Amnesic Cache Management for Non-Volatile Memory

Dongwoo Kang, Seungjae Baek, Jongmoo Choi Dankook University, South Korea {kangdw, baeksj, chiojm}@dankook.ac.kr

Sam H. Noh Hongik University, South Korea samhnoh@hongik.ac.kr Donghee Lee University of Seoul, South Korea dhl_express@uos.ac.kr

Onur Mutlu Carnegie Mellon University, USA onur@cmu.edu

Outline

- Introduction & Motivation
- Design
- Evaluation

Introduction :Volatility

Non-Volatile Memory

- PCM (Phase Change Memory), STT-RAM (Spin Transfer Torque RAM), RRAM (Resistive RAM), Fe-RAM (Ferroelectric Random Access Memory)
- Byte addressability and Non-Volatility
- RAM, storage, file cache, CPU cache

Volatility	DRAM	
Non-Volatile	NVM (STT-RAM, PCM,) SSD & Flash	Kard disk

Introduction :Volatility

Non-Volatile Memory

- PCM (Phase Change Memory), STT-RAM (Spin Transfer Torque RAM), RRAM (Resistive RAM), Fe-RAM (Ferroelectric Random Access Memory)
- Byte addressability and Non-Volatility
- RAM, storage, file cache, CPU cache
- Limited retention capability, relaxation write

Introduction : Phase Change Memory

□ States of PCM (Phase Change Memory)

- Target band
 - A region of resistances that corresponds to valid bits
- Write scheme
 - PCM adopts iterative write scheme
- Resistance drifts
 - The resistance in a PCM cell has a tendency to increase with time
 - When the resistance drifts up to the boundary of the next region, the state can be incorrectly represented leading to data loss

Introduction : Tradeoff

Tradeoff between retention capability and write speed

- Narrowing target bands
 - Requires more precise control over the iterative mechanism
 - Demands smaller ΔR resulting in a slowdown of the write latency
- Higher retention increasing write latency
 - I.7x write speedup can be obtained by reducing the retention capability of PCM from 10⁷ to 10⁴ seconds [Liu et al.]

How to exploit these characteristics of the PCM?

Motivation : What about NVM cache?

NVM Cache

- Employing an NVM cache provides performance improvements
- Fetching/Eviction data from/to storage system
- Retention capability for the cache
 - 10⁷ seconds is recommended retention capability from JEDEC
 - But, data will be evicted from the NVM cache
 - Ensure retention capability while the data is in the cache

Motivation : Caching time

Caching time on the NVM cache

- We measure the caching time with LRU scheme
- o $T_{Caching} = T_{Evict} T_{First}$
- 75% of the data is less than 10⁵ seconds
- Don't need to ensure 10⁷ seconds retention capability in the cache

Motivation : Reference interval

Reference interval

- 90% of data are re-referenced within the 10^5 second interval
- Retention relaxation can enhance write performance
- However, when data is re-referenced after its retention capability, it will induce a miss, reducing the hit ratio and triggering extra accesses to retrieve the data from storage.

Outline

□ Introduction & Motivation

Design

- REF
- SACM
- AACM

Evaluation

Design : REF

REF(REFresh-based cache management scheme)

- REF is similar to the LRU scheme
- Free state and Used state
- Enhances write speed by relaxing retention capability from 10⁷ to 10⁴
 - Write latency is decrease by 1.7X
- Performs refreshing for data whose retention time is about to expire
- o Issue
 - Refresh operation

Design : SACM

Simple Amnesic Cache Management

- Free State to Tentative State
 - Initial write into the cache, the datum is written with the relaxed write (10^4)
- Tentative State to Confirmed State
 - If it is referenced again within the retention time
 - It is rewritten with 10^7 retention capability
- Confirmed State to Free State
 - If it is not referenced again and the retention time expires
- o Issue
 - Additional writes

Design : AACM (1/2)

Adaptive Amnesic Cache Management

- Key idea
 - Estimates the next reference of each data and adaptive write
- Estimation by IRG model
- Adaptive write
 - Ensure appropriate retention capability adaptively for each data
- Ghost buffer
- o Issue
 - Adaptive write
 - Estimation

Design : AACM (1/2)

