Optimizing DRAM Timing for the Common-Case

Adaptive-Latency DRAM

Donghyuk Lee

Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri, Kevin Chang, Onur Mutlu

SAFARI

Carnegie Mellon

Why can we reduce DRAM timing parameters without any errors?

Executive Summary

- Observations
 - DRAM timing parameters are dictated by the worst-case cell (smallest cell across all products at highest temperature)
 - DRAM operates at lower temperature than the worst case
- Idea: Adaptive-Latency DRAM
 - Optimizes DRAM timing parameters for the common case (typical DIMM operating at low temperatures)
- Analysis: Characterization of 115 DIMMs
 - Great potential to lower DRAM timing parameters (17 54%)
 without any errors
- Real System Performance Evaluation
 - Significant performance improvement (14% for memoryintensive workloads) without errors (33 days)

1. DRAM Operation Basics

- 2. Reasons for Timing Margin in DRAM
- 3. Key Observations
- 4. Adaptive-Latency DRAM
- 5. DRAM Characterization
- 6. Real System Performance Evaluation

DRAM Stores Data as Charge

Three steps of charge movement

- 1. Sensing
- 2. Restore
- 3. Precharge

DRAM Charge over Time

Why does DRAM need the extra timing margin?

- 1. DRAM Operation Basics
- 2. Reasons for Timing Margin in DRAM
- 3. Key Observations
- 4. Adaptive-Latency DRAM
- 5. DRAM Characterization
- 6. Real System Performance Evaluation

Two Reasons for Timing Margin

1. Process Variation

- DRAM cells are not equal
- Leads to extra timing margin for a cell that can store a large amount of charge

2. Temperature Dependence

DRAM Cells are Not Equal

Process Variation

- 1 Cell Capacitance
- 2 Contact Resistance
- 3 Transistor Performance

Small cell can store small charge

- Small cell capacitance
- High contact resistance
- Slow access transistor
- → High access latency

Two Reasons for Timing Margin

1. Process Variation

- DRAM cells are not equal
- Leads to extra timing margin for a cell that can store a large amount of charge

2. Temperature Dependence

- DRAM leaks more charge at higher temperature
- Leads to extra timing margin for cells that operate at the low temperature

Cells store small charge at high temperature and large charge at low temperature

→ Large variation in access latency

DRAM Timing Parameters

- DRAM timing parameters are dictated by the worst-case
 - The smallest cell with the smallest charge <u>in</u>
 <u>all DRAM products</u>
 - Operating at the highest temperature

Large timing margin for the common-case

Our Approach

- We optimize DRAM timing parameters for the common-case
 - The smallest cell with the smallest charge in a DRAM module
 - Operating <u>at the current temperature</u>
- Common-case cell has <u>extra charge</u> than the worst-case cell
 - → Can lower latency for the common-case

- 1. DRAM Operation Basics
- 2. Reasons for Timing Margin in DRAM
- 3. Key Observations
- 4. Adaptive-Latency DRAM
- 5. DRAM Characterization
- 6. Real System Performance Evaluation

Key Observations

1. Sensing

Sense cells with extra charge faster

→ Lower sensing latency

2. Restore

No need to fully restore cells with extra charge

→ Lower restore latency

3. Precharge

No need to fully precharge bitlines for cells with extra charge

→ Lower precharge latency

Observation 1. Faster Sensing

More Charge

Strong Charge Flow

Faster Sensing

115 DIMM Characterization

Timing (tRCD)

17% ↓

No Errors

Typical DIMM at Low Temperature

→ More charge → Faster sensing

Observation 2. Reducing Restore Time

Larger Cell & Less Leakage → Extra Charge

No Need to Fully Restore Charge

115 DIMM Characterization

Read (tRAS)

37% ↓

Write (tWR)

54% ↓

No Errors

Typical DIMM at lower temperature

→ More charge → Restore time reduction

Observation 3. Reducing Precharge Time

Sense-Amplifier

Precharge? — Setting bitline to half-full charge

Observation 3. Reducing Precharge Time

Typical DIMM at Lower Temperature

→ More charge → Precharge time reduction

SAFARI

Key Observations

1. Sensing

Sense cells with extra charge faster

→ Lower sensing latency

2. Restore

No need to fully restore cells with extra charge

→ Lower restore latency

3. Precharge

No need to fully precharge bitlines for cells with extra charge

→ Lower precharge latency

- 1. DRAM Operation Basics
- 2. Reasons for Timing Margin in DRAM
- 3. Key Observations
- 4. Adaptive-Latency DRAM
- 5. DRAM Characterization
- 6. Real System Performance Evaluation

