST techniques use the scan infrastructure
to apply the on-chip pseudorandomly generated test
patterns and employ specialized hardware to compact the
test responses [7]. Furthermore, the control signals used for
testing are driven by an on-chip test controller. Therefore, a
clear advantage of logic BIST over the traditional manu-
facturing testing methodology is that it significantly reduces
the amount of data that is communicated between the tester
and the chip. This leads to shorter testing times and, as a
result, lower testing cost. Logic BIST also allows the
manufacturing test to be performed at-speed (i.e., at the
chip’s normal operating frequency rather than the fre-
quency of the automatic test equipment), which improves
both the speed and quality of testing.

Although logic BIST addresses major challenges of the
traditional manufacturing testing methodology, it also
imposes some new challenges. First, logic BIST requires the
on-chip storage of a very large amount of pseudorandomly
generated test patterns. Second, because logic BIST uses
pseudorandomly generated test patterns, it often provides
significantly lower fault coverage than that provided by a
much smaller number of high-quality, ATPG-pregenerated
test patterns [7]. Third, the use of the logic BIST methodology
requires significantly more stringent design rules than
conventional manufacturing testing [19]. For example, bus
conflicts must be eliminated and the circuit must be made
random-pattern testable [19]. Therefore, logic BIST techni-
ques significantly increase both the hardware cost and the
design complexity, while resulting in lower test coverage.

Proposed solution—use of the ACE framework for
manufacturing testing. The ACE infrastructure incorpo-
rates the advantages of both the scan-based and logic BIST
testing methodologies, while it also can effectively address
their limitations. Specifically, the ACE infrastructure
provides two capabilities that are not together present in
previous manufacturing testing techniques. First, the ACE
framework is a built-in solution for fast loading of high-
quality pregenerated ATPG test patterns into the scan-
chain structures through software. This capability can
eliminate the need for expensive and slow external
equipment, currently needed for test pattern loading.
Second, the ACE framework allows the test patterns to be
loaded and applied at-speed at the chip’s normal operating
frequency rather than the much slower operating fre-
quency of the automatic test equipment, which results in
higher quality testing.

With these two capabilities, the ACE framework pro-
vides the best of both existing manufacturing testing
techniques: 1) fast loading of test patterns to reduce testing
time, 2) at-speed testing of the chip to improve testing
quality as well as to reduce testing time, and 3) testing with
ATPG-pregenerated test patterns rather than the use of
pseudorandomly generated test patterns, to improve test-
ing quality. Thus, if employed by the future integrated
circuit manufacturing testing methodologies, it can greatly
improve the speed, cost, and test coverage of the costly
manufacturing testing phase of the microprocessor devel-
opment cycle.

7 RELATED WORK

Hardware-based reliability techniques. The previous
work most closely related to this work is [50]. In [50],
we proposed a hardware-based technique that utilizes
microarchitectural checkpointing to create epochs of
execution during which on-chip distributed BIST-like
testers validate the integrity of the underlying hardware.

1076 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

To lower silicon cost, the testers were customized to the
tested modules. However, this leads to increased design
complexity because a specialized tester needs to be
designed for each module.

A traditional defect detection technique that is predomi-
nantly used for manufacturing testing is logic BIST [7].
Logic BIST incorporates pseudorandom pattern generation
and response validation circuitry on the chip. Although on-
chip pseudorandom pattern generation removes any need
for pattern storage, such designs require a large number of
random patterns and often provide lower fault coverage
than ATPG patterns [7].

This work improves on these previous works due to the
following major reasons:

1. It effectively removes the need for on-chip test
pattern generation and validation circuitry and
moves this functionality to software;

2. It is not hardwired in the design, and therefore, has
ample flexibility to be modified/upgraded in the
field;

3. It has higher test coverage and shorter testing time
because it uses ATPG instead of pseudorandomly
generated patterns;

4. In contrast to [50], it can uniformly be applied to any
microprocessor module with low design complexity
because it does not require module-specific custo-
mizations; and

5. It provides wider coverage across the whole chip,
including noncore modules.

Software-based reliability techniques. A very recent
approach proposes the detection of silicon defects by
employing low overhead detection strategies that monitor
for simple software symptoms at the operating system level
[33]. These software-based detection techniques rely on the
premise that silicon defects manifested in some microarch-
itectural structures have a high probability (�95 percent) to
propagate detectable symptoms through the software stack
to the operating system [33].

