Automatic Generation of

Warp-Level Primitives and Atomic Instructions for
Fast and Portable Parallel Reduction on GPUs

Simon Garcia De Gonzalo
CS and Coordinated Science Lab

Sitao Huang
ECE and Coordinated Science Lab

Juan G6émez-Luna
Computer Science

UIuC UluC ETH Zurich
grcdgnz2 @illinois.edu shuang91 @illinois.edu juang @ethz.ch
Simon Hammond Onur Mutlu Wen-mei Hwu
Scalable Computer Architecture Computer Science ECE and Coordinated Science Lab
Sandia National Laboratories ETH Zurich UIuC

sdhammo @sandia.gov

Abstract—Since the advent of GPU computing, GPU hardware
has evolved at a fast pace. Since application performance heavily
depends on the latest hardware improvements, performance
portability is extremely challenging for GPU application library
developers. Portability becomes even more difficult when new
low-level instructions are added to the ISA (e.g., warp shuffle
instructions) or the microarchitectural support for existing in-
structions is improved (e.g., atomic instructions). Library devel-
opers, besides re-tuning the code for new hardware features, deal
with the performance portability issue by hand-writing multiple
algorithm versions that leverage different instruction sets and
microarchitectures. High-level programming frameworks and
Domain Specific Languages (DSLs) do not typically support low-
level instructions (e.g., warp shuffle and atomic instructions), so
it is painful or even impossible for these programming systems
to take advantage of the latest architectural improvements.

In this work, we design a new set of high-level APIs and quali-
fiers, as well as specialized Abstract Syntax Tree (AST) transfor-
mations for high-level programming languages and DSLs. Our
transformations enable warp shuffle instructions and atomic in-
structions (on global and shared memories) to be easily generated.
We show a practical implementation of these transformations by
building on Tangram, a high-level kernel synthesis framework.
Using our new language and compiler extensions, we implement
parallel reduction, a fundamental building block used in a wide
range of algorithms. Parallel reduction is representative of the
performance portability challenge, as its performance heavily
depends on the latest hardware improvements. We compare our
synthesized parallel reduction to another high-level programming
framework and a hand-written high-performance library across
three generations of GPU architectures, and show up to 7.8x
speedup (2x on average) over hand-written code.

I. INTRODUCTION

The current landscape of High Performance Computing
(HPC) is heavily dominated by Graphics Processing Units
(GPU) that are used as accelerators. As of December 2018,
half of the top 10 most powerful supercomputers and 7 of
the top 10 most energy-efficient supercomputers deploy GPUs
[1], [2]. All leading cloud service providers offer GPU-based

omutlu@ethz.ch

w-hwu @illinois.edu

solutions [3]. In order to take full advantage of these GPU-
based systems, many application developers need to become
adept at GPU computing Application Programming Interfaces
(APIs), such as NVIDIA’s CUDA [4] or OpenCL [5]. Those
who are not experts largely rely on carefully-crafted libraries
such as Thrust [6] and CUB [7], higher level programming
frameworks such as Tangram [8] or Kokkos [9], or Domain
Specific Languages (DSLs) such as Halide [10], which abstract
away the complexity of GPU software development.

Regardless of who generates the GPU code (e.g., an ap-
plication programmer, a library developer, a programming
framework, or a high-level compiler), there are performance
portability challenges that should be tackled. Different GPU
architectures deploy different implementations of certain in-
structions, such as atomic instructions, or incorporate new
low-level primitives to an evolving Instruction Set Architec-
ture (ISA). These differences offer new means to optimize
algorithms on each architecture [11], [8]. Thus, rather than
developing a single implementation of an algorithm, generat-
ing code specifically optimized for each hardware generation
provides higher performance.

Parallel reduction, which is a fundamental building block in
widely-used algorithms such as Histogram [12], [13] and Scan
[14], is a computational pattern that is representative of the
performance portability challenge in GPUs. Its performance
heavily depends on hand-written code that takes advantage
of the latest hardware improvements [7]. Library developers
have to deal with this portability challenge by constantly
adapting and upgrading their code to leverage new architec-
tural features, while maintaining backward compatibility by
keeping previous implementations available to be used on
older generations of GPUs. Similarly, high-level programming
frameworks, such as Kokkos [9], deal with performance porta-
bility of common computational patterns (e.g., reduction) by
using in-house or third-party libraries with multiple hand-

written code versions for different GPU architectures. DSLs
such as Halide [10] prevent programmers from having to
re-write their code by providing API abstractions of low-
level GPU instructions, such as warp shuffle instructions.
However, Halide does not expose atomic instructions on global
or shared memory, which are useful for optimization of
common computational patterns. A state-of-the-art high-level
programming framework, Tangram [8], provides composable
code blocks that can be synthesized to provide different GPU
architectures with algorithmic choices, but lacks support for
atomic instructions and warp shuffle instructions.

In order to provide library developers and users of high-level
programming frameworks and DSLs with an efficient way to
optimize their code for different architectures, we develop a
new set of high-level APIs and programming constructs that
expose low-level primitives, such as warp shuffle and atomic
instructions, to programmers. By building our techniques on
top of the Tangram programming framework, we make the
following contributions:

« We augment the code optimization choices with different
types of atomic instructions on global memory by in-
troducing a new set of APIs and corresponding Abstract
Syntax Tree (AST) transformations. The new APIs extend
Tangram’s Map primitive.

o We propose an AST pass to automatically identify warp-
shuffle instructions, without requiring manual source code
modification. We implement our AST pass in Tangram to
enable a larger number of code variants to be synthesized.

o« We make atomic instructions on shared (scratchpad)
memory available by introducing a new set of data array
qualifiers that work in conjunction with existing memory
directives (e.g., Tangram’s __shared qualifier). By doing
so, we enable code variants that take advantage of the
improved hardware support for atomic instructions on
shared memory in newer GPU architectures.

e We develop high-level code for parallel reduction and
compare the performance of our synthesized code, which
leverages warp shuffle and atomic instructions, against a
high-level performance portability framework, and hand-
written library code. Our results demonstrate significant
performance across three generations of GPU architec-
tures, with 2x average speedup (up to 7.8x) over hand-
written code.

II. BACKGROUND AND MOTIVATION

This section gives an overview of low-level GPU instruc-
tions (namely, warp shuffle and atomic instructions) and high-
level programming frameworks with a special attention to
Tangram [15], [8].

A. GPU ISA and Microarchitectural Support

The NVIDIA CUDA ISA [16] has continuously evolved
with every GPU generation, since the launch of the first
CUDA-capable GPU architecture. With the goal of improving
programmability and performance, new instructions have been
added [17], [18] and the microarchitectural support improved.

Warp shuffle instructions [18] and atomic instructions [17]
are good examples of CUDA ISA’s evolution. Supporting
these instructions in high-level programming languages makes
performance portability (i.e., the ability to achieve high perfor-
mance on existing and future architectures without software re-
development) more feasible and keeps the programming effort
low.

1) Warp Shuffle Instructions: NVIDIA’s Kepler architec-
ture [19] introduced low-level primitives called warp shuffle
instructions. These instructions allow threads in the same
warp to exchange private register values via execution unit
data paths during SIMD execution without going through the
shared memory. Shuffle instructions 1) have shorter latency
than shared memory load instructions, and 2) reduce shared
memory footprint. They have different modes, corresponding
to different types of shuffling: shift up or down exchange
(__shfl_up_sync() or __shfl_down_sync()), butterfly exchange
__shfl_xor_sync()), and indexed (any to any, __shfl_sync()).
They can also operate on subwarps [20], where the shuffling
is applied independently on each subwarp.

2) Atomic Instructions: CUDA has offered atomic instruc-
tions on global and shared memories since early in its concep-
tion. These include arithmetic operations, such as atomicAdd(),
atomicSub(), atomicMin(), atomicMax() and logicals. CUDA
atomic operations have evolved over different generations of
NVIDIA GPU architectures. In the first generations, they were
so inefficient that GPU algorithms had to resort to complex
data manipulation to avoid or completely remove the need for
atomic operations [21], [22]. From the Fermi [23] to the Kepler
architecture [19], the addition of buffers in the L2 atomic
units sped up global memory atomics, opening the door for
algorithms that utilized atomic operations for programmability,
performance or both.

