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Abstract—Multirate refresh techniques exploit the non-
uniformity in retention times of DRAM cells to reduce the DRAM
refresh overheads. Such techniques rely on accurate profiling of
retention times of cells, and perform faster refresh only for a few
rows which have cells with low retention times. Unfortunately,
retention times of some cells can change at runtime due to
Variable Retention Time (VRT), which makes it impractical to
reliably deploy multirate refresh.

Based on experimental data from 24 DRAM chips, we develop
architecture-level models for analyzing the impact of VRT. We
show that simply relying on ECC DIMMs to correct VRT failures
is unusable as it causes a data error once every few months. We
propose AVATAR, a VRT-aware multirate refresh scheme that
adaptively changes the refresh rate for different rows at runtime
based on current VRT failures. AVATAR provides a time to failure
in the regime of several tens of years while reducing refresh
operations by 62%-72%.

Keywords—Dynamic Random Access Memory, Refresh Rate,
Variable Retention Time, Error Correcting Codes, Performance,
Memory Scrubbing

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) has been the
basic building block of computer memory systems. A DRAM
cell stores data as charge in a capacitor. Since this capacitor
leaks over time, DRAM cells must be periodically refreshed to
ensure data integrity. The Retention Time of a single DRAM
cell refers to the amount time during which it can reliably
hold data. Similarly, the retention time of a DRAM device
(consisting of many cells) refers to the time that it can reliably
hold data in all of its constituent cells. To guarantee that all
cells retain their contents, DRAM uses the worst-case refresh
rate determined by the cell with the minimum retention time as
a whole. JEDEC standards specify that DRAM manufacturers
ensure that all cells in a DRAM have a retention time of at
least 64ms, which means each cell should be refreshed every
64ms for reliable operation.

Despite ensuring reliable operation, using such high refresh
rates introduce two problems: 1) refresh operations block
memory, preventing it from performing read and write re-
quests. 2) refresh operations consume significant energy [6,28,
35]. In fact, as technology continues to scale and the capacity
of DRAM chips increases, the number of refresh operations
also increases. While the refresh overheads have been quite
small (less than a few percent) in previous generations of
DRAM chips, these overheads have become significant for
current generation (8Gb) DRAM chips, and they are projected
to increase substantially for future DRAM technologies [18,28,
34, 35]. Figure 1 illustrates the trend, showing the throughput
loss (the percentage of time for which the DRAM chip is
unavailable due to refresh) for different generations of DRAM.
As the memory capacity increases, memory throughput reduces

and refresh power grows. In fact, at the 32Gb-64Gb densities,
the overheads of performance and power reach up to 25-50%
and 30-50% respectively. Such overheads represent a Refresh
Wall, and we need scalable mechanisms to overcome them.
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Fig. 1. Refresh Wall for scaling DRAM memory systems. (a) Memory
throughput loss and (b) Power overheads of refresh (source [28]). The refresh
overheads are significant and unmanageable for high-density chips.

To ensure that DRAM cells retain data reliably, DRAM
conservatively employs the refresh interval of 64ms based on
the DRAM cell with the shortest retention time. In fact, the vast
majority of DRAM cells in a typical DRAM device can operate
reliably with much longer refresh intervals [19, 29]. Multirate
refresh mechanisms (e.g., [4, 21, 28, 36, 38, 41, 44]) exploit
this discrepancy by identifying the few cells that require high
refresh rates and refreshing only those portions of memory
at the nominal refresh rate of 64ms. The rest of memory has
a much lower refresh rate (4-8x less than the nominal rate).
Multirate refresh schemes rely on an accurate retention time
profile of DRAM cells. However, accurately identifying cells
with short retention times remains a critical obstacle due to
Variable Retention Time (VRT). VRT refers to the tendency of
some DRAM cells to shift between a low (leaky) and a high
(less leaky) retention state, which is shown to be ubiquitous
in modern DRAMs [29]. Since the retention time of a DRAM
cell may change due to VRT, DRAM cells may have long
retention times during testing but shift to short retention times
at runtime, introducing failures1 during system operation. A
recent paper [18] from Samsung and Intel identifies VRT as
one of the biggest impediments in scaling DRAM to smaller
technology nodes.

This paper has two goals: 1) To analyze the impact of
VRT on multirate refresh by developing experiment-driven
models. 2) To develop a practical scheme to enable multirate
refresh in the presence of VRT. To understand how VRT
impacts multirate refresh, we use an FPGA-based testing
framework [19,24,25,29] to evaluate the impact of a reduced
refresh rate on DRAMs in a temperature-controlled environ-
ment.

Prior works indicate that even after several rounds of test-
ing performed for several days, new (previously unidentified)

1We use terms of failure and error interchangeably in this paper.
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bit errors continue to occur [19,29]. However, we observe two
important properties that provide us insights for developing an
effective solution. First, after the initial testing, the number of
active (failing) VRT cells during a given time period stabilizes
close to an average value and follows a lognormal distribution.
We refer to this constantly changing pool of active VRT cells
as the Active-VRT Pool (AVP). Second, although new bit errors,
previously unseen, continue to surface even after several hours,
the rate at which these new bit errors emerge stabilizes at a
relatively low rate that we refer to as the Active-VRT Injection
(AVI) rate. In our studies of 24 modern DRAM chips, we
find that 1) 2GB memory has an Active-VRT pool of 350
to 500 cells on average within a 15-minute period; 2) AVI rate
stabilizes at approximately one new cell within a 15-minute
period.

The AVP and AVI metrics motivate much of the remaining
analysis in this paper. The continual discovery of new bit errors
even after hours of tests precludes the possibility of relying
solely on memory tests to identify and eliminate bit errors.
We can potentially use error correction code (ECC) DIMMs
to correct VRT-related data errors: for example, we can use
either in-DRAM ECC or SECDED DIMMs to correct VRT-
related errors, as suggested by a recent study [18]. We refer
to the approach of using SECDED for treating VRT-related
errors the same way as soft errors as a VRT-Agnostic multirate
refresh scheme. Our analysis shows that simply relying on
ECC DIMMs still causes an uncorrectable error once every
six to eight months (even in the absence of any soft errors).
Such a high rate of data loss is unacceptable in practice,
making multirate refresh impractical to reliably deploy even
for a memory system employing DIMMs with ECC capability.