The main differences between [33] and our work are:
1) unlike the probabilistic software symptom-based defect
detection, our technique checks the underlying hardware in
a deterministic process through a structured high-quality
test methodology with very high fault coverage (99 percent)
and can be executed on demand, 2) software symptom-
based defect detection techniques can flag the possible
existence of a hardware failure, but they do not have the
capability to diagnose which part of the underlying hard-
ware is defective. In our technique, by employing ATPG test
patterns, it is trivial to diagnose the defective device at a
very fine granularity.

Instruction-based functional testing. A large amount of
work has been performed in functional testing [6], [26], [31]
of microprocessors. The most relevant of these to our
approach are the instruction-based functional self-test
techniques. In general, these techniques apply randomly
generated or automatically selected instruction sequences
and/or combinations of instruction sequences and ran-
domly or automatically generated operands to test for
hardware defects. If the result of the test sequence does not
match the expected output of the instruction sequence, then
a hardware fault is declared.

We briefly describe the state-of-the-art approaches that
work in this manner: In [58], a self-test program written in
processor assembly language and the expected results of the
program are stored in on-chip ROM memory. When
invoked, the self-test program performs at-speed functional

testing of the processor. The proposed scheme requires very
little additional hardware cost. It requires an LFSR for
generating randomized operands for test instructions and an
MISR for generating the result signature. Also, a minor
modification of the ISA is required for the test instructions to
read/write from the LFSR/MISR. Similarly, Kranitis et al.
[29] use the knowledge of the ISA and the RTL-level model of
a processor to select high fault coverage instructions and
their operands to include in self-test software routines.
Batcher and Papachristiou [3] employ instruction randomi-
zation hardware to generate randomized instructions to be
used in self-test software routines for functional testing.
Brahme and Abraham [6] describe how to generate rando-
mized instruction sequences to be used in self-test software
routines. Building upon these works, Chen and Dey [9]
propose a mechanism that generates instruction sequences to
exercise structural test patterns designed to test processor
components and applies such instruction sequences in the
software-based self-test routines to achieve higher coverage
than other approaches that randomly generate instruction
sequences.

Our technique is fundamentally different from these
instruction-based functional testing techniques in that it is a
structural testing approach that uses software routines to
apply test patterns. We introduce new instructions that are
capable of applying high-quality ATPG-generated structural
test patterns to every processor segment by exposing the scan
chain to the instruction set architecture. Software self-test
routines that use these instructions can therefore directly
apply test patterns to processor structures and read test
responses, which results in the fast and high-coverage
structural testing of each processor component. In contrast,
none of the previously proposed instruction-based func-
tional testing techniques are capable of directly applying test
patterns to processor components. Instead, they execute
existing ISA instruction sequences to indirectly (functionally)
test the hardware for faults. As such, previous instruction-
based functional test approaches, in general, lead to higher
testing times or lower fault coverage since they rely on
(randomized) functional testing.

One recent previous work [41] employed purely soft-
ware-based functional testing techniques during the man-
ufacturing testing of the Intel Pentium 4 processor. In our
approach, we use a similar functional testing technique (our
“basic core functional test” program) to check the basic core
functionality before running the ACE firmware to perform
directed, high-quality testing. In fact, any of the previously
proposed instruction-based functional testing approaches
can be used as the basic core functional test within the ACE
framework.

8 SUMMARY AND CONCLUSIONS

We introduced a novel, flexible software-based technique,
ISA extensions, and microarchitecture support to detect and
diagnose hardware defects during online operation of a
chip-multiprocessor. Our technique uses the Access-Control
Extension (ACE) framework that allows special ISA
instructions to access and control virtually any part of the
processor’s internal state. Based on this framework, we
proposed the use of special firmware that periodically
suspends the processor’s execution and performs high-
quality testing of the underlying hardware to detect defects.
We described several execution models for the interaction
of the special testing firmware with the applications
running on the processor for both single-threaded and
multithreaded processing cores.