Before the Maxwell architecture [24], atomic instructions on
shared memory were implemented in software using a lock-
update-unlock mechanism that became expensive under high
load for highly-contested shared memory locations [13]. Ke-
pler library developers used warp shuffle instructions to avoid
the use of atomic instructions on shared memory whenever
possible [25]. The Maxwell architecture improved the atomic
instructions on shared memory by giving them native microar-
chitectural support. After that, Pascal [26] added scope to the
atomic instructions. System scope allows for atomic visibility
between CPUs and peer GPUs (e.g., atomicAdd_system()).
Device scope, which is the default scope, enforces atomic
visibility within a single GPU device. Block scope implies
atomic visibility only within a CUDA block (e.g., atomi-
cAdd_block()). Knowing when and where to use different
scopes can be an error-prone process, but the scopes can
improve both the algorithmic implementations and execution
efficiency.

In a span of four years, three GPU generations, the hardware
for atomic instructions on global/shared memory improved
significantly and atomic scopes were introduced. Both facts
made atomic instructions much more appealing for the imple-

mentation of GPU algorithms.

However, taking advantage of the improved atomic instruc-
tions requires application and library developers to re-write
code. Otherwise, they might lose opportunities for improved
performance. At the same time, many developers are required
to write applications that are backward-compatible with pre-
vious GPU architectures. As a consequence, both leverag-
ing the latest low-level instructions (e.g., warp shuffle and
atomic instructions) and guaranteeing backward-compatibility,
to achieve performance portability across architecture genera-
tions, need huge programming effort. High-level programming
frameworks, such as Tangram [8], can significantly alleviate
the programming effort by providing backward-compatibility
and allowing programmers to use the latest low-level instruc-
tions. In this work, we enable the use of low-level instructions
(namely, warp shuffle instructions and atomic instructions on
global/shared memory) through new user-level APIs and new
AST code analysis and transformation passes for Tangram, as
an example of high-level programming framework.

B. High-level Programming Frameworks

There has been increasing interest in high-level abstractions
that can be used to minimize the amount of code re-writing
and re-tuning that is required for high-performance execution
[8], [15], [9], [271, [10], [28], [29], [30], [31]. In general,
all high-level frameworks or languages can be described in
terms of primitives to abstract 1) computation, and 2) data
manipulation and distribution. These primitives enable applica-
tion and library developers to quickly try different algorithms
or code optimizations. The work described in this paper is
implemented on top of Tangram [8], but other frameworks or
high-level languages could also benefit from our contributions.

1) Tangram: The Tangram programming model [8], [15]
is based on the idea of expressing architecture-neutral com-
putations through interchangeable and composable building

blocks called spectrums and codelets. A spectrum represents
a unique computation with a defined set of inputs, outputs,
and side effects. A codelet represents a specific algorithmic
implementation of a spectrum. A spectrum can have many
codelets that implement it. For example, Figure 1 shows three
codelets with different optimization techniques for the sum
reduction spectrum.

To build codelets, Tangram relies on built-in primitives
that explicitly express data parallelism (e.g., Map), data parti-
tioning (e.g., Partition), access patterns (e.g., Sequence), data
containers (e.g., Array), and multiple thread cooperation (e.g.,
Vector). Tangram adds a set of array qualifiers that helps
dictate data placement (e.g., __shared) and parameters that
can be tuned at compile time or run time (e.g., __funable).

Codelets can be classified as atomic autonomous, compound
or atomic cooperative. Figure 1(a) shows an atomic au-
tonomous codelet that computes the sum reduction of elements
of an array sequentially. This codelet is 1) atomic because
it cannot be divided into other codelets, and 2) autonomous
because it represents the computation of one single thread [8].

Figure 1(b) depicts a compound codelet that is expressed
with Sequence, Map, and Partition primitives. It is com-
pound because it can be decomposed into atomic autonomous
codelets (e.g., the atomic sum reduction in Figure 1(b)).
With the definition of the Sequence primitives, a developer
can describe a tiled or strided access pattern, as shown at
the bottom of Figure 1(b). A Partition(c, n, start, inc, end)
primitive returns n sub-containers c¢; of ¢ where ¢; goes
from start[i] to end[i], with increment inc[i]. The number of
partitions, p in Figure 1(b), is declared as __rtunable (line 3).
A Map(f, c) primitive applies a function f to each element
of data container c. Thus, Map(f, partition(c, n, start, inc,
end)), applies a function f to each sub-container of partition.
In Figure 1(b), f is the atomic codelet sum.

Figure 1(c) shows an atomic cooperative codelet, which

1 __codelet 1 __codelet Tree-based summation by two
2 int sum(const Array<l,int> in) { 2 int sum(const Array<l,int> in) {
3 unsigned len = in.Size(); 3 Vector vthread(); // Vector declaration vectors of 8 threads each
4 int accum = 0; 4 __shared int partial[vthread.MaxSize()]; // Shared arrays
5 for(unsigned i=0; i < len; in.Stride()) { 5 _ shared int tmp[in.Size()];
6 accum += in[i]; // Sequential sum 6 int val = 0;
7 } // Input read
8 return accum; 7 val = (vthread.ThreadId() < in.Size()) ? in[vthread.ThreadId()] : 0; +
9 } 8 tmp[vthread.ThreadId()] = val;
(a) Atomic Autonomous Codelet. // Tree-based summation by each vector
9 for(int offset = vthread.MaxSize()/2; offset > 0; offset /= 2){
1 _ codelet 10 val += (vthread.LaneId() + offset < vthread.Size()) ? +
2 int sum(const Array<l,int> in) { 11 tmp[vthread.ThreadId()+offset] : 0;
3 __tunable unsigned p; // Number of partitions 12 tmp[vthread.ThreadId()] = val;
4 unsigned len = in.Size(); 13
5 unsigned tile = (len+p-1)/p; // Check if partial sums can be summed by one single vector +
6 Sequence start(..); // Sequence for access pattern 14 1if(in.Size() != vthread.MaxSize() && in.Size()/vthread.MaxSize() > 0){
7 Sequence end(..); // E.g., Tiled or Strided // Write partial sum in shared array
8 Sequence inc(..) 15 if(vthread.LaneId() == 0)
// Rpply sum to p sub-containers of in 16 partial[vthread.VectorId()] = val;
9 Map map(sum, partition(in, p, start, inc, end)); // Final sum by Vector ID = 0
10 map.atomicAdd(); // Atomic API (Section III.A) 17 if (vthread.vectorId() == 0){
11 return sum(map); 18 val = (vthread.ThreadId() <= (in.Size() / vthread.MaxSize())) ? Tree-based
12 } 19 partial[vthread.LaneId()] : 0; summation of
- . // Tree-based summation of partial sums "
Access Patterns specified by Sequence API: 20 for(int offset = vthread.MaxSize()/2; offset > 0; offset /= 2){ partlal sums
21 val += (vthread.LaneId() + offset < vthread.Size()) ?
T”ed:[JJJJI I I I I I [JJIJ I I I I | 22 partial[vthread.ThreadId()+offset] : 0;
23 partial[vthread.ThreadId()] = val; Shadowed elements are the

24 }
26 }

27 return val;
(b) Compound Codelet.

meaningful ones in each iteration
of the tree-based summation

(c) Atomic Cooperative Codelet.

Fig. 1. Codelet Examples for the sum Reduction Spectrum.