This paper introduces the first practical, effective, and
reliable multirate refresh scheme called AVATAR (A Variable-
Retention-Time Aware multirate Refresh), which is a system-
level approach that combines ECC and multirate refresh to
compensate for VRT bit errors. The key insight in AVATAR
is to adaptively change the refresh rate for rows that have
encountered VRT failures at runtime. AVATAR uses ECC and
scrubbing to detect and correct VRT failures and upgrade rows
with such failures for faster refresh. This protects such rows
from further vulnerability to retention failures. We show that
the pool of upgraded rows increases very slowly (depending
on AVI), which enables us to retain the benefits of reduced
refresh rate (i.e. slower refresh) for most of the rows. AVATAR
performs infrequent (yearly) testing of the upgraded rows so
that rows not exhibiting VRT anymore can be downgraded to
slower refresh.

We show that AVATAR improves the reliability of a tra-
ditional multirate refresh scheme by 100 times, increasing the
time to failure from a few months to several tens of years
(even in the presence of high soft-error rates, as discussed in
Section VI-C). AVATAR provides this high resilience while re-
taining most of the refresh savings of VRT-Agnostic multirate
refresh and incurring no additional storage compared to VRT-
Agnostic multirate refresh. AVATAR is especially beneficial
for future high-density chips that will be severely limited by
refresh. For example, our evaluations show that for a 64Gb
DRAM chip, AVATAR improves performance by 35% and
reduces the Energy Delay Product (EDP) by 55%.

II. BACKGROUND AND MOTIVATION

A. DRAM Organization and DRAM Refresh

A DRAM cell consists of one transistor and one capacitor
(1T-1C), as shown in Figure 2. DRAM cells are organized
as banks, a two-dimensional array consisting of rows and
columns. The charge stored in the capacitor tends to leak over
time. To maintain data integrity, DRAM systems periodically
perform a refresh operation, which simply brings the data from
a given row into the sense amplifiers and restores it back to
the cells in the row. Thus, refresh operations are performed at
the granularity of a DRAM row.2
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Fig. 2. DRAM Organization (source [14]).

B. Refresh Wall for Scaling DRAM

As the capacity of DRAM increases, the time spent in
performing refresh also increases. The performance and power
of future high-density DRAMs are expected to be severely
constrained by overheads of refresh operations (Figure 1).
As the increased variability of DRAM cells with smaller
geometries might reduce the DRAM refresh period from 64ms
to 32ms even for operation at normal temperature [16, 17],
the refresh problem is likely to become worse for future
DRAMs [18, 28, 34, 35]. Thus, techniques that can eliminate
or reduce refresh operations can be greatly effective in over-
coming the Refresh Wall.

C. Multirate Refresh

The retention time of different DRAM cells is known to
vary, due to the variation in cell capacitance and leakage
current of different cells. The distribution of the retention time
tends to follow a log-normal distribution [10,22], with typical
DRAM cells having a retention time that is several times
higher than the minimum specified retention time. Multirate
refresh techniques exploit this non-uniformity in retention time
of DRAM cells to reduce the frequency of DRAM refresh.
Multirate refresh schemes (e.g., [21, 28, 36, 38, 41, 44]) group
rows into different bins based on the retention time profiling
and apply a higher refresh rate only for rows belonging to the
lower retention time bin.

1) Implementation: Figure 3(a) shows a generic implemen-
tation of multirate refresh scheme using two rates: a Fast
Refresh that operates at the nominal rate (64ms) and a Slow
Refresh that is several times slower than the nominal rate.
Multirate refresh relies on retention testing to identify rows
that must be refreshed using Fast Refresh, and populates the

2For more detail on DRAM operation and refresh, we refer the reader to [6,
23, 25, 26, 28, 29, 35].
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Refresh Rate Table (RRT) with this information. At runtime,
RRT is used to determine the refresh rate for different rows.
For an 8GB DIMM with an 8KB row buffer, the size of RRT is
128KB.3 For our studies, we assume that the RRT information
is available at the memory controller, similar to RAIDR [28].
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Fig. 3. Multirate Refresh (a) Implementation with an RRT (b) Effectiveness
at reducing refresh.

2) Effectiveness: The effectiveness of multirate refresh at
saving refresh operations depends on the rate of Fast and
Slow Refresh. For a slow refresh rate that is 4x-8x lower
than a fast refresh rate, only a small fraction of DRAM
rows end up using fast refresh rates. For example, for our
studies with 8GB DIMMs and a slow refresh rate that is five
times slower than a fast refresh rate, 10% of the rows get
classified to use Fast Refresh. Figure 3(b) shows the reduction
in refresh operations compared to always using Fast Refresh,
when a given percentage of memory rows use Fast Refresh. We
analyze two different rates of Slow Refresh, 4X and 8X lower
than that of Fast Refresh. Even with 10% of the rows using Fast
Refresh, the total refresh savings with multirate refresh range
from 67% to 78%. Thus, multirate refresh is highly effective
at reducing refresh operations.

D. The Problem: Retention Time Varies Dynamically

The key assumption in multirate refresh is that the retention
time profile of DRAM cells does not change at runtime.
Therefore, a row classified to use Slow Refresh continue to
have all the cells at higher retention time than the period of
the Fast Refresh. Unfortunately, the retention time of DRAM
cells can change randomly at runtime due to a phenomenon
called Variable Retention Time (VRT) [45]. VRT can cause
a cell to randomly flip from a high retention state to a low
retention state, thus causing data errors with multirate refresh.
The existence of VRT makes it challenging to use multirate
refresh schemes reliably. The next section provides insights
into how VRT impacts multirate refresh.