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1077

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

Using a commercial ATPG tool and three different fault
models, we experimentally evaluated our ACE testing
technique on a commercial chip multiprocessor design based
on Sun’s Niagara. Our experimental results showed that
ACE testing is capable of performing high-quality hardware
testing for 99.22 percent of the chip area. Based on our
detailed RTL implementation, implementing the ACE frame-
work requires a 5.8 percent increase in Sun Niagara’s chip
area and a 4 percent increase in its power consumption
envelope.

We demonstrated how ACE testing can seamlessly be
coupled with a coarse-grained checkpointing and recovery
mechanism to provide a complete defect tolerance solution.
Our evaluation shows that, with coarse-grained checkpoint
intervals, the average performance overhead of ACE testing
is only 5.5 percent. Our results also show that the software-
based nature of ACE testing provides ample flexibility to
dynamically tune the performance-reliability trade-off at
runtime based on system requirements.

We also described how the ACE framework can be used
to improve the quality and reduce the cost of two critical
phases of microprocessor development: post-silicon debug-
ging and manufacturing testing. Our descriptions showed
that the flexibility provided by the ACE framework can
significantly ease and accelerate the post-silicon debugging
process by making the microarchitecture state easily
accessible and controllable by the post-silicon debug
engineers. Similarly, the flexibility of the ACE framework
can eliminate the need for expensive automatic test
equipment or costly yet lower coverage hardware changes
(e.g., logic BIST) needed for manufacturing testing. We
conclude that the ACE framework is a general framework
that can be used for multiple purposes to enhance the
reliability and to reduce the design/testing cost of modern
microprocessors.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
feedback. This work was supported by grants from the
National Science Foundation (NSF), SRC, and GSRC, and is
an extended and revised version of [12].

REFERENCES

[1] A. Agarwal, B.-H. Lim, D.A. Kranz, and J. Kubiatowicz, “April: A
Processor Architecture for Multiprocessing,” Proc. 17th Ann. Int’l
Symp. Computer Architecture (ISCA-17), 1990.

[2] T.M. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proc. 32nd Ann. Int’l Symp. Micro-
architecture (MICRO-32), 1999.

[3] K. Batcher and C. Papachristiou, “Instruction Randomization Self
Test for Processor Cores,” Proc. Very Large Scale Integration (VLSI)
Test Symp. (VTS), 1999.

[4] S. Borkar, T. Karnik, and V. De, “Design and Reliability
Challenges in Nanometer Technologies,” Proc. 41st Ann. Conf.
Design Automation (DAC-41), 2004.

[5] B. Bottoms, “The Third Millennium’s Test Dilemma,” IEEE Design
and Test of Computers, vol. 15, no. 4, pp. 7-11, Oct.-Dec. 1998.

[6] D. Brahme and J.A. Abraham, “Functional Testing of Micro-
processors,” IEEE Trans. Computers, vol. 33, no. 6, pp. 475-485,
June 1984.

[7] M.L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Kluwer Academic
Publishers, 2000.

[8] K.-H. Chang, I.L. Markov, and V. Bertacco, “Automating Post-
Silicon Debugging and Repair,” Proc. Int’l Conf. Computer-Aided
Design (ICCAD), Nov. 2007.

[9] L. Chen and S. Dey, “Software-Based Self-Testing Methodology
for Processor Cores,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 369-380, Mar. 2001.

[10] K. Constantinides, J. Blome, S. Plaza, B. Zhang, V. Bertacco, S.
Mahlke, T. Austin, and M. Orshansky, “BulletProof: A Defect-
Tolerant CMP Switch Architecture,” Proc. 12th Int’l Symp. High
Performance Computer Architecture (HPCA-12), 2006.

[11] K. Constantinides, O. Mutlu, and T. Austin, “Online Design Bug
Detection: RTL Analysis, Flexible Mechanisms, and Evaluation,”
Proc. 41st Ann. Int’l Symp. Microarchitecture (MICRO-41), 2008.

[12] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “Soft-
ware-Based Online Detection of Hardware Defects: Mechanisms,
Architectural Support, and Evaluation,” Proc. 40th Ann. Int’l Symp.
Microarchitecture (MICRO-40), 2007.