Vector Vt(); VtSize() =32

Vt.MaxSize() = 32

Vt.Vectorld() =0 VtSize() =2 Function Description CUDA equivalent
Vt.MaxSize() = 32
(\' \ \ & \x \ \' \ \ \ Vt.Vectorld() =1 Size() Number of threads in Vector warpSize
onl N 2 A e MaxSize() Maximum number of threads in a Vector 32
) ThreadId() Global position of the thread with respect to all threads threadldx.x
Vt.Threadld() = 1 Laneld() Local position of thread within one Vector threadldx.x % warpSize

Vt.laneld() =1

[u—
Vt.Threadld() = 33
Vtlaneld() =1

Vectorld()

Global position of the vector with respect to all vectors threadldx.x / warpSize

Fig. 2. Vector Primitive API. One CUDA Block with 34 Threads is Broken Down into Two Warps with 32 and 2 Active Threads Respectively.

allows for multiple parallel threads of execution to coordinate
work (i.e., to cooperate). The algorithm is depicted pictorially
to the right of the same codelet. This particular codelet
performs tree-based summation on arrays marked as __shared.
The codelet uses the Vector primitive. The Vector primitive
represents a collection of threads performing SIMD/SIMT
parallel execution. The Vector primitive contains member func-
tions (MaxSize(), Size(), Threadld(), and Laneld()) to obtain
the architecture-specific properties of the group of threads and
the ID for a lane and/or thread. Figure 2 depicts the Vector
primitive API and its member functions with their CUDA
equivalents.

In this work we need to augment only the Map and Vector
primitives to support warp shuffle and atomic instructions, and
add an additional qualifier to the Tangram language for atomic
instructions on shared memory.

2) Tangram’s Code Generation: We use the codelet in
Figure 1(b) to illustrate how Tangram generates GPU code.
The code in Listing 1 is one of the multiple synthesis outcomes
of Tangram. Tangram can synthesize a Map(f, partition(c, n,
start, inc, end)) primitive at the GPU’s grid level. In that case,
Map(...) translates to a GPU kernel launch where each sub-
container is assigned to a different CUDA block, as shown
in lines 37 to 40 of Listing 1. The dimension of the GPU
grid (i.e., the number of blocks) is the number of partitions.
This number is p in Figure 1(b) (line 3), which translates to a
template parameter as shown in lines 27 and 28 in Listing
1. Another possibility is that Tangram synthesizes Map(f,
partition(c, n, start, inc, end)) at the GPU block level. In
that case, it translates to a device function where each sub-
container is processed by a different thread (see line 19 of
Listing 1 for an example). The number of partitions is the
number of threads per block. Thread-coarsening optimizations
[32] are possible with this approach. Map(...), therefore, has
flexible semantics depending on the level of the GPU software
hierarchy.

Because Map applies a function to sub-containers of the
original array, the partial results of each partition have to be
stored in memory. Map automatically allocates global memory
through the CUDA cudaMalloc API, if it is at the grid level,
or lets one thread per block allocate global memory using the
C++ new allocator and share that address with the rest of the
threads, if it is at the block level. Lines 33-35 and 15-17 of
Listing 1 show examples of both types of memory allocations
respectively. Each partial result is written to memory based
on the threadldx.x or blockldx.x (lines 6 and 24 of Listing

1). The partial results will be input to another sum reduction
spectrum call to aggregate them. Hence, Tangram generates
a second kernel launch, at the grid level, or another device
function call at the block level, not shown for brevity.

C. Goal

Our goal in this work is to alleviate the performance porta-
bility challenge across GPU architectures by enabling the use
of low-level instructions (in particular, warp shuffle and atomic
instructions) in high-level GPU programming frameworks.
With this goal in mind, we design a new set of high-level
APIs, array qualifiers, and AST transformations for high-
level programming languages and DSLs, and demonstrate a
practical implementation on Tangram. We show how Tangram
leverages our techniques to augment the code optimization
choices and synthesize performance-portable code for parallel
reduction on GPUs.

III. EXTENDING HIGH-LEVEL PROGRAMMING
FRAMEWORKS FOR LOW-LEVEL INSTRUCTIONS

This section explains our techniques to extend high-level
programming frameworks with language and compiler exten-
sions that enable the use of low-level instructions. In particular,
we extend Tangram [8] to be able to synthesize code variants
using GPU warp shuffle instructions and atomic instructions on
global and shared memory. The new code variants increase the
search space of Tangram, which can find the best performing
code by using heuristics [8] or dynamic kernel selection at
runtime [33].

A. Enabling Atomic Instructions on Global Memory

This section describes how to extend Tangram with atomic
instructions on global memory to allow application and library
developers to explicitly state that some partial results should
be atomically accumulated on global memory. Using atomic
instructions on global memory can lead to significant savings
in terms of resource usage and executed instructions, which
can potentially increase performance. For example, in parallel
reduction, using atomic instructions on global memory dra-
matically reduces 1) the size of the arrays that are allocated
in global memory for storing partial results, which increases
the likelihood that these arrays fit in cache, and 2) the number
of executed instructions to accumulate partial results, which
likely reduces the number of execution cycles.

In Tangram, we add new API functions to the Map prim-
itive that expose atomic instructions on global memory to

programmers. The new API functions include atomicAdd(),
atomicSub(), atomicMax(), and atomicMin(). Figure 1(b) (line
10) shows the syntax of atomicAdd(). Parallel reduction can
take advantage of different atomic instructions because dif-
ferent applications require different types of reductions (e.g.,
addition, subtraction, maximum, minimum).

Tangram can generate different atomic versions of the code
for the new APIs and non-atomic versions. We illustrate the
code generation with the compound codelet for the parallel
reduction in Figure 1(b), where partial results are accumulated
either with a non-atomic spectrum call (line 11) or with an
atomic API (line 10). The non-atomic spectrum call and the
atomic API are mutually exclusive: thus, Tangram will only use
the first one for the non-atomic version and the second one for
the atomic version. In order to disable one of them to generate
the corresponding code version, Tangram implements a pre-
processing step where an AST pass looks for Map primitives
that use an atomic API (line 10 in Figure 1(b)). If such a
Map primitive is an input to a spectrum call (line 11 in Figure
1(b)), the AST pass checks whether the spectrum call applies
to the input the same computation as the atomic API. If so,
the AST pass disables the spectrum call for the generation of
the atomic version. If it is not the same computation, the AST
pass does not disable the spectrum call. We can use similar
pre-processing steps with AST passes to enable other advanced
optimizations, such as loop unrolling [34]. We leave them for
future work.

Listing 1 shows the non-atomic version of the code that
Tangram generates for the compound codelet for parallel
reduction in Figure 1(b). Listing 2 shows the version that
uses atomic instructions on global memory. We highlight the
main differences between both versions. First, lines 17 and 34-
35 of both codes show memory allocations. The non-atomic
version needs arrays of size p (i.e., the number of partitions
in the compound codelet) for partial results. However, the
atomic version allocates only a single variable, since an atomic
operation sums all partial results into a single accumulator.
Second, lines 6 and 24 show how partial results are handled.
The non-atomic version stores partial results in arrays. They
will be input to another spectrum call to accumulate them. For
the atomic version, Tangram generates atomicAdd_block() for
reduction at the block level, and atomicAdd() for reduction at
the grid level.

B. Enabling Atomic Instructions on Shared Memory

In this section, we describe how we extend Tangram to
expose atomic instructions on shared memory to application
and library developers. With atomic instructions on shared
memory, it is possible to perform reduction operations without
requiring to allocate an array for partial results in shared
memory. Instead, a single shared variable is the accumulator.
The shared memory footprint becomes significantly smaller,
which can lead to higher GPU occupancy (i.e., higher number
of active threads) and, potentially, higher performance [20].
Atomic instructions on shared memory also allow developers

to implement algorithms that require atomic updates on shared
arrays (e.g., Histogram [12], [13]).

inline_ _ device__ inline_ _ device__

1

2 void Reduce_Thread (int sReturn, void Reduce_Thread(int sReturn,
3 int *input_x, int *input_x,
4 O e d

6 Return[threadIdx.x] = ...; atomicAdd_block (Return, ...);
7 } }

8

9 __global__ __global__

10 void Reduce_Block (int xReturn, void Reduce_Block (int sReturn,
11 int sinput_x, int sinput_x,
12 B Rt B Rt

13 int p = blockDim.x; int p = blockDim.x;

14 L L

15 __shared__ int *map_return; __shared__ int *map_return;
16 if (threadIdx.x == 0) if (threadIdx.x == 0)

17 map_return = new int[pl; map_return = new int[1];
18 __syncthreads () ; __syncthreads () ;

19 Reduce_Thread (map_return, Reduce_Thread (map_return,
20 input_x + , input_x + ,
21 e Se)i

22 . .