3The storage for tracking the refresh rate can be reduced if the number of
rows that need Fast Refresh is very small. For example, RAIDR [28] employs
Bloom filters for tracking 1000 weak rows for a memory with one million
rows (i.e., 0.1% of total rows). It can be shown that Bloom filters become
ineffective at reducing storage when the number of weak rows become a
few percent of total rows. For our target refresh rate, 10% or more rows get
classified for using Fast Refresh, therefore we use an RRT with one bit per
row. The SRAM overhead of RRT can be avoided by storing the RRT in
a reserved area of DRAM (128KB for 8GB is 0.0015% of memory space).
While refresh decisions for the current RRT line (512 rows) get used, the next
RRT line can be prefetched from DRAM to hide latency of RRT lookup. The
RRT in DRAM can be replicated three times (while incurring a total storage
overhead of only 0.005%) for tolerating VRT related errors in the RRT.

III. VARIABLE RETENTION TIME

VRT causes a DRAM cell to change its retention charac-
teristics. A cell with VRT exhibits multiple retention states
and transitions to these states at different points of time in an
unpredictable fashion [29, 45]. As a result, the same cell can
fail or pass at a given refresh rate, depending on its current
retention time. Although VRT only affects a very small fraction
of cells at any given time, the retention time change of even a
single cell can be sufficient to cause data errors in a memory
system that employs multirate refresh. We explain the reasons
behind VRT and then characterize the behavior of VRT cells.

A. Causes of VRT

VRT phenomenon in DRAM was reported in 1987 [45].
The physical phenomenon behind the VRT cells is attributed
to the fluctuations in the gate induced drain leakage (GIDL)
current in the DRAM cells. Prior works suggest that presence
of traps near the gate region causes these fluctuations. A trap
can get occupied randomly, causing an increase in the leakage
current. As a result, the cell leaks faster and exhibits lower
retention time. However, when the trap becomes empty again,
the leakage current reduces, resulting in a higher retention
time [7,20]. Depending on the amount of the leakage current,
VRT cells exhibit different retention times. VRT can also occur
due to external influences such as high temperature during
the packaging process or mechanical or electrical stress. It
is hard for manufacturers to profile or screen such bits since
VRT can occur beyond post-packaging testing process [7,33].
Recent experimental studies [19, 29] showed that the VRT
phenomenon is ubiquitous in modern DRAM cells. Future
memory systems are expected to suffer even more severe VRT
problems [18]. They are likely to apply higher electrical field
intensity between the gate and the drain, which increases the
possibility of charge traps that may cause VRT bits. A recent
paper [18] from Samsung and Intel identifies VRT as one of
the biggest challenge in scaling DRAM to smaller technology
nodes.

B. Not All VRT is Harmful

Not all changes in retention time due to VRT cause a
data error under multirate refresh. For example, VRT can also
cause the retention time of a cell to increase, which makes the
cell more robust against retention failures. Figure 4 shows the
relationship between the refresh interval and variable retention
times.

3200

c

Region B Region C

ba

Region A

d

Retention time (ms)
64 

Fig. 4. VRT can cause a data error only when a cell moves from a high-
retention region to a low-retention region.

We assume that the system performs refresh at two rates:
64ms (Fast Refresh) and 320ms (Slow Refresh). The vertical
lines at 64ms and 320ms divide the figure into three regions.
Transitions within a region (exemplified by cells a and b),
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and transitions from region B to region C (exemplified by cell
c) cause no data failure. A multirate refresh mechanism is
vulnerable to random VRT failures only when a cell moves
from region C to region B (exemplified by cell d). In our
studies, we identify only such cells as exhibiting VRT.

C. Experimental Setup

To understand the impact of VRT, we test the effect of
the extended refresh interval on cells in commercial DRAM
chips. We use an FPGA-based infrastructure [19, 24, 25, 29],
consisting of an ML605 FPGA development board and modify
the RTL to increase the refresh interval at a temperature
controlled environment. Our experiments are done at a refresh
interval of 4 seconds at 45 ◦C, which corresponds to 328ms
at 85 ◦C (similar assumptions on temperature based scaling of
retention time were made in prior DRAM studies [19,29]). Our
experimental temperature closely matches to typical operating
temperature as prior works show that even with 100% utiliza-
tion, temperature in server and desktop systems remain in the
range of 40−60 ◦C [9,25]. We study a multirate refresh scheme
that employs a Slow Refresh at a refresh period of 320ms
which is very close to our tested retention time of 328ms.

We conduct our experiments with three 2GB DIMMs (A,
B, and C), each from a different DRAM vendor. Each module
consists of 8 DRAM chips. To locate the VRT failures, we
write specific test patterns in the entire module, increase the
refresh interval, and read the contents after all rows have been
refreshed at the extended interval. Any mismatch in the content
implies a retention error at that location during the given time
period. We log the statistics of retention failures once every one
minute and perform the experiment for a period of 7 days. To
keep the analysis tractable, we present statistics for an interval
of every 15 minutes (a total of 4 x 24 hours x 7 days = 672
periods, of 15 minutes each).

D. Observation 1: Population of Weak Cells Increases

We first study the impact of VRT on multirate refresh.
In our studies, a cell that has never caused failure with
the Slow Refresh rate is deemed as a strong cell, whereas
a cell that encountered at least one failure due to VRT is
deemed as a weak cell. Figure 5 shows the number of unique
weak cells and weak rows. A row is classified as a weak
row if it contains at least one weak cell. There are three
important implications derived from Figure 5, consistent with
prior studies [19,39]. The first is that the number of weak cells
in the first time period is quite large (27841 for A, 24503 for
B, and 22414 for C) [19]. Thus, fortunately the initial testing
that multirate refresh deploys identifies a majority of the weak
cells. Multirate refresh enforces the rows containing these
weak cells to always use Fast Refresh. The 2GB DIMMs in
our experiments have 256K rows (each 8KB). Thus, multirate
refresh assigns approximately 9%-10% of the total memory
rows to Fast Refresh. For the remainder of our studies, we
assume that the weak rows identified during the initial testing
are always refreshed with Fast Refresh. So, we exclude these
rows from the rest of our analysis. The second implication
of Figure 5 is that the number of weak rows is very close
to the number of weak cells, which implies that the weak

cells are randomly scattered throughout the memory4 [39].
This observation can help us assume a random distribution for
VRT cells and develop models for analyzing their behavior
on longer time scales than possible with experiments. The
third implication is that initial testing (or testing alone) is not
sufficient to identify all weak cells [19]. Even after several
days, VRT causes new bits to have retention failures. For
example, for module A, the number of weak cells increases
from 27841 in the first time period to 31798 in the last time
period. The consistency of our results with prior works [19,39]
attests to the soundness of our infrastructure, validating the
new observations we make in our studies.
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Fig. 5. The cumulative number of unique weak cells and weak rows for the
three modules (A, B, and C). Even after several hours of testing, VRT causes
new (previously unidentified) bits to cause retention failures.