[13] W.J. Dally, L.R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos,
“The Reliable Router: A Reliable and High-Performance Commu-
nication Substrate for Parallel Computers,” Proc. Parallel Computer
Routing and Comm. Workshop (PCRCW), 1994.

[14] N. Durrant and R. Blish, “Semiconductor Device Reliability
Failure Models,” http://www.sematech.org/, 2000.

[15] M.J. Flynn and P. Hung, “Microprocessor Design Issues: Thoughts
on the Road Ahead,” IEEE Micro, vol. 25, no. 3, pp. 16-31, May/
June 2005.

[16] R. Goering, “Post-Silicon Debugging Worth a Second Look,”
Electronic Eng. Times, Feb. 2007.

[17] R. Guo, S. Mitra, E. Amyeen, J. Lee, S. Sivaraj, and S. Venkatara-
man, “Evaluation of Test Metrics: Stuck-At, Bridge Coverage
Estimate and Gate Exhaustive,” Proc. Very Large Scale Integration
(VLSI) Test Symp. (VTS), 2006.

[18] P. Guptan and A.B. Kahng, “Manufacturing-Aware Physical
Design,” Proc. Int’l Conf. Computer-Aided Design (ICCAD), 2003.

[19] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan,
and J. Rajski, “Logic BIST for Large Industrial Designs: Real Issues
and Case Studies,” Proc. Int’l Test Conf. (ITC), Sept. 1999.

[20] NetPerf: A Network Performance Benchmark. Hewlett-Packard
Company, 1995.

[21] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y.
Nakase, and T. Nishizawa, “An Elementary Processor Architecture
with Simultaneous Instruction Issuing from Multiple Threads,”
Proc. 19th Int’l Symp. Computer Architecture (ISCA-19), 1992.

[22] H. Holzapfel and P. Levin, “Advanced Post-Silicon Verification
and Debug,” EDA Tech Forum, vol. 3, no. 3, Sept. 2006.

[23] A.M. Ionescu, M.J. Declercq, S. Mahapatra, K. Banerjee, and J.
Gautier, “Few Electron Devices: Towards Hybrid CMOS-SET
Integrated Circuits,” Proc. Design Automation Conf. (DAC), 2002.

[24] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug,”
Proc. 43rd Design Automation Conf. (DAC-43), pp. 3-6, 2006.

[25] D. Josephson and B. Gottlieb, “The Crazy Mixed up World of
Silicon Debug,” Proc. IEEE Custom Integrated Circuits Conf.
(IEEE-CICC), 2004.

[26] H. Klug, “Microprocessor Testing by Instruction Sequences
Derived from Random Patterns,” Proc. Int’l Test Conf. (ITC), 1988.

[27] C. Kong, “A Hardware Overview of the NonStop Himalaya
(K10000),” Tandem Systems Overview, vol. 10, no. 1, pp. 4-11, 1994.

[28] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded SPARC Processor,” IEEE Micro, vol. 25, no. 2,
pp. 21-29, Mar./Apr. 2005.

[29] N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Instruc-
tion-Based Self-Test of Processor Cores,” Proc. Very Large Scale
Integration (VLSI) Test Symp. (VTS), 2002.

[30] R. Kuppuswamy, P. DesRosier, D. Feltham, R. Sheikh, and P.
Thadikaran, “Full Hold-Scan Systems in Microprocessors: Cost/
Benefit Analysis,” Intel Technology J., vol. 8, no. 1, pp. 63-72, Feb.
2004.

[31] J. Lee and J.H. Patel, “An Instruction Sequence Assembling
Methodology for Testing Microprocessors,” Proc. Int’l (r) Test Conf.
(ITC), Sept. 1992.

[32] A.S. Leon, K.W. Tam, J.L. Shin, D. Weisner, and F. Schumacher,
“A Power-Efficient High-Throughput 32-Thread SPARC Proces-
sor,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 7-16, Jan. 2007.

[33] M.-L. Li, P. Ramachandran, S.K. Sahoo, S.V. Adve, V.S. Adve, and
Y. Zhou, “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient System Design,” Proc. 13th
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XIII), 2008.

1078 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

[34] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test Patterns,” Proc. Conf. Design,
Automation and Test in Europe (DATE), 2008.