23 if (threadIdx.x == 0) if (threadIdx.x == 0)

24 Return[blockIdx.x] = ...; atomicAdd (Return, ...);

25 } }

template
<unsigned int TGM_TEMPLATE_0>

27 template
28 <unsigned int TGM_TEMPLATE_0>

29 int Reduce_Grid(int *input_x, int Reduce_Grid (int *input_x,
30 et ot

31 int p = TGM_TEMPLATE_0; int p = TGM_TEMPLATE_0;

32 . .

33 int *map_return_block; int +map_return_block;

34 cudaMalloc (map_return_block, cudaMalloc (map_return_block,
35 (p) *sizeof (int)); sizeof (int));

36 . .

37 Reduce_Block<<<p, ...>> Reduce_Block<<<p, ...>>

38 (map_return_block, (map_return_block,
39 input_x, input_x,

40)i)i

41 } }

Listing 1. Baseline Reduction. Listing 2. Reduction with
Highlighted Lines are the Global Atomic Instructions.
Differences with Listing 2.

In Tangram, we expose atomic instructions on shared
memory by adding several qualifiers (namely, __atomicAdd,
__atomicSub, __atomicMax, __atomicMin) that we use in
conjunction with the __shared qualifier. We can use them to
generate two new cooperative codelets for parallel reduction,
which represent alternatives to the cooperative codelet in
Figure 1(c). The codelet in Figure 3(a) uses a single __shared
accumulator that is atomically updated (__atomicAdd) by
all threads of all vectors. This codelet reduces significantly
the shared memory footprint and the number of executed
instructions with respect to the codelet in Figure 1(c), but
might suffer from high contention due to atomically updating
the accumulator. The codelet in Figure 3(b) performs the
reduction in two steps. First, each vector carries out tree-based
summation. Second, the first thread of each vector updates the
shared accumulator atomically. With this codelet, contention
on the accumulator is low, while still reducing the shared
memory footprint and the number of executed instructions with
respect to the codelet in Figure 1(c).

We illustrate the code generation with the cooperative
codelet in Figure 3(b). Listing 3 shows Tangram-synthesized
code for this cooperative codelet. Tangram uses an AST pass
that identifies __shared variables with atomic qualifiers. When
this AST pass finds a write operation on an atomic shared
variable, Tangram generates an atomic operation on shared
memory.

The cooperative codelet in Figure 3(b) declares a __shared
atomic variable partial in line 4. First, the AST pass identi-

1 _ codelet _ coop _ tag(shared_vVl)

2 int sum(const Array<l,int> in) {

3 Vector vthread();

4 __shared _atomicAdd int tmp;

5 int val = 0;

6 val = (vthread.ThreadId() < in.Size()) ? in[vthread.ThreadId()] : 0;
7 tmp = val;

8 return tmp;

9 }

Atomic-addition-based summation
by all threads of two vectors

(a) Cooperative Codelet with a Single Accumulator (tmp) -- updated atomically by all threads of all vectors

1 _ codelet _ coop _ tag(shared_v2)
2 int sum(const Array<l,int> in) {
3 Vector vthread();

4 _ shared _atomicAdd int partial;
5 _ shared int tmp[in.Size()];

6 int val = 0;

7 val = (vthread.ThreadId() < in.Size()) ? in[vthread.ThreadId()] : 0;
8 tmp[vthread.ThreadId()] = val;

9 for(int offset = vthread.MaxSize()/2; offset > 0; offset /= 2){

10 val += (vthread.LaneId() + offset < vthread.Size()) ? tmp[vthread.ThreadId()+offset] : 0;

Tree-based summation by two
vectors of 8 threads each

|0|1|2|3|4|5|6|7| |8|9|10|11|12|13|14|15|

N

12 tmp[vthread.ThreadId()] = val; +

13 }

14 if(in.Size() != vthread.MaxSize() && in.Size()/vthread.MaxSize() > 0){

15 if(vthread.LaneId() == 0) +

16 partial = val;

17 if(vthread.VectorId() == 0)

18 val = partial

;z } N Atomic-addition-based
20 }return val; partial summation of partial

sums

(b) Cooperative Codelet with a Single Accumulator (partial) -- only updated by the first thread of each vector

Fig. 3. New Cooperative Codelets with Atomic Instructions on Shared Memory.

fies it, and Tangram generates the declaration and initialization
of partial in lines 5 to 7 of Listing 3. One single thread
per block initializes partial. Second, the AST pass finds the
write operation in line 16 of Figure 3(b). As a result, Tangram
generates the atomic instruction in line 27 of Listing 3.

1 __global__

2 void Reduce_block (int *Return, int xinput_x, int SourceSize
3 int ObjectSize) {

4 unsigned int blockID = blockIdx.x;

5 __shared__ int partial;

6 if (threadIdx.x == 0)

7 partial = 0;

8

__syncthreads () ;
9 extern _ shared__ int tmp[];
10 tmp[threadIdx.x] = 0;
11 __syncthreads () ;
12 int val = 0;
13 val = (((threadldx.x < ObjectSize)) &&
14 ((blockIdx.x * blockDim.x + threadIdx.x) < SourceSize))
15 ? input_x([blockIdx.x * blockDim.x + threadIdx.x]
16 : 05
17 tmp[threadIdx.x] = val;
18 for (int offset = (32 / 2); (offset > 0); offset /= 2) {
19 val += (((threadIdx.x % warpSize + offset) < warpSize))
20 ? tmp[(threadIdx.x + offset)]
21 05
22 tmp[threadIdx.x] = val;
23 __syncthreads () ;
24 }
25 if (((ObjectSize != 32) && ((Objectsize / 32) > 0))) {
26 if ((threadIdx.x % warpSize == 0)) {
27 atomicAdd (partial, val);
28 __syncthreads () ;
29 }
30 if ((threadldx.x / warpSize == 0))
31 val = partial;
32 }
33 if (threadIdx.x == 0)
34 Return[blockID] = val;

35 }
Listing 3. Reduction Code with Atomic Instructions on Shared
Memory for Figure 3(b). Highlighted Lines Declare, Initialize,
and Atomically Update Shared Memory Arrays.

The cooperative codelet also declares the __shared array
tmp, which is not atomic, in line 5 of Figure 3(b). tmp
is used in the first step of the cooperative codelet, tree-

based summation. Tangram declares tmp as extern (line 9
of Listing 3). This way, tmp can be dynamically allocated at
kernel launch [20], since its size depends on the input size
(in.Size () in Figure 3(b)). All threads cooperate in the
initialization of tmp (line 10 of Listing 3).

C. Enabling Warp Shuffle Instructions

This section describes how we extend Tangram with an AST
pass that identifies opportunities for code variants using warp
shuffle instructions. Similar AST passes could identify other
warp instructions. We leave them for future work.

Warp shuffle instructions perform fast data exchange across
threads of the same vector, without using shared memory. The
shared memory footprint becomes smaller, enabling higher
GPU occupancy and higher performance. Specific read-write
patterns benefit from warp shuffle instructions. An example is
Kogge-Stone tree-based summation [21], which the coopera-
tive codelet in Figure 1(c) implements.