E. Observation 2: VRT Cells Can Switch Randomly

The fact that a cell enters a low retention state due to
VRT does not mean that the cell continues to be in the low
retention state indefinitely. Figure 6 shows the behavior of two
typical VRT cells for every tested time period. We deem the
cell to pass if it has a retention time greater than 328ms and
to fail otherwise. Cell X transitions randomly and frequently
between high and low retention states. However, some other
cell affected by VRT (say cell Y) may continue to stay in the
same retention state for several hours or days, before moving
to another retention state. In general, any cell in the DRAM

Fig. 6. A VRT cell can randomly and frequently transition between high and
low retention states.

array can experience VRT. However, in practice, only a very
small fraction of DRAM cells change their retention time at

4Multiple weak cells may still map to the same row, albeit with a small
probability. The number of weak rows obtained experimentally closely follows
that of a statistical random mapping of weak bits to rows, indicating VRT cells
are randomly scattered in memory.
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Fig. 7. The size of the Active-VRT Pool for each time period for each of the three modules.

any given time period. We define the cell that causes an error in
a given time period as an Active-VRT cell. If a cell has caused
a VRT-related error in any of the previous time periods but not
the current time period, it is deemed to be a Dormant-VRT cell.

F. Observation 3: Size of the Active-VRT Pool Varies

Given that a cell affected by VRT can switch between being
an Active-VRT cell and being a Dormant-VRT cell, we would
expect that the total number of Active-VRT cells within a given
time period to be smaller than the number of unique weak
cells encountered since initial testing. We call the group of all
cells that are Active-VRT cells within a given time period as
forming an Active-VRT Pool (AVP). Figure 7 shows the size
of the AVP for each of the 15-minute time periods in our
experiments.

The size of the AVP varies dynamically for all modules
across the time periods. The average size of the AVP for
module A is 347 (standard deviation, or σ, of 288), for module
B is 492 (σ of 433), and for module C is 388 (σ of 287).
Since predicting the exact size of the AVP is difficult, our
experimental data can help us develop models for capturing
the size of the AVP as a means of analyzing the behavior of
VRT cells.

G. Modeling the Dynamic Size of Active-VRT Pool

We observe that the size of the AVP tends to follow a
lognormal distribution. Figure 8, obtained experimentally from
the three modules, shows the histogram of the log of the size
of the AVP across the 672 time periods. It also shows the
lognormal fit (the thick line) for the AVP size based simply
on the mean and the standard deviation obtained from the
measurements. We observe that the frequencies of occurrence
under the lognormal fit and the experimental data match well.
Therefore, we can model the size of the AVP at any time period
as a random variable originating from a lognormal distribution
whose parameters are derived from the experimental data. We
use such a model for the AVP size in our analysis.

H. Observation 4: Rate of New VRT Cells Steadies

Another important parameter for analyzing the impact of
VRT is the rate at which new (previously undiscovered) cells
become Active-VRT cells. Any scheme for mitigating VRT-
related errors is likely to be influenced by this rate, given
that these newly-vulnerable cells can appear anywhere in the
memory array and cause VRT-related errors. We call the rate at
which new cells become Active-VRT cells as the Active-VRT
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Fig. 8. The size of the Active-VRT Pool closely follows a lognormal
distribution (the bars represent histogram from experimental data and the line
represents a lognormal fit based on the mean and the standard deviation of
the Active-VRT Pool).

Injection (AVI) Rate. Figure 9 shows the AVI rate (moving
average, measured over a six-hour window) for each time
period in our experiments. After the initial few hours of
observation, the AVI rate tends to become steady and stabilizes
at a small value. The average AVI rate measured in the second
half of the experiments is close to 1 for all modules. For our
studies, we use a default AVI rate of 1 (for 2GB module) and
perform a sensitivity analysis.
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Fig. 9. The rate of new cells becoming Active-VRT cells.

IV. ARCHITECTURE MODEL FOR ANALYZING VRT

If the system is not provisioned to tolerate VRT-related
errors, then the first cell affected by VRT will cause data
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loss. However, a system provisioned with some means of
mitigating a VRT-related data error may suffer data loss over
many months or years. Conducting experimental studies over
such a long period of time can be prohibitive. We use the key
observations made in the previous section to develop a simple
and practical analytical model for analyzing long-term impact
of VRT. We first present the cell-level model before presenting
the architecture-level model.

A. Cell Model under VRT

We classify each cell as either a strong cell or a weak
cell. A weak cell that causes a failure in the current time
period is deemed an Active-VRT cell. Otherwise, the cell is
deemed as a Dormant-VRT cell. The AVI determines the rate
at which strong cells get converted into weak cells, and the
AVP determines the number of weak cells that are currently in
the Active-VRT state. Figure 10 captures our cell-level model.

Strong Cell
Active−VRT

Cell
Dormant

Weak Cell

AVI

AVP

VRT Cell

Fig. 10. In our cell model, AVI controls the conversion of strong cells to
weak cells and AVP regulates the population of Active-VRT cells.

B. Architecture Model for VRT

Our architecture-level model is driven by two parameters:
The size of the Active-VRT Pool (AVP size, determined by
the lognormal fit based on experimental parameters of mean,
Mu, and standard deviation, Sdev) and the rate of discovering
new cells that become Active-VRT cells (AVI rate, denoted
by K). For each time quantum, the number of cells that are
Active-VRT cells are obtained from a random variable seeded
with the lognormal fit, and these cells are chosen from random
locations in memory. Then, K new VRT cells join the Active-
VRT pool, selected again from random locations in memory,
and an equal number of random cells leave the Active-VRT
pool. In each time period, we compute the probability that
the system encounters an uncorrectable failure and repeat this
process until the desired duration of simulation. As the size
of the pool is determined by statistical methods, we repeat
the model-based simulation a large number of times (100K
times) and report the average system failure probability. Our
analytical model is shown in Figure 11.