[35] C.-K. Luk, R.S. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V.J. Reddi, and K. Hazelwood, “Pin: Building Custo-
mized Program Analysis Tools with Dynamic Instrumentation,”
Proc. Conf. Programming Language Design and Implementation
(PLDI), 2005.

[36] E.J. McCluskey and C.-W. Tseng, “Stuck-Fault Tests vs. Actual
Defects,” Proc. Int’l Test Conf. (ITC), pp. 336-343, Oct. 2000.

[37] M. Meterelliyoz, H. Mahmoodi, and K. Roy, “A Leakage Control
System for Thermal Stability during Burn-In Test,” Proc. Int’l Test
Conf. (ITC), 2005.

[38] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K.S. Kim, “Robust
System Design with Built-In Soft-Error Resilience,” Computer,
vol. 38, no. 2, pp. 43-52, Feb. 2005.

[39] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas,
“ReViveI/O: Efficient Handling of I/O in Highly-Available
Rollback-Recovery Servers,” Proc. Int’l Symp. High-Performance
Computer Architecture (HPCA), 2006.

[40] E.B. Nightingale, P.M. Chen, and J. Flinn, “Speculative Execution
in a Distributed File System,” ACM Trans. Computer Systems,
vol. 24, no. 4, pp. 361-392, Nov. 2006.

[41] P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITS—A
Microprocessor Functional BIST Method,” Proc. Int’l Test Conf.
(ITC), 2002.

[42] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-Effective
Architectural Support for Rollback Recovery in Shared-Memory
Multiprocessors,” Proc. 29th Int’l Symp. Computer Architecture
(ISCA-29), 2002.

[43] B.R. Quinton and S.J.E. Wilton, “Post-Silicon Debug Using
Programmable Logic Cores,” Proc. Conf. Field-Programmable
Technology (FPT), pp. 241-248, 2005.

[44] J.M. Rabaey, Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, Inc., 1996.

[45] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Privulovic, L. Ceze, S.
Sarangi, P. Sack, K. Stauss, and P. Montesinos, “SESC Simulator,”
http://sesc.sourceforge.net, 2002.

[46] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas, “Patching Processor Design Errors with Programmable
Hardware,” IEEE Micro, vol. 27, no. 1, pp. 12-25, Jan./Feb. 2007.

[47] M.J. Serrano, W. Yamamoto, R.C. Wood, and M. Nemirovsky, “A
Model for Performance Estimation in a Multistreamed, Super-
scalar Processor,” Proc. Seventh Int’l Conf. Modeling Techniques and
Tools for Computer Performance Evaluation, 1994.

[48] P. Shivakumar, S.W. Keckler, C.R. Moore, and D. Burger,
“Exploiting Microarchitectural Redundancy for Defect Tolerance,”
Proc. Int’l Conf. Computer Design (ICCD), 2003.

[49] M. Shulz, “The End of the Road for Silicon,” Nature Magazine, June
1999.

[50] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T.
Austin, “Ultra Low-Cost Defect Protection for Microprocessor
Pipelines,” Proc. 12th Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-12), pp. 73-82,
2006.

[51] D.P. Siewiorek and R.S. Swarz, Reliable Computer Systems: Design
and Evaluation, third ed. AK Peters, Ltd., 1998.

[52] D.J. Sorin, M.M.K. Martin, M.D. Hill, and D.A. Wood, “SafetyNet:
Improving the Availability of Shared Memory Multiprocessors
with Global Checkpoint/Recovery,” Proc. 29th Int’l Symp. Compu-
ter Architecture (ISCA-29), 2002.

[53] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, “The Impact of
Technology Scaling on Lifetime Reliability,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN-34), 2004.

[54] J.H. Stathis, “Reliability Limits for the Gate Insulator in CMOS
Technology,” IBM J. Research and Development, vol. 46, nos. 2/3,
pp. 265-286, 2002.

[55] OpenSPARC T1 Microarchitecture Specification. Sun Microsystems,
Inc., Aug. 2006.

[56] TetraMAX ATPG User Guide, version 2002.05. Synopsys, http://
www.synopsys.com, 2002.

[57] D. Tarjan, S. Thoziyoor, and N.P. Jouppi, “Cacti 4.0.,” Technical
Report hpl-2006-86, Hewlett-Packard, 2006.