In the pre-processing stage of Tangram, we include a new
AST pass that detects opportunities for warp shuffle instruc-
tions. Figure 4 shows the algorithm of this AST pass. It looks
for forloop nodes of the Abstract Syntax Tree with specific
read-write patterns. First, upon reaching a forloop node, the
algorithm checks in step (1) if the bounds of the forloop are
determined by member functions of a Vector primitive (e.g.,
MaxSize() in Figure 4). Step (2) checks if the forloop iterator
decreases by a constant every iteration. Next, the algorithm
traverses the body of the forloop. Step (3) looks for a __shared
array (e.g., tmp in Figure 4) whose contents are read and

accumulated in a local variable (e.g., val). Step (4) checks
that the index of the shared array is a function of Threadld()
of the Vector primitive and the forloop iterator. Finally, steps
(5), (6), and (7) check that the local accumulator is stored
in the shared array at a position indexed by a function of
Threadld(). If the algorithm finishes, using a warp shuffle
instruction is possible. The type of shuffling (e.g., shift up or
down exchange) depends on how the forloop iterates. Tangram
generates __shfl_down() if the forloop iterates in the negative
direction of Vector, and __shfl_up() if the forloop iterates in
the positive direction.

@ @ Forloop bounds are based on Vector<...> primitive, and iterator decreases by a constant every iteration
@) Reading from __shared array; values reduced into a local accumulator
@ Shared array index is & function of Vector. Threadld() and forloop iterator

OO Accumulator value written to figiSaeSharediattay

@ Accumulator value written to index that is only &'function'of Vector. Threadld()

Vector vthread();

s _shared int\tmp[input_x.Size()];

for(int offset = vthread.MaxSize()/2; offset > 0; offset /= 2){

val+=(offset+vthread.LaneId()<vthread.Size())?tmp[vthread.ThreadId()+offset]:0;

(5] (4]

tmp[vthread.ThreadId()] = val;

¥ (7}

Fig. 4. Algorithm to Detect Opportunities for Warp Shuffle Instructions.

We show how Tangram translates the cooperative codelet
in Figure 1(c) into the code variant in Listing 4, which uses
warp shuffle instructions. In Figure 1(c), two forloops (lines
9-13 and lines 20-24) fulfill all conditions checked by the
algorithm in Figure 4. First, from the body of the forloop
in lines 9 to 13 of Figure 1(c), Tangram generates the warp
shuffle instruction in line 15 of Listing 4. The AST pass
disables array tmp, because its contents come directly from
the input array. Thus, no shared memory is allocated for it.
Second, Tangram replaces the body of the forloop in lines
20 to 24 of Figure 1(c) with another warp shuffle instruction
(line 27 in Listing 4). In this case, the AST pass does not
disable array partial, because there is a producer-consumer
relation between the two forloops. The contents of partial
come from local accumulator val — line 16 of Figure 1(c)
translates to line 19 of Listing 4.

D. Generating Code Variants

As described in the previous sections, we add support
for Tangram to generate multiple new code variants which
can use atomic instructions on global or shared memory
and warp shuffle instructions. New AST passes enable the
new code variants. Figure 5 shows a visual representation
of the pre-processing steps before the actual code generation.
First, Tangram planner [8] generates the Abstract Syntax Tree
(AST). Second, Tangram traverses the AST to apply general
transformations and gather metadata for later transformations.
Third, Tangram applies CUDA specific transformations. We
include here the new AST passes for atomic instructions and
warp shuffle instructions. When the AST passes encounter new

code variants, Tangram records them for the actual CUDA
code generation step. When there are no new variants, CUDA
code generation takes place one last time, generating a plain
version with no variants.

1 __global__
2 void Reduce_block (int *Return, int *input_x, int SourceSize,
3 int ObjectSize) {

4 unsigned int blockID = blockIdx.x;

5 __shared__ int partial[32];

6 if (threadIdx.x < 32)

7 partial [threadldx.x] = 0;

8 __syncthreads () ;

9 int val = 0;

10 val = (((threadIdx.x < ObjectSize)) &&

11 ((blockIdx.x % blockDim.x + threadIdx.x) < SourceSize))
12 ? input_x[blockIdx.x % blockDim.x + threadIdx.x]
13 : 05

14 for (int offset = (32 / 2); (offset > 0); offset /= 2){

15 val += __shfl_down(val, offset, 32);

16 }

17 if (((Objectsize != 32) && ((ObjectSize / 32) > 0))){

18 if ((threadIdx.x % warpSize == 0)) {

19 partial [threadIdx.x / warpSize] = val;

20 }

21 __syncthreads () ;

22 if ((threadIdx.x / warpSize == 0)) {

23 val = ((threadIdx.x <= ((ObjectSize / 32))))

24 2 partial [threadldx.x % warpSize]

25 1 0;

26 for (int offset = (32 / 2); (offset > 0); offset /= 2){
27 val += _ shfl down(val, offset, 32);

28 }

29 }

30 }

31 if (threadIdx.x == 0)

32 Return[blockID] = val;

34 }
Listing 4. Reduction Code with Warp Shuffle Instructions for Figure 1(c).
Hightlighted Lines are Warp Shuffle Instructions.

Planner

Index

Argument
Calculations

Return General
Linker Promotion Transformations)
CUDA Specific
Transformations

Atomic
Instructions

Warp Shuffle
Instructions

CUDA
CodeGen

Fig. 5. Tangram’s Pre-processing for Generation of Code Variants.

CUDA Malloc

The code variants with atomic and warp shuffle instructions
can be further extended for future work. For example, aggre-
gate atomics [25] could be supported through the atomic APIs
and qualifiers described in Sections III-A and III-B with new
AST passes and transformations.

IV. EVALUATION
A. Experimental Setup

Tangram generates CUDA code by using multiple Clang
[35] AST traversals. The output CUDA code is then compiled
using the NVIDIA nvcc compiler [20].

We run experiments on three GPUs from different NVIDIA
architectures: Kepler K40c [19], Maxwell GTX980 [24], and
Pascal P100 [26]. For these architectures, we use nvce versions
8.0.44, 9.1.85, and 9.2.88 respectively. These GPU architec-
tures represent different stages in the evolution of atomic
instructions and warp shuffle instructions. Thus, they are good
testbeds for testing Tangram’s performance portability.

We compare Tangram-synthesized code versions to two
state-of-the-art implementations of GPU-based parallel reduc-
tion: 1) NVIDIA’s CUB 1.8.0 hand-written low-level library
of cooperative primitives [7], and 2) Kokkos performance

portability programming model for HPC applications [9] using
the GPU backend. We use input arrays of 32-bit single-
precision elements. The size of the arrays is between 64 and
260M elements. Since we test on small and medium-size
arrays, we also compare against CPU-based parallel reduction
using the OpenMP 4.0 reduce pragma [36]. The OpenMP
codes run on an IBM Minsky HPC system with two dual-
socket 8-core 3.5GHz POWERS8+ CPUs, using OpenMP 4.0
compiled with gcc 5.4.0.

B. Tangram Search Space

Tangram can generate multiple code versions by synthesiz-
ing different codelets at different levels of the GPU software
hierarchy (i.e., grid, block, thread). The original Tangram
framework [8], [15] is able to generate 10 unique versions of
GPU parallel reduction by using the three codelets in Figure 1.

After enabling atomic and warp shuffle instructions, the total
number of code versions of Tangram-synthesized GPU parallel
reduction becomes 89. 10 of the new code versions use only
atomic instructions on global memory, 38 more versions are
possible by enabling atomic instructions on shared memory,
and 31 more versions by employing warp shuffle instructions.

We prune the search space by removing code versions that
consistently provide low performance in preliminary experi-
ments on all GPU architectures. They are all code versions that
require the launch of a second CUDA kernel for the reduction
of partial per-block sums. Among them, we find the original
10 versions, 28 of the new versions with atomic instructions
on shared memory, and 21 of the new versions with warp
shuffle instructions. Thus, pruning the search space brings the
total number of synthesized codes down to 30 versions, all
of which use atomic instructions on global memory to reduce
partial per-block sums.

In order to illustrate the composition of Tangram-
synthesized versions, Figure 6 shows 16 of the final 30
versions. All of these 16 versions use Global Atomic Tile
Distribution (i.e., a compound codelet with tiled access pattern
and atomic instructions on global memory for partial results) at
the grid level. At the block level, they use compound codelets
(versions a to k in Figure 6), or cooperative codelets (versions
[to p). Versions that use compound codelets at the block
level (a to k) perform summation of partial per-thread results
with cooperative codelets (e.g., Figure 1(c), Figure 3(a), and
Figure 3(b)). As the next section shows, the best-performing
8 versions are included in Figure 6.

