Ambit

In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology

Vivek Seshadri

Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. Mowry

Executive Summary

• Problem: Bulk bitwise operations

- present in many applications, e.g., databases, search filters
- existing systems are memory bandwidth limited
- Our Proposal: Ambit
 - perform bulk bitwise operations completely inside DRAM
 - bulk bitwise AND/OR: simultaneous activation of three rows
 - bulk bitwise NOT: inverters already in sense amplifiers
 - less than 1% area overhead over existing DRAM chips
- Results compared to state-of-the-art baseline
 - average across seven bulk bitwise operations
 - 32X performance improvement, 35X energy reduction
 - 3X-7X performance for real-world data-intensive applications

[1] Li and Patel, BitWeaving, SIGMOD 2013[2] Goodwin+, BitFunnel, SIGIR 2017

Today, DRAM is just a storage device!

Throughput of bulk bitwise operations limited by available memory bandwidth

Our Approach

Outline of the talk

1. DRAM Background

2. Ambit-AND-OR: Bitwise AND/OR in DRAM

3. Ambit-NOT: Bitwise NOT in DRAM

4. Ambit Implementation

5. Applications and Evaluation

Inside a DRAM Chip

DRAM Cell Operation

DRAM Cell Operation

Outline of the talk

1. DRAM Background

2. Bitwise AND/OR in DRAM

3. Bitwise NOT in DRAM

4. Ambit Implementation

5. Applications and Evaluation

Triple-Row Activation: Majority Function

Bitwise AND/OR Using Triple-Row Activation

Bitwise AND/OR Using Triple-Row Activation

Potential Concerns with Triple-Row Activation

- 1. With three cells, bitline deviation may not be enough
- 2. Process variation: all cells are not equal

Spice simulations put these concerns to rest. (Section 6 in paper)

- 3. Cells leak charge
- 4. Memory controller may have to send three addresses
- 5. Source data gets destroyed

Address these challenges through implementation (next slide)

Bulk Bitwise AND/OR in DRAM

Statically reserve three designated rows t1, t2, and t3

Result = row A AND/OR row B

- 1. Copy data of row A to row t1
- 2. Copy data of row B to row t2

3.

4.

5.

MICRO 2013

RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee vseshadr@cs.cmu.edu voongukim@cmu.edu cfallin@c1f.net donghyuk1@cmu.edu Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu Michael A. Kozuch[†] Phillip B. Gibbons[†] Todd C. Mowry Onur Mutlu onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu Carnegie Mellon University [†]Intel Pittsburgh

Bulk Bitwise AND/OR in DRAM

Statically reserve three designated rows t1, t2, and t3

Result = row A AND/OR row B

- 1. Copy BataCiónevd Atacofcravt 1A to row t1
- 2. Copy Batacióne d Btacofcravt B to row t2
- 3. Initialize BetaClónevdatBatof0/1w t3 to 0/1
- 4. Activate rows t1/t2/t3 simultaneously
- 5. Copy BataCiónevda1/t2/t3 ttotR/t3/tBrbavResult row

Use RowClone to perform copy and initialization operations completely in DRAM!

Outline of the talk

1. DRAM Background

2. Bitwise AND/OR in DRAM

3. Bitwise NOT in DRAM

4. Ambit Implementation

5. Applications and Evaluation

Negation Using the Sense Amplifier

Negation Using the Sense Amplifier

Negation Using the Sense Amplifier

Ambit vs. DDR3: Performance and Energy

Outline of the talk

1. DRAM Background

2. Bitwise AND/OR in DRAM

3. Bitwise NOT in DRAM

4. Ambit Implementation

5. Applications and Evaluation

Ambit – Implementation

Regular Data Rows

Pre-initialized Rows

Designated Rows for Triple Activation

> Dual Contact Cells Sense Amplifiers

Ambit – Implementation

Integrating Ambit with the System

1. PCle device

- Similar to other accelerators (e.g., GPU)

2. System memory bus

Ambit uses the same DRAM command/address interface

Pros and cons discussed in paper (Section 5.4)

Outline of the talk

1. DRAM Background

2. Bitwise AND/OR in DRAM

3. Bitwise NOT in DRAM

4. Ambit Implementation

5. Applications and Evaluation

Real-world Applications

- Methodology (Gem5 simulator)
 - Processor: x86, 4 GHz, out-of-order, 64-entry instruction queue
 - L1 cache: 32 KB D-cache and 32 KB I-cache, LRU policy
 - L2 cache: 2 MB, LRU policy
 - Memory controller: FR-FCFS, 8 KB row size
 - Main memory: DDR4-2400, 1 channel, 1 rank, 8 bank
- Workloads
 - Database bitmap indices
 - **BitWeaving** column scans using bulk bitwise operations
 - Set operations comparing bitvectors with red-black trees

Bitmap Indices: Performance

Consistent reduction in execution time. 6X on average

Speedup offered by Ambit for BitWeaving

select count(*) where c1 < field < c2</pre>

Number of rows in the database table

Other Details and Results in Paper

• Detailed implementation of Ambit

- Changes to DRAM chips
- Optimizations to improve performance
- Error correction codes (open problem)
- Detailed SPICE simulation analysis
- Comparison to 3D-stacked DRAM
- Other applications
 - Set operations
 - BitFunnel: Web search document filtering
 - Masked initialization
 - Cryptography
 - DNA sequence mapping

Conclusion

• Problem: Bulk bitwise operations

- present in many applications, e.g., databases, search filters
- existing systems are memory bandwidth limited
- Our Proposal: Ambit
 - perform bulk bitwise operations completely inside DRAM
 - bulk bitwise AND/OR: simultaneous activation of three rows
 - bulk bitwise NOT: inverters already in sense amplifiers
 - less than 1% area overhead over existing DRAM chips
- Results compared to state-of-the-art baseline
 - average across seven bulk bitwise operations
 - 32X performance improvement, 35X energy reduction
 - 3X-7X performance for real-world data-intensive applications

Ambit

In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology

Vivek Seshadri

Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. Mowry

Backup Slides

Data movement consumes high energy

src: Bill Dally Keynote, "Challenge for Future Computer Systems," HIPEAC 2015.

RowClone: In-DRAM Bulk Data Copy (MICRO 2013)

Today, DRAM is just a storage device!

Can we do more with DRAM?

Ambit – Implementation

Summary of operations

Ambit Throughput

Error Correction Code

- Need ECC that is homomorphic over bitwise operations
 - ECC(A and B) = ECC(A) and ECC(B)
 - ECC(A or B) = ECC(A) or ECC(B)
 - ECC(not A) = not ECC(A)

Triple Modular Redundancy

- trivially satisfies the above condition
- 2X capacity overhead
- Better performance and energy efficiency
- Lower overall cost