[58] M.H. Tehranipour, S. Fakhraie, Z. Navabi, and M. Movahedin, “A
Low-Cost At-Speed Bist Architecture for Embedded Processor
and Sram Cores,” J. Electronic Testing: Theory and Applications,
vol. 20, no. 2, pp. 155-168, 2004.

[59] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Multithreading:
Maximizing On-Chip Parallelism,” Proc. 22nd Int’l Symp. Computer
Architecture (ISCA-22), June 1995.

[60] D.P. Vallett, “Future Challenges in IC Testing and Fault Isolation,”
Proc. IEEE Ann. Meeting of Lasers and Electro-Optics Society (LEOS),
vol. 2, pp. 539-540, Oct. 2003.

[61] I. Wagner, V. Bertacco, and T. Austin, “Shielding against Design
Flaws with Field Repairable Control Logic,” Proc. 43rd Design
Automation Conf. (DAC-43), 2006.

[62] T.J. Wood, “The Test and Debug Features of the AMD-K7
Microprocessor,” Proc. Int’l Test Conf. (ITC), pp. 130-136, 1999.

[63] W.M. Yee, M. Paniccia, T. Eiles, and V. Rao, “Laser Voltage Probe
(LVP): A Novel Optical Probing Technology for Flip-Chip
Packaged Microprocessors,” Proc. Int’l Symp. Physical and Failure
Analysis of Integrated Circuits (IPFA-7), 1999.

Kypros Constantinides received the BS
degree in computer science from the University
of Cyprus, in 2004, and the MS degree in
electrical engineering and computer science
from the University of Michigan, Ann Arbor, in
2006. He is currently working toward the PhD
degree in electrical engineering and computer
science at the University of Michigan, Ann Arbor.
He is interested in computer architecture re-
search with a focus in reliable system design. He

previously worked at Microsoft Research and Intel Corporation. He
received the Intel Foundation PhD Fellowship in 2008. He is a student
member of the IEEE.

Onur Mutlu received the BS degree in computer
engineering and psychology from the University
of Michigan, Ann Arbor, and the MS and PhD
degrees in ECE from the University of Texas at
Austin. He is currently an assistant professor of
ECE at Carnegie Mellon University. Prior to
Carnegie Mellon, he worked at Microsoft Re-
search, Intel Corporation, and Advanced Micro
Devices. He is interested in computer architec-
ture and systems research, especially in the

interactions between languages, operating systems, compilers, and
microarchitecture. He was a recipient of the Intel PhD Fellowship in
2004, the University of Texas George H. Mitchell Award for Excellence
in Graduate Research in 2005, the Microsoft Gold Star Award in 2008,
and five “Computer Architecture Top Pick” Paper Awards by the IEEE
Micro Magazine. He is a member of the IEEE.

Todd Austin received the PhD degree in
computer science from the University of Wis-
consin, Madison, in 1996. He is an associate
professor of electrical engineering and computer
science at the University of Michigan, Ann Arbor.
Prior to joining academia, he was a senior
computer architect at Intel’s Microprocessor
Research Labs, a product-oriented research
laboratory in Hillsboro, Oregon. His research
interests include computer architecture, compi-

lers, computer system verification, and performance analysis tools and
techniques. He is a member of the IEEE.

Valeria Bertacco received the Laurea degree
in computer engineering from the University of
Padova, Italy, and the MS and PhD degrees in
electrical engineering from Stanford University
in 2003. She is an assistant professor of
electrical engineering and computer science at
the University of Michigan. She joined the
faculty at Michigan after being at Synopsys
for four years. Her research interests are in the
areas of formal and semiformal design verifica-

tion with emphasis on full design validation and digital system
reliability. She is an associate editor of the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems and has
served on the program committees for DAC and ICCAD. She is a
recipient of the US National Science Foundation (NSF) CAREER
Award and the University of Michigan’s Outstanding Achievement
Award. She is a member of the IEEE.

CONSTANTINIDES ET AL.: A FLEXIBLE SOFTWARE-BASED FRAMEWORK FOR ONLINE DETECTION OF HARDWARE DEFECTS 1079

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 11, 2009 at 22:02 from IEEE Xplore. Restrictions apply.