Adaptive-Latency DRAM

- Key idea
 - Optimize DRAM timing parameters online
- Two components
 - DRAM manufacturer profiles multiple sets of reliable DRAM timing parameters at different temperatures for each DIMM
 - System monitors DRAM temperature & uses appropriate DRAM timing parameters

- 1. DRAM Operation Basics
- 2. Reasons for Timing Margin in DRAM
- 3. Key Observations
- 4. Adaptive-Latency DRAM
- 5. DRAM Characterization
- 6. Real System Performance Evaluation

DRAM Temperature

- DRAM temperature measurement
 - Server cluster: Operates at under 34°C
 - Desktop: Operates at under 50°C
 - DRAM standard optimized for 85°C

DRAM operates at low temperatures in the common-case

- Previous works Maintain DRAM temperature low
 - David+ ICAC 2011
 - Liu+ ISCA 2007
 - Zhu+ ITHERM 2008

DRAM Testing Infrastructure

Test Pattern

Single cache line test (Read/Write)

 Overlapping multiple single cache line tests to simulate power noise and coupling

SAFARI

Control Factors

- Timing parameters
 - Sensing: tRCD
 - Restore: tRAS (read), tWR(write)
 - Precharge: tRP
- *Temperature:* 55 85°C
- Refresh interval: 64 512ms
 - Longer refresh interval leads to smaller charge
 - Standard refresh interval: 64ms

1. Timings \longleftrightarrow Charge

Temperature: 85°C/Refresh Interval: 64, 128, 256, 512ms

More charge enables

more timing parameter reduction

2. Timings ←→ Temperature

Temperature: 55, 65, 75, 85°C/Refresh Interval: 512ms

Lower temperature enables

more timing parameter reduction

3. Summary of 115 DIMMs

- Latency reduction for read & write (55°C)
 - Read Latency: 32.7%
 - Write Latency: 55.1%
- Latency reduction for each timing parameter (55°C)
 - Sensing: 17.3%
 - Restore: 37.3% (read), 54.8% (write)
 - Precharge: 35.2%

- 1. DRAM Operation Basics
- 2. Reasons for Timing Margin in DRAM
- 3. Key Observations
- 4. Adaptive-Latency DRAM
- 5. DRAM Characterization
- 6. Real System Performance Evaluation

Real System Evaluation Method

- System
 - CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

D18F2x200_dct[0]_mp[1:0] DDR3 DRAM Timing 0

Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits	Description	
31:30	Reserved.	
29:24		robe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies in memory clock cycles from an activate command to a precharge command, both ect bank. Description Reserved <tras> clocks Reserved</tras>
23:21	Reserved.	
20:16	Trp: row precharge time . Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies the minimum time in memory clock cycles from a precharge command to an activate command or auto refresh command, both to the same bank.	

Single-Core Evaluation

AL-DRAM improves performance on a real system

Multi-Core Evaluation

AL-DRAM provides higher performance for "multi-programmed & multi-threaded workloads

Conclusion

Observations

- DRAM timing parameters are dictated by the worst-case cell (smallest cell across all products at highest temperature)
- DRAM operates at lower temperature than the worst case
- Idea: Adaptive-Latency DRAM
 - Optimizes DRAM timing parameters for the common case (typical DIMM operating at low temperatures)
- Analysis: Characterization of 115 DIMMs
 - Great potential to lower DRAM timing parameters (17 54%)
 without any errors
- Real System Performance Evaluation
 - Significant performance improvement (14% for memoryintensive workloads) without errors (33 days)

SAFARI

Optimizing DRAM Timing for the Common-Case

Adaptive-Latency DRAM

Donghyuk Lee

Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri, Kevin Chang, Onur Mutlu

Backup Slides

Overhead

DRAM Manufacturer

 Additional tests: can be integrated into existing test process (i.e., TCSR test)

DRAM (DIMM)

- Already have in-DRAM temperature sensor (i.e., Low Power DDR)
- Multiple sets of timing parameters can be stored in SPD (Serial Presence Detect)

System Support for AL-DRAM

- Already have ability to change DRAM timing online

Multiple Timing Parameters

Reducing a timing parameter

Reduces potential reduction of other parameters

Temperature ←→ Refresh Interval

Extra charge that can be used for latency reduction

DRAM Cell Organization

DRAM Cell Operation

1 Turn-on access transistor 4) Precharged to Vdd/2 Access transistor Leakage Ritline capacitor Charge Jaring capacitor 3 Fully charged 2Ready to access data Precharge Sense-amplifier

DRAM Cell Charge Variations