Insert K new elements in Pool
Remove K elements from Pool
P[TimePeriod] = System Failure Probability

PoolSize = Rand (LogNormDist[Mu,Sdev])

TimePeriod++

While(TimePeriod < MAX_TIME_PERIOD)

Input: Mu,Sdev, for the logn of Active−VRT pool
Input:  K, rate of discovering new VRT cells

Fig. 11. Architecture model for VRT based on AVP and AVI.

C. Parameter Scaling for Larger Systems

To study larger systems, we scale the values of AVP and
AVI derived from our experiments in proportion to the DIMM
capacity. For example, we will analyze a 32GB memory system

containing four ECC DIMMs, each with data capacity of
8GB. Each 8GB ECC-DIMM has 4.5x more bits (8GB data
+ 1GB ECC) compared to the 2GB non-ECC DIMM we
experimentally analyzed. To accommodate this, we scale our
measured AVP sizes by 4.5x and use the natural logarithm of
these scaled values to determine the mean and the standard
deviation for the lognormal fit for AVP. We also scale the AVI
rate by 4.5x, and use AVI=4.5 for an 8GB ECC-DIMM instead
of a default value of AVI=1 for a 2GB module. This means
that each of the four DIMMs in our 32GB system encounters
4.5 new VRT cells every 15 minutes.

V. IMPACT OF VRT IN THE PRESENCE OF ECC DIMM

Given the prevalence of VRT, a system employing multirate
refresh can be expected to encounter a data error within a
few minutes after the initial testing. Therefore, even though
multirate refresh is quite effective at reducing the number of
refresh operations, it cannot operate reliably.

A. Agnos: A VRT-Agnostic Approach

We can tolerate the VRT-related errors by using ECC [18].
Conventional DRAM DIMMs are also available in ECC ver-
sions, and such DIMMs support a SECDED code at an eight-
byte granularity. While these ECC DIMMs are typically used
to tolerate soft errors, we can also use ECC to correct the
errors that happen due to VRT.5 We call such an approach,
i.e., treating VRT-related errors similarly to soft errors, as VRT-
Agnostic (Agnos) multirate refresh.

B. Failure Rate Analysis of Agnos

We assume that Agnos performs initial testing to profile the
weak cells and ensures the rows containing weak cells always
use Fast Refresh. Agnos corrects any error that happens after
initial testing using ECC. As long as no eight-byte word has
two-bit errors, Agnos will be able to correct an error. A two-bit
error in a word gets detected but results in data loss.

We use the analytical model for VRT to estimate the time
to failure for a system with Agnos. We first perform the failure
analysis for a single DIMM and then use the assumption that
DIMM failures are independent to estimate the system failure
rate. We also assume that the weak cells identified during initial
testing always use Fast Refresh and have no VRT-related errors
so we ignore such cells in our analysis.

Let there be W words in an ECC DIMM and each word be
protected by SECDED (W excludes the words corresponding
to the rows identified by initial testing as weak rows). At
steady state, a pool of Active-VRT cells, the size of which
is deemed to follow a lognormal distribution, is formed. Let
the size of the AVP be P = Random(LnN (Mu,Sdev)).
We assume that the Active VRT cells are randomly selected
from the memory. Given that P is much smaller than W , we
assume that P words in memory have a one-bit error, each of

5The soft-error rate (SER) is reported to be between 200-5000 FIT per
Mbit [1,5,27], which corresponds to one soft error every 3 hours to 75 hours
for an 8GB DIMM. For our study, we assume 4.5 errors every 15 minutes
due to VRT. Thus soft errors happen at a 54x-2700x lower rate than VRT
and have a negligible effect on our reliability calculations. We ignore SER
for the analysis of Agnos and pessimistically assume the highest SER while
analyzing our proposal in the next section. Note that if the rate of SER is
even lower (or zero), it will only enhance the efficacy of our scheme.
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which can be corrected with ECC. However, the system will
face an uncorrectable error if there is one more error in any
of these P words. We divide time into equal-length periods.
In each time period, let K unique errors enter the pool and
K errors leave the pool. We assume that the new errors come
from random locations in memory. In each time period, the
module will have no uncorrectable error if all K errors come
from locations other than the ones which are in the Active-
VRT pool (P). The probability of no uncorrectable error at
each time period is given by Equation (1).

P (DIMM has no uncorrectable error) = (1−
P

W
)K (1)

After T time periods, there will be K ·T new errors entering
the VRT pool. So, the probability that the DIMM does not have
an uncorrectable error is given by Equation (2).

P (DIMM has no uncorrectable error) = (1−
P

W
)K·T (2)

For a system with D DIMMs, the probability that the
system does not have an uncorrectable error after T time
periods is given by Equation (3).

P (System has no uncorrectable error) = (1−
P

W
)K·T ·D (3)

C. Failure Rate Results for Agnos

We use Equation (3) to assess the failure rate for our
system with 32GB memory consisting of four ECC DIMMs,
each of 8GB. For each DIMM, the AVP size is determined by
the scaled parameters (mean and standard deviation of log of
AVP values) of our modules A, B, and C. The rate of new
VRT cells (AVI) per 15-minute period is 4.5 per DIMM. We
repeat the experiments 100K times and report the average value
of system failure probability (the spread around the average
value is extremely narrow). Figure 12 shows the probability
that the system with Agnos does not have an uncorrectable
error for systems based on the AVP parameters derived from
Module A (Sys-A), Module B (Sys-B), and Module C (Sys-C).
The Agnos system is expected to encounter an uncorrectable
error once every few months. For example, there is a 50%
probability that an error will happen within 6 months for Sys-
B and 8 months for Sys-A. Such a high rate of data loss is
unacceptable in practice.
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Fig. 12. Failure rate of Agnos, VRT-Agnostic multirate refresh. Even with
ECC, Agnos encounters an uncorrectable error once every few months.