C. Results

This section shows the evaluation results for Tangram-
synthesized code for GPU parallel reduction and in compar-
ison to hand-written CUB library, Kokkos framework, and
OpenMP CPU code. All Tangram code versions are tuned
using __tunable parameters to determine optimal block and
grid dimensions [8]. This is done with a simple script that runs
all versions with different tuning parameters for the biggest
problem size. It takes about 20 minutes.

Dr Tile Distribute (Figure 1(b)) ’ @ @ Dra @ Grid
Dy Stride Distribute (Figure 1(b)) ‘ ! @ m é m D, Ve é Block
D;a Global Atomic Tile Distribute ‘/ é/ é/ s é/ Thread
Dsa Global Atomic Stride Distribute (a) (b) (© (d) (e)

Dra Dra Dra Dra Dra Grid

V. Cooperative (Figure 1(c))

Dy V [P Dy Vy Dp Va2 @y Vaus Block

V, Cooperative + Shuffle

Var Shared Memory Atomic 1 (Figure 3(a)) Thread

S

() (9) (h) (i) 1]

Va2 Shared Memory Atomic 2 (Figure 3(b)) 9 Dua Din Oia Grid
v Va Vi Block

Thread
(k) () (m) (n) (o) (p) GPU

Code Versions

Vazis Shared Memory Atomic 2 + Shuffle

S Scalar (Figure 1(a))

Codelets and Variants Hierarchy

Fig. 6. 16 out of the Total 30 Tangram Code Versions Tested. Arrows Pointing
up Show the Need to Compute Partial Results. Colored Code Versions are the
8 Best-Performing Ones.

1) Comparison to CUB and OpenMP: Figure 7 shows the
speedup of Tangram-synthesized code over the hand-written
CUB library for parallel reduction on GPU and over the
OpenMP version on the CPU. We only show the results for
the best-performing Tangram-synthesized version on the three
GPU architectures. The x-axis is the size of the input array
and the y-axis the speedup over CUB baseline.

We observe that Tangram-synthesized code performs signif-
icantly better than the hand-written CUB code for small and
medium-size arrays, i.e., below 1M elements. The speedup
is between 2x and 6x on average depending on the GPU
architecture and the array size. For large arrays, i.e., over
IM elements, Tangram-synthesized code is between 17% and
38% slower than the CUB code. The reason is that CUB
applies bandwidth optimizations for large arrays, such as
vector loads [37]. We profiled both Tangram and CUB codes,
and observed that the total number of memory reads for the
CUB code is significantly smaller than for the Tangram code.
This observation correlates well with the optimizations for
higher bandwidth utilization, which are currently not available
in Tangram.

-
[

=
S)

O- Tangram Kepler
=& =Tangram Maxwell
=@-Tangram Pascal

OpenMP (CPU)
=>¢=CUB baseline (GPU)

Speedup over CUB
O P N WA U OO N O W

S
/
o BaY
N
-
B-.
- r _r T T T Tr T T [T T
* L © o S0 X Ao X b > o
€ PP F S D & P
RN G A R AR o
VDT W QY AV oW
b“oé\‘b

Array Size (Number of 32-bit Elements)

Fig. 7. Speedup of Best-performing Tangram-synthesized Code on Kepler,
Maxwell, and Pascal GPUs over CUB Baseline Code. Higher is Better.
Speedups of the OpenMP Version are with respect to CUB Baseline Code
on Pascal GPU.

The comparison to the OpenMP version on the CPU is
especially interesting for arrays below 1M elements, since
such small arrays might be a better fit for CPUs. For this
comparison, we do not include data transfers in our timings,
because they might entail an overhead for both CPU and GPU
codes. For instance, if an application is running on the GPU
and, eventually, needs to compute the reduction of a small or
medium-size array, executing it on the CPU with the OpenMP
version could be a good choice. In that case, we would
need to include the GPU-to-CPU data transfer time and back.
We make several observations. First, the OpenMP version is
clearly faster (by about 4x) than the CUB code below 65K
elements for all GPU architectures. This indicates that CUB
does not apply special optimizations for small arrays. Second,
on the Kepler and the Maxwell GPUs, the OpenMP version
outperforms the Tangram-synthesized code for small arrays
(below 4K elements). This is because there is not enough data
parallelism to overcome the higher latency on the GPU due
to its lower clock frequency than that of the CPU. Third, on
the Pascal GPU, the Tangram-synthesized code is competitive
for small arrays due to Pascal’s higher clock frequency over
prior GPU architectures. For medium-size arrays (between 4K
and 65K), the Tangram-synthesized code on the Pascal GPU
is between 3x and 6x faster than the OpenMP version.

2) Detailed Comparison to CUB, Kokkos, and OpenMP on
the Kepler GPU: Figure 8 compares the Tangram-synthesized
code to CUB, Kokkos, and OpenMP codes on the Kepler GPU.
For each array size, we show the Tangram code version (Figure
6) that provides the highest performance.

11
10 <B-Tangram Fig.6(p)

9 =¢-Tangram Fig.6(m)
—a=Tangram Fig.6(b)
-@-Tangram Fig.6(e)
=¥=Kokkos (GPU)
OpenMP (CPU)
«>CUB baseline (GPU)

Speedup over CUB
O R N WA UL N 0

> ©
g

0 © \J © g ©
O ol %) QO "3 © %)
RO ST S
N '] © »
v

P

A Q'
w ¢ & F
Array Size (Number of 32-bit Elements) v

Fig. 8. Speedup of Tangram-synthesized Code on Kepler GPU over CUB
Baseline Code and Kokkos Code. Different Tangram Code Versions corre-
spond to Figure 6.

For small arrays (64 to 1K elements), the best Tangram-
synthesized code is version (p) in Figure 6. Tangram generates
this version from a cooperative codelet that uses atomic
instructions on shared memory, as shown in Figure 3(b). The
array is split among CUDA blocks, which execute tree-based
summation using warp shuffle instructions. Partial results are
accumulated with atomic instructions on shared memory. The
resulting per-block partial results are atomically added on
global memory. It is surprising that this version is the fastest on
the Kepler GPU, since the Kepler architecture does not have

support for fast atomic instructions on shared memory (see
Section II-A). However, we observe that the number of array
elements assigned per CUDA block in this version is small
enough to have one single active warp per block. Thus, there
is no contention for the atomic instructions on shared memory
when accumulating the single partial result. For small arrays,
the OpenMP version on the CPU is the fastest.

For medium-size arrays (1K to 4M elements), the best
Tangram-synthesized code is version (m) in Figure 6. Tangram
generates this version from a cooperative codelet like the
one in Figure 1(c). In every block, warps execute tree-based
summation using warp shuffle instructions. The partial per-
warp results are added by a second tree-based summation,
and not by atomic instructions on shared memory (version
(p) in Figure 6) because the number of active warps per
block is larger than that for small arrays. Profiling shows
that, for version (p) in Figure 6, branch divergence [38], [39]
is very high, which is mainly due to the lock-update-unlock
mechanism in the Kepler architecture that uses branches [13].
For medium-size arrays, the Tangram code is on average 4.6 x
faster than the CUB code, and 3.6 x faster than OpenMP code.