Estimation of IRG

- Use Ist order Markov chain for estimation of IRG
- Coarse grain levels
 - \circ 10², 10³, 10⁴, 10⁵, 10⁶, 10⁷ seconds
- Estimation is larger than 90%
- Memory overhead is 144 bytes for each data

Outline

- □ Introduction & Motivation
- Design
- Evaluation

Evaluation : Environment

□ Simulator

- Time accurate in-house simulator
- Storage simulator and trace replayer

- MSR-Cambridge traces during 7 days
- FIU traces during 21 days
- Websearch3 trace during 3.1 days

Simulator parameters

	PCM	SSD
READ LATENCY	16 us	50 us
WRITE LATENCY	91.2 us	900 us
READ ENERGY	81.9 nj	I 4.25uj
WRITE ENERGY	4.73 uj	256 uj

RETENTION	SPEEDUP
10 ⁷	IX
10 ⁶	1.2X
10 ⁵	1.5X
10 ⁴	1.7X
10 ³	1.9X
10 ²	2.1X

Evaluation : Hit ratio

🗆 Hit ratio

- Cache size is set to 25 % of working set of each workload
 - Cache size is set to be 1.95GB with hm₀ trace(the working set is 7.8GB)
- Comparable to LRU giving and taking a little bit depending on the workload

Normalized latency 0.5 0.25

0.75

Evaluation : Latency

□ Latency (normalized to that of LRU)

LRU

hmo

mds_o

prn_o

 pm_1

proj₁

rsrch_o

src2₀

stg.

tsa

USF₀

• REF reduces latency even more by as much as 48% (36% on average)

REF

SACM

AACM

webmailwm+online homes Websearch3

- SACM does it by as much as 7% (4% on average)
- AACM does it up to 40% (30% on average)

Evaluation : Latency with refresh

□ Latency (normalized to that of LRU)

• REF with refresh operations increases normalized latency up to 6X

Evaluation : Latency with refresh (without REF)

□ Latency (normalized to that of LRU)

- REF with refresh operations increases normalized latency up to 6X
- SACM and AACM perform better than LRU though the margin has dwindled
 SACM decreases the latency by 5% on average
 - AACM decreases the latency by 15% on average

Evaluation : Endurance

Endurance

• REF harms the endurance from refresh operations

Evaluation : Endurance (without REF)

Endurance

- REF harms the endurance from refresh operations
- SACM showing similar write counts to LRU
- AACM incurs roughly 1% more writes compared to LRU (4% at maximum
- Considering the MLC PCM endurance (10⁵), the total amount of writes (wm +online), we can estimate that the lifetime is around 26 years.

Evaluation : Energy consumption

Energy consumption

- Energy = Nread x Eread + Nwrite x Ewrite
- REF is 9 times higher than LRU (refresh overhead)

Evaluation : Energy consumption

Energy consumption

- Energy = Nread x Eread + Nwrite x Ewrite
- REF is 9 times higher than LRU (refresh overhead)
- SACM reduces energy consumption on average 11%
- AACM saves energy consumption on average 37% (and as high as 49%)

Evaluation : Energy consumption

Energy consumption

- Energy = Nread x Eread + Nwrite x Ewrite
- REF is 9 times higher than LRU (refresh overhead)
- SACM reduces energy consumption on average 11%
- AACM saves energy consumption on average 37% (and as high as 49%)
- Also, AACM saves energy by an average of 13% on whole storage system
- Cause of retention relaxation and reduction of accesses in SSD

Evaluation : Hit ratio with various cache size

□ Hit ratio and latency with various cache size

- AACM performs better when the cache size is set to be small
- Also, when the cache size becomes larger, both schemes show comparable performance since LRU also keeps most of the cacheable data

Evaluation : Latency with various cache size

□ Hit ratio and latency with various cache size

- AACM performs better when the cache size is set to be small
- Also, when the cache size becomes larger, both schemes show comparable performance since LRU also keeps most of the cacheable data
- In terms of latency, AACM outperforms LRU due to retention relaxation for all considered cache sizes

Outline

- □ Introduction & Motivation
- Design
- Evaluation

Conclusion

- We suggest new cache management schemes that introduce the amnesic notion to balance the limited retention capability and write speed
- Experimental results show that our proposal is effective in terms of performance and energy consumption.
 - AACM can reduce write latency by up to 40% (30% on average)
 - Also, AACM save energy consumption by up to 49% (37% on average)