D. Conclusion from Agnos

The failure analysis of Agnos shows that simply relying
on SECDED alone is not enough to mitigate VRT-related
errors for a system with multirate refresh. One can potentially
consider using higher levels of ECC to mitigate VRT-related
errors, however this would increase cost significantly since
ECC DIMMs of higher strength are not typically available as
commodity parts. The next section shows how a “VRT-Aware”
approach can effectively mitigate VRT-related errors.

VI. AVATAR: A VRT-AWARE MULTIRATE REFRESH

The problem with Agnos is that it uses ECC to correct
VRT-related errors in a way similar to how ECC is used
to correct soft errors. Unfortunately, while a soft error goes
away once it is corrected, a VRT-cell can continue to remain
vulnerable for several hours. At any time, several hundreds of
cells can exhibit VRT, so using ECC to continuously correct
these persisting errors means that the ECC for the word can no
longer correct any new error in those words. Therefore, instead
of the VRT-agnostic approach of treating VRT similarly to soft
errors, we propose AVATAR, a Variable-Retention-Time Aware
multirate Refresh.

A. Design

Figure 13 shows the design of AVATAR. Similar to mul-
tirate refresh, AVATAR performs an initial retention time
testing to populate the Row Refresh Table (RRT) leveraging
the profiling mechanisms described in [19, 29]. Like Agnos,
AVATAR also employs ECC DIMMs to detect and correct
errors due to VRT. Detection and correction happens only
when the line in memory gets accessed (either due to a read
or a write operation). The key insight of AVATAR is to break
the formation of a large pool of Active-VRT cells. AVATAR
does so by upgrading a row to use Fast Refresh, as soon as any
word within the row encounters an ECC error ( 2 ). This means
the vulnerable row gets protected from any further retention
failures and no longer participates in the Active-VRT pool.6

Typically ECC check happens only when the data item
is accessed from memory, which means parts of the memory
region that have low activity can still be vulnerable due to
accumulation of VRT-related errors. AVATAR addresses this
problem by proactively applying a memory scrub ( 3 ), which
periodically checks all the memory for potential data errors.
We employ a scrub once every time period (15 minutes in our
studies). We assume that the scrub operation identifies all the
VRT-related data errors that happen during the scrub interval.

AVATAR upgrades the row to use Fast Refresh on every
ECC correction, regardless of whether such correction happens
due to a regular data access or due to a scrub operation. Thus,
the total number of rows using Fast Refresh tends to grow over
time, albeit very slowly. The effectiveness of AVATAR can be

6ECC correction can also get invoked due to a soft error strike. However,
the frequency of soft errors is very small compared to that of VRT errors
(e.g., the soft error rate is 54-2700x lower than the VRT error rate for an 8GB
DIMM). Thus, we can conservatively assume that an error happens mainly
due to VRT, and the row containing the error is upgraded to use Fast Refresh
although less than 0.05%-2% of the total upgrades may still occur due to
a soft error. Note that an even lower rate of soft errors would improve the
efficacy of our mechanism.
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Fig. 13. Design of AVATAR.

improved by infrequent retention testing ( 1 ) (e.g., once a year;
see analysis in Section VI-E).

B. Failure Rate Analysis

As AVATAR instantly upgrades any row with an ECC error
to use Fast Refresh, the number of Active-VRT cells in any
time period is equal to (or less than) the number of newly
injected errors since the last scrub operation. Thus, the pool of
Active-VRT cells is equal to the rate at which new (previously
undiscovered) cells become VRT cells. To avoid data errors,
we want all the newly injected cells to map to different words.

Let there be W words in an ECC DIMM, where each word
is protected by SECDED (we ignore the words belonging to
the rows identified as weak rows during the initial testing of
multirate refresh). In each time period, let K unique cells
in memory become Active-VRT cells. We assume that the
new errors come from random locations in memory. In each
time period, the probability that all K errors map to different
locations in memory is given by Equation (4).

Prob(DIMM has no uncorrectable error) =

(1−
1

W
)× (1−

2

W
)× . . .× (1−

K − 1

W
) (4)

Given that K is very small compared to the number of
words in the DIMM (few tens versus millions), we simplify
the above equation using the approximation e−x ≈ (1 − x),
which degenerates Equation (4) into Equation (5).

Prob(DIMM has no uncorrectable error) = e
−K

2

2W (5)

After T time intervals, the probability that the DIMM does
not have any uncorrectable error is given by Equation (6).

Prob(DIMM has no uncorrectable error) = e
−TK

2

2W (6)

For a system with D DIMMs, the probability that the
system does not have an uncorrectable error after T time
periods is given by Equation (7).

Prob(System has no uncorrectable error) = e
−DTK

2

2W (7)

C. Incorporating Failures Due to Soft Errors

Thus far, we have assumed that the failure in memory
happens only due to a VRT-related retention error. However,
failures can also happen due to a soft error. We note that
the rate of soft errors is much lower than the rate of VRT-
related errors we consider, so the relative contribution of soft
errors to the overall failure rate is negligible. For example,
the reported soft-error rate from prior studies [1, 5, 27] ranges
from 200 to 5000 FIT per Mbit, which is equivalent to one
failure every 3-75 hours for an 8GB DIMM. In our analysis, we
assume that the error rate related to VRT is 4.5 per 15 minutes,
which is equivalently 54-2700x higher than the error rate of
soft errors. Nonetheless, our model can simply be extended to
accommodate for soft errors by modulating the rate at which
new errors are encountered in memory (i.e., the AVI rate).
For example, to accommodate a soft error rate of 5000 FIT
per Mbit, we would increase the AVI from 4.5 to 4.6 per 15
minutes.

D. Failure Rate Results

We use Equation (7) to assess the failure rate of AVATAR
for our system with 32GB memory consisting of four 8GB
ECC DIMMs. The reliability of AVATAR is dependent only
on the rate of discovering new VRT cells (the AVI rate).
Figure 14 shows the probability that a system with AVATAR
has no uncorrectable error for three rates of AVI, a nominal
rate derived from our experiments (4.6 errors per 15 minutes
per DIMM, including 0.1 errors per 15 minutes for soft errors),
a doubled AVI rate, and a quadrupled AVI rate.7
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Fig. 14. The time to uncorrectable error with AVATAR is 500 years with
nominal AVI, and 32 years with a 4x higher AVI Rate. We include a 0.1 AVI
for soft error (SE).