For large arrays (more than 4M elements), the best
Tangram-synthesized versions distribute the input array over
GPU software hierarchy levels twice (versions (b) and (e)
in Figure 6). First, the array is partitioned across blocks
with a filed access pattern, and then across threads with a
strided access pattern, by applying the compound codelet
in Figurel(b) twice. The strided access pattern allows the
thread coarsening optimization, which is available in the
original Tangram [8]. Each thread applies serial sum (codelet
in Figure 1(a)), and per-thread partial results are reduced
by cooperative codelets (like Figure 1(c) and Figure 3(b))
with warp shuffle instructions. For large arrays, the Tangram
code is about 38% slower than the CUB code. Beyond 10M
elements, the Kokkos code outperforms CUB and Tangram
codes by an average of 2.5x. In order to understand the
significant speedup of the Kokkos code, we profile Tangram,
CUB, and Kokkos codes. We discover that the Kokkos code
uses multiple GPU kernels, and the most time-consuming
kernel is compute-bound, not memory-bound as in Tangram
and CUB codes. Memory-bound kernels cause significant
slowness for large inputs, but compute-bound ones do not.
The Kokkos code works by staging memory accesses for the
main kernel through other sister kernels. These optimizations
are not present in either Tangram or CUB, and are orthogonal
to the optimizations studied in this work.

3) Detailed Comparison to CUB, Kokkos, and OpenMP on
the Maxwell GPU: Figure 9 compares Tangram-synthesized
code to CUB, Kokkos, and OpenMP codes on the Maxwell
GPU. For each array size, we show the Tangram code version
(Figure 6) that obtains the highest performance.

For small arrays (64 to 65K elements), the best Tangram-
synthesized code is version (n) in Figure 6. Tangram generates
this version from a cooperative codelet that uses atomic
instructions on shared memory, as shown in Figure 3(a). The
array is split among CUDA blocks. All threads of each block

[
[

Tangram Fig.6(n)
=o=Tangram Fig.6(p)
=&-Tangram Fig.6(k)
(
(

[
©o o

~8-Tangram Fig.6(c)
<l-Tangram Fig.6(a)
=3¢ Kokkos (GPU)
OpenMP (CPU)
«>CUB baseline (GPU)

Speedup over CUB

O R NWP UL N

Array Size (Number of 32-bit Elements)

Fig. 9. Speedup of Tangram-synthesized Code on Maxwell GPU over
CUB Baseline Code and Kokkos Code. Different Tangram Code Versions
correspond to Figure 6.

update a single accumulator with atomic instructions on shared
memory. This is a clear example of how microarchitectural
support for fast atomic instructions dictates the algorithm and
optimization strategies that result in the the highest-performing
code. Thus, the Maxwell GPU prefers version (n) in Figure 6
over version (m), which is the version that the Kepler GPU
prefers for arrays between 1K and 65K elements.

For medium-size arrays (65K to 4M elements), the best
Tangram-synthesized code is version (p) in Figure 6. Tangram
generates this version from a cooperative codelet like the
one in Figure 3(b). In every block, warps execute tree-based
summation using warp shuffle instructions. The partial per-
warp results are added by atomic instructions on shared
memory. For medium-size arrays, the Tangram code is on
average 4.6x faster than the CUB code, and 3.4x faster than
the OpenMP code.

For large arrays (more than 4M elements), the best
Tangram-synthesized versions distribute the input array twice
(versions (a), (c), and (k) in Figure 6). First, the array is
partitioned across blocks with a filed access pattern, and then
across threads with a strided access pattern. Per-thread partial
results are reduced by cooperative codelets without atomic
instructions (Figure 1(c)) or with atomic instructions on shared
memory (Figure 3(b)). For large arrays, the Tangram code is
about 7% slower than the CUB code, and about 2.7x slower
than the Kokkos code for the same reasons as on the Kepler
GPU.

4) Detailed Comparison to CUB, Kokkos, and OpenMP on
the Pascal GPU: Figure 10 compares Tangram-synthesized
code to CUB, Kokkos, and OpenMP codes on the Pascal GPU.
For each array size, we show the Tangram code version (Figure
6) that obtains the highest performance.

As described in Section II-A, the Pascal architecture further
improves the atomic instructions over the Maxwell architecture
by introducing scopes. The additional support has direct effect
on the best-performing Tangram-synthesized code versions.
The Pascal GPU prefers algorithms that use one of the
cooperative codelets in Figure 3. Thus, the best-performing
Tangram codes are versions (n) and (p) in Figure 6.

10

[
[

Tangram Fig.6(n)
<B-Tangram Fig.6(p)
-@-Tangram Fig.6(e)
=3¢Kokkos (GPU)

OpenMP (CPU)
=>=CUB baseline (GPU)

[
o o

Speedup over CUB

O R NWRAULIO N

S

Array Size (Number of 32-bit Elements)

Fig. 10. Speedup of Tangram-synthesized Code on Pascal GPU over CUB
Baseline Code and Kokkos Code. Different Tangram Code Versions corre-
spond to Figure 6.

For small arrays with up to 1K elements, the Tangram code
performs on par with the OpenMP code. For arrays of size
between 4K and 65K elements, the Tangram code outperforms
the CUB code by about 8.5x and the OpenMP code by about
4.8%, on average.

For medium-size arrays (65K to 4M elements), the Tangram
code provides an average speedup of 4x over the CUB code.

For large arrays (more than 4M elements), the Tangram
code is, on average, 27% slower than the CUB code and 2.2x
slower than the Kokkos code, for the same reasons described
for large arrays in the Kepler GPU and the Maxwell GPU (i.e.,
bandwidth optimizations in CUB and compute-bound kernel
in Kokkos).

V. RELATED WORK

To our knowledge, this paper is the first to enable the use of
low-level instructions (in particular, warp shuffle instructions
and atomic instructions on global and shared memory) in high-
level GPU programming frameworks, via high-level APIs,
array qualifiers, and AST transformations. By leveraging warp
shuffle and atomic instructions, we develop performance-
portable code for parallel reduction in the Tangram GPU
programming framework [8]. We already extensively com-
pared our approach and Tangram-synthesized code to two
closely related works: the approach of and code generated by
another performance-portable GPU framework (Kokkos [9])
and a hand-written library (CUB [7]). In this section, we
describe other related work. First, we describe optimized
hand-written implementations of parallel reduction on GPUs.
Second, we discuss the existing support (if any) for low-level
instructions and parallel reduction in state-of-the-art high-level
programming frameworks.

Hand-written Reductions. There exist a substantial body of
work on optimization for parallel reduction on GPUs. Harris
[40] presents a tree-based algorithm and shows how to op-
timize it for shared memory, communication between CUDA
blocks and warp divergence. Luitjens [41] applies warp shuffle
instructions, available since the NVIDIA Kepler architecture,
and explores optimizations with atomic instructions. Catanzaro

[42] discusses two-stage partition schemes to have a partial
reduction per streaming multiprocessor, and a final reduction
of partial results. All of the above strategies and optimizations
are now available in Tangram via our contributions in this
paper.

High-level Programming Frameworks. In terms of
reduction-specific abstractions in high-level programming
frameworks, several hand-written libraries provide optimized
reduction through simple APIs [6], [7]. Higher-level
performance portability frameworks, such as Kokkos [9]
and Raja [27], provide reduce as an API that calls an
in-house or a third-party library. Raja lets the user choose
between different optimized versions of reduction through a
reduce_policy template parameter (e.g., cuda_reduce_async,
cuda_reduce_atomic, etc.). Both Kokkos and Raja rely on
pre-written optimized reduction codes. High-level functional
data parallel language Lift [28], similarly to Tangram,
provides language primitives that help abstract data-parallel
computation. Primitives such as mapWarp and mapLane are
used for low-level optimizations, and the foLocal, toGlobal
primitives are used for memory placement. As the name
suggests, Lift is meant for data parallel computation, but
coordinating lanes of parallel execution via warp shuffle
instructions is not supported. The use of re-write rules
[43], in order to transform high-level code to low-level
optimized OpenCL code, has been previously proposed.
However, OpenCL does not expose low-level intrinsics such
as warp shuffle instructions. Thus, OpenCL cannot support
the optimizations presented in this paper.