For the nominal rate, even in the presence of a high soft-
error rate, the time to failure with AVATAR is 500 years. When
the AVI rate is doubled, the time to failure is more than 128
years. Even for a quadrupled AVI rate, the time to failure is
32 years. Thus, AVATAR enhances the reliability of multirate
refresh by approximately a thousand times compared to Agnos,
making it feasible to deploy multirate refresh reliably. Except
for the negligible hardware for scrubbing, AVATAR requires
no extra hardware than what is required for multirate refresh
(Section II-C) and ECC DIMM.

7We analyze doubled and quadrupled AVI rates to account for potential
increases in AVI rate, e.g., due to changes in environmental conditions during
system operation.
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E. Effective Refresh Savings

AVATAR conservatively upgrades any row that encounters
an ECC error so that the number of rows refreshed with Fast
Refresh grows over time. Figure 15 compares the reduction in
refresh operations of AVATAR with that of an ideal multirate
refresh scheme that does not suffer from VRT (Agnos, without
VRT errors). For AVATAR, we assume an AVI rate of 4.6.
AVATAR saves 72% of refreshes on a day after testing for
the retention time profile. This is similar to other multirate
refresh schemes such as RAIDR [28]. However, the prior
multirate refresh schemes provide this refresh savings while
compromising data integrity. Even after 12 months of con-
tinuous operation, the refresh savings with AVATAR are still
high (62.4%). Thus, AVATAR improves reliability of multirate
refresh while maintaining most of the refresh savings. To make
AVATAR even more effective, we recommend that the system
invoke retention testing once a year, which retains the refresh
savings of AVATAR back at 72%.8
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Fig. 15. Refresh savings of Agnos and AVATAR. AVATAR maintains most
of the refresh savings of a VRT-Agnostic scheme while avoiding data errors.

F. Overheads of Scrubbing

We assume a default scrub interval of 15 minutes. Frequent
scrubbing enhances the reliability of AVATAR as it allows
fewer undetected Active-VRT cells to stay in memory. If
a system desires even higher reliability than we report, the
system can perform scrubbing at a shorter interval. However,
scrubbing has the overheads of performance (as memory
becomes unavailable) and energy (to perform memory reads).

1) Performance Overhead of Scrubbing: To estimate the
performance overhead, we assume that scrubbing is done at a
row granularity. The time to scrub one row would be equal
to the sum of the time to open a row (tRCD, 14ns), the
time to stream out the row buffer (256ns for 8KB), and the
time to close the row (tRP, 14ns), a total time of 284ns [15].
We estimate the total time required to scrub the 8GB DIMM
(284ns ×220 rows) to be 298ms. This time is spread over
several minutes. Hence, the memory unavailability due to scrub
is negligible. Table I shows the memory throughput loss as the
scrub interval varies. For the 15-minute scrub interval we use,
the memory throughput loss is negligible (0.03%).

8Periodic testing once every few days or months does not have a significant
effect on the reliability of the Agnos scheme. Shortly after testing, a pool
of Active-VRT cells would get formed, reverting the system to the same
vulnerable state. Similarly, periodic scrubbing does not have a significant
impact on the reliability of Agnos as the VRT cells fail again soon.

TABLE I. PERFORMANCE AND ENERGY OVERHEAD OF SCRUB

Scrub Interval Mem Throughput Scrub Energy

(minutes) Loss Refresh Energy

4 0.130% 4.00%

8 0.065% 2.00%

15 0.035% 1.06%

30 0.018% 0.53%

60 0.009% 0.27%

2) Energy Overhead of Scrubbing: Scrubbing is more
expensive in terms of energy than refresh as it needs to stream
the data on the memory bus. However, scrubbing is performed
much less frequently than refresh, so its overall contribution
to the system energy is quite small. The total energy to refresh
an 8GB DIMM once is approximately 1.1mJ, whereas the
energy for one scrub operation is approximately 161mJ (150x
more). However, the scrub energy is spent four orders of
magnitude less frequently (15 minutes vs. 64ms) than the
refresh energy. Table I shows the total energy consumed by
scrubbing compared to that consumed by refresh, as the scrub
interval is varied from four minutes to one hour. Scrubbing
with a 15-minute interval, as we assumed in our evaluations,
causes only a 1% increase in energy compared to refresh
energy.

VII. PERFORMANCE AND ENERGY ANALYSIS

We use a detailed memory system simulator, USIMM [8].
We model a quad-core system operating at 3.2GHz connected
to a DDR3-1600 (800MHz) memory system. As refresh over-
heads increase with technology scaling, we analyze DRAM
chips with density varying from 8Gb to 64Gb. The memory
system consists of four DIMMs, so the total size of the memory
system ranges from 32GB (for 8Gb chips) to 256GB (for 64Gb
chips). The baseline system employs JEDEC-specified 64ms
refresh. We increase the refresh cycle time linearly with density
(TRFC varies from 350ns to 2800ns).

We evaluate all the workloads provided by USIMM for
the Memory Scheduling Championship [2]. These workloads
are memory intensive and exercise a large number of trans-
actions between the memory system and the core [35]. These
18 workloads come from various suites, including SPEC(2),
PARSEC(9), BioBench(2), and Commercial(5). We report an
average over all the 18 workloads.

As the effectiveness of refresh savings with AVATAR de-
pends on time elapsed after retention time testing is performed,
we evaluate three designs: AVATAR-1, AVATAR-120, and
AVATAR-360 representing one day, 120 days, and 360 days
after a retention time test, respectively. We also show results
of a theoretical scheme that does not perform refresh.

A. Speedup

Figure 16 shows the speedup for AVATAR-1, AVATAR-
120, AVATAR-360, and No Refresh over the JEDEC specified
refresh scheme. The performance benefit of eliminating re-
freshes increases with chip density, going from 4% at the 8Gb
node to 54% at the 64Gb node (as denoted by the No Refresh
bars). AVATAR provides about two-thirds of the performance
benefit of No Refresh. Even after a year of continuous op-
eration, AVATAR maintains most of the performance benefits
close to that of the first day after retention testing. For instance,
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AVATAR improves performance by 35%, even a year after
retention time testing.
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Fig. 16. Speedup from refresh savings. The performance of AVATAR
improves with technology node.

B. Energy-Delay Product

Refresh operations not only cost performance but also
consume energy. Figure 17 shows the Energy Delay Product
(EDP) of AVATAR-1, AVATAR-120, AVATAR-360, and No
Refresh compared to the JEDEC specified refresh scheme. The
energy benefits of eliminating refreshes also increase with high
density. No Refresh potentially reduces the EDP by 68% at the
64Gb node. AVATAR-1 reduces EDP by 8%, 16%, 31%, and
55% for the 8Gb, 16Gb, 32Gb, and 64Gb nodes, respectively.
AVATAR-360 has EDP savings close to those of AVATAR-1.
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Fig. 17. Energy Delay Product. The savings in Energy Delay Product
increases with technology node.

Overall, our analysis shows that AVATAR is not only
effective at improving reliability by orders of magnitude, but
it also obtains most of the performance and energy benefits of
an otherwise-unreliable multirate refresh scheme.

VIII. RELATED WORK

To the best of our knowledge, this is the first work to
comprehensively study and model the effect of VRT cells on
multirate refresh mechanisms. We provide a new analytical
model showing that relying only on ECC to correct VRT
failures can result in an unacceptable rate of data loss. Our
VRT-aware multirate refresh mechanism can guarantee reliable
operations in the presence of VRT failures. In this section, we
discuss prior works that have proposed different mechanisms
to mitigate the negative effects of DRAM refresh operations.
We also discuss prior works on profiling VRT failures.

A. Lowering Refresh Rate

Prior works on minimizing refresh overhead by extending
the refresh interval can be categorized into three classes:

Profiling Based: Profiling based-multirate refresh works ex-
ploit the non-uniformity in retention time of DRAM cells to
mitigate the problem of DRAM refresh (e.g., [4, 21, 28, 36,
38, 41, 44]). These multirate refresh schemes group rows into
different bins based on an initial retention time profiling and
apply a higher refresh rate only for rows belonging to the
lower retention time bin. They depend on a simple profiling
mechanism at the initial stage to detect the rows with retention
failures and place them into the lower retention time bin.
Their key assumption is that the retention time profile of
DRAM cells does not change at runtime. However, all these
mechanisms will result in unacceptable data loss because of
the VRT failures [29]. These mechanisms can potentially use
ECC to mitigate the VRT failures. However, we show that
simply relying on SECDED ECC cannot provide an acceptable
reliability guarantee. To mitigate the VRT failures with ECC,
we may need stronger ECC codes, which significantly increase
system cost.

ECC Based: Prior work proposed to minimize the refresh
overhead by extending the refresh interval and using higher
strength ECC (5EC6ED) to correct the retention failures [42].
However, to reduce the cost of ECC, this work proposes to
amortize the ECC cost by protecting larger chunks of data
(1KB). Thus, this mechanism has significant bandwidth and
performance overheads as it reads the entire 1KB chunk of
data at every access to verify/update ECC.

Software Hint Based: Software-hint based refresh mecha-
nisms rely on software/OS hints on the criticality or error-
vulnerability of program data. They lower the refresh rate or
reliability of DRAM for non-critical or invalid regions [11,30,
31]. These mechanisms cannot fully exploit the non-uniformity
of the retention time across the chip as only a restricted fraction
of memory can benefit from reduced refreshes.

B. Refresh Scheduling

Prior works proposed to reduce performance overhead of
refreshes by scheduling refresh operations in a flexible way
that reduces their interference with program accesses [6, 12,
35, 40]. Our work is complementary to these works as these
mechanisms propose to minimize refresh overhead at the
nominal refresh rate. All these techniques are applicable to
our mechanism that reduces refresh overhead by extending the
refresh interval for most memory rows.

C. Profiling for VRT

Although the VRT phenomenon has been widely studied
in the literature [7, 10, 13, 20, 32, 33, 37, 43, 45], only recent
works discuss issues in retention time profiling in the presence
of VRT cells [19, 29]. Khan et al. studied the effectiveness of
multi-round testing, guard-banding and different-strength ECC
codes at tolerating VRT failures [19]. Their work does not pro-
pose any analytical models or mechanisms to enable realistic
multirate refresh in the presence of VRT. Another prior work
uses profiling to detect retention failures whenever the module
enters the self-refresh mode [3]. This work cannot guarantee
data integrity as VRT failures can occur after testing [19, 29].
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IX. CONCLUSIONS

Multirate refresh schemes exploit the non-uniformity in
retention times of DRAM cells to reduce refresh operations.
While multirate refresh schemes are highly effective at reduc-
ing refresh operations, they are plagued by the fact that the
retention time of a DRAM cell tends to vary at runtime due to
the Variable Retention Time (VRT) phenomenon. VRT causes
multirate refresh to suffer from data errors, even with the use of
ECC DIMMs, which makes it a challenge to deploy multirate
refresh mechanisms reliably in practice. This paper introduces
AVATAR, the first practical, effective, and reliable multirate
refresh scheme. This paper makes the following contributions:

1) We characterize the behavior of VRT cells and develop
an architecture-level model to analyze multirate refresh in the
presence of VRT.

2) Using our model, we show that a VRT-agnostic approach
that relies on the use of ECC DIMMs to correct VRT failures
leads to an unacceptable rate of a data loss.

3) We propose AVATAR, a VRT-aware multirate refresh mech-
anism that adaptively changes the refresh rate to handle VRT
failures at runtime. It improves reliability of multirate refresh
to tens of years while maintaining most of the refresh savings
and performance and energy benefits of multirate refresh.

We show that AVATAR reduces refresh operations by 62%-
72% for a DRAM system without incurring any additional
hardware changes than what is required for multirate refresh
and ECC modules. This refresh reduction leads to an approxi-
mately 35% performance improvement and 55% energy-delay
product reduction with 64Gb DRAM chips. We conclude that
AVATAR is a highly-effective and simple multirate refresh
mechanism that provides correct DRAM operation even in the
presence of VRT failures.
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