Halide [10] is a Domain Specific Language (DSL) for image
processing pipelines with support for reduction operations
[44]. Halide provides high-level APIs (e.g., gpu_lane) to
expose warp shuffle instructions, and scheduling directives
(e.g., rfactor) that split and compute partial results over slices
of the reduction domain. However, as of the writing of this
paper, rfactor is not implemented for GPU code generation and
support for different GPU atomic instructions does not exist.
PENCIL [45], an intermediate DSL for accelerators, has been
optimized to support a number of low-level transformations
for GPU reduction [46]. However, warp shuffle instructions
and atomic instructions on global or shared memory are not
exposed. Transformations discussed in our paper could be
adopted by PENCIL and Halide.

VI. CONCLUSION

We introduce a new set of high-level APIs and memory
qualifiers, as well as AST transformations, for high-level
performance-portable programming frameworks and DSLs to
enable automatic generation of warp shuffle instructions and
atomic instructions on GPUs. We implement our techniques
on the Tangram high-level programming synthesis framework,
and augment Tangram’s code generation capability with pre-
processing for code variants. We implement parallel reduction,
a building block for many complex and widely-used algo-
rithms, and show how, depending on the ISA and the microar-
chitectural support for atomic instructions, different parallel

11

reduction algorithms are more suitable for different arrays
sizes and GPU architectures. We compare the performance of
our Tangram-synthesized code against another performance-
portable GPU framework (Kokkos [9]) and a hand-written
library (CUB [7]), and show that our Tangram-synthesized
code outperforms hand-written code by up to 7.8x (2x on
average) on three generations of GPU architectures.

ACKNOWLEDGMENTS

This research is based in part upon work supported by:
The Center for Exascale Simulation of Plasma-Coupled Com-
bustion, one of six PSAAPII centers, funded by the U.S.
Department of Energy, under Award Number DE-NA0002374.
Sandia National Laboratories managed and operated by Na-
tional Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. The Center for
Applications Driving Architectures (ADA), a JUMP Center co-
sponsored by SRC and DARPA. The Blue Waters sustained-
petascale computing project, which is supported by the Na-
tional Science Foundation award OCI-0725070 and the state
of Illinois.

REFERENCES
[1] E. Strohmaier, J. Dongarra, S. Horst, and M. Meuer, “Top500 List June
2018, https://www.top500.0rg/lists/2018/06/.
F. Wu and T. Scogland, “Green500 List June 2018,”
www.top500.0rg/green500/1ists/2018/06/.
RightScale, “Rightscale 2018 state of the cloud report,” https://
assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-

[2] https://

[3]

Report.pdf.
[4] NVIDIA, “CUDA zone,” https://developer.nvidia.com/cuda-zone.
[5] Khronos Group, “OpenCL 2.0 API specification,” https://

www.khronos.org/registry/cl/specs/opencl-2.0.pdf, 2014.

N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
cuda,” in GPU computing gems Jade edition, 2011.

D. Merrill and NVIDIA-Labs, “CUDA unbound (CUB) library,”
NVIDIA-Labs, 2015.

L.-W. Chang, I. E. Hajj, C. Rodrigues, J. Gomez-Luna, and W.-m. Hwu,
“Efficient kernel synthesis for performance portable programming,” in
MICRO, 2016.

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, 2014.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” in PLDI,
2013.

J. Gémez-Luna, L.-W. Chang, 1.-J. Sung, W.-M. Hwu, and N. Guil,
“In-place data sliding algorithms for many-core architectures,” in /CPP,
2015.

J. Gémez-Luna, J. M. Gonzélez-Linares, J. 1. Benavides, and N. Guil,
“An optimized approach to histogram computation on GPU,” Machine
Vision and Applications, 2013.

J. Gémez-Luna, J. M. Gonzélez-Linares, J. 1. Benavides, and N. Guil,
“Performance modeling of atomic additions on GPU scratchpad mem-
ory,” IEEE Transactions on Parallel and Distributed Systems, 2013.

S. Yan, G. Long, and Y. Zhang, “Streamscan: Fast scan algorithms for
GPUs without global barrier synchronization,” in PPoPP, 2013.

L.-W. Chang, I. El Hajj, H.-S. Kim, J. Gémez-Luna, A. Dakkak, and
W.-m. Hwu, “A programming system for future proofing performance
critical libraries,” in PPoPP, 2016.

NVIDIA, “PTX: Parallel thread execution ISA version 6.2,
https://docs.nvidia.com/cuda/parallel-thread-execution, 2018.

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]
[21]
[22]

[23]
[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

(33]

L. Nyland and S. Jones, “Understanding and using atomic memory
operations,” NVIDIA GTC, 2013.

J. Demouth, “Shuffle: Tips and tricks,” NVIDIA GTC, 2013.

NVIDIA, “NVIDIA next generation CUDA compute architecture: Ke-
pler GK110 whitepaper,” 2013.

NVIDIA, “CUDA C programming guide,” https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html, 2018.

D. B. Kirk and W.-M. W. Hwu, Programming massively parallel
processors: a hands-on approach. 2016.

R. Nasre, M. Burtscher, and K. Pingali, “Atomic-free irregular compu-
tations on gpus,” in GPGPU, 2013.

NVIDIA, “Fermi whitepaper,” 2012.

NVIDIA, “NVIDIA GeForce GTX 980: Featuring Maxwell, the most
advanced GPU ever made,” 2014.

A. Adinets, “CUDA pro tip: Optimized Filtering with Warp-Aggregated
Atomics,” 2014.

NVIDIA, “NVIDIA Tesla P100 GPU,” 2016.

R. D. Hornung and J. A. Keasler, “The RAJA portability layer: overview
and status,” tech. rep., Lawrence Livermore National Lab., 2014.

M. Steuwer, T. Remmelg, and C. Dubach, “Lift: a functional data-
parallel ir for high-performance gpu code generation,” in CGO, 2017.
N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha,
S. Ghose, A. Jog, P. B. Gibbons, and O. Mutlu, “Zorua: A holistic
approach to resource virtualization in gpus,” in MICRO, 2016.

N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu,
“The Locality Descriptor: A holistic cross-layer abstraction to express
data locality in GPUs,” in ISCA, 2018.

N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko,
E. Ebrahimi, N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A case
for richer cross-layer abstractions: Bridging the semantic gap with
expressive memory,” in ISCA, 2018.

A. Magni, C. Dubach, and M. O’Boyle, “Automatic optimization of
thread-coarsening for graphics processors,” in PACT, 2014.

L.-W. Chang, H.-S. Kim, and W.-m. W. Hwu, “Dysel: Lightweight

12

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

2016.

dynamic selection for kernel-based data-parallel programming model,”
in ASPLOS, 2016.

G. S. Murthy, M. Ravishankar, M. M. Baskaran, and P. Sadayappan,
“Optimal loop unrolling for GPGPU programs,” in IPDPS, 2010.

C. Lattner, “LLVM and Clang: Next generation compiler technology,”
in The BSD conference, 2008.

L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE computational science and engi-
neering, 1998.

J. Luitjens, “CUDA pro tip: Increase performance with vectorized
memory access,” 2013.

W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp
formation and scheduling for efficient GPU control flow,” in MICRO,
2007.

V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU performance via large warps and two-
level warp scheduling,” in MICRO, 2011.

M. Harris, “Optimizing parallel reduction in CUDA,” NVIDIA CUDA
SDK, 2008.

J. Luitjens, “Faster parallel reductions on Kepler,” NVIDIA, 2014.

B. Catanzaro, “OpenCL optimization case study: Simple reductions,”
2010.

M. Steuwer, C. Fensch, S. Lindley, and C. Dubach, “Generating per-
formance portable code using rewrite rules: from high-level functional
expressions to high-performance OpenCL code,” in ICFP, 2015.

P. Suriana, A. Adams, and S. Kamil, “Parallel associative reductions in
halide,” in CGO, 2017.

R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy,
S. Verdoolaege, A. Betts, A. F. Donaldson, J. Ketema, et al., “Pencil:
A platform-neutral compute intermediate language for accelerator pro-
gramming,” in PACT, 2015.

C. Reddy, M. Kruse, and A. Cohen, “Reduction drawing: Language
constructs and polyhedral compilation for reductions on GPU,” in PACT,

