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AVPP: Address-first Value-next Predictor with Value Prefetching
for Improving the E�iciency of Load Value Prediction
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Value prediction improves instruction level parallelism in superscalar processors by breaking true data dependencies. Although
this technique can signi�cantly improve overall performance, most of the state-of-the-art value prediction approaches require
high hardware cost, which is the main obstacle for its wide adoption in current processors. To tackle this issue, we revisit load
value prediction as an e�cient alternative to the classical approaches that predict all instructions. By speculating only on
loads, the pressure over shared resources (e.g, the Physical Register File) and the predictor size can be substantially reduced
(e.g, more than 90% reduction compared to recent works). We observe that existing value predictors cannot achieve very high
performance when speculating only on load instructions. To solve this problem, we propose a new, accurate and low-cost
mechanism for predicting the values of load instructions: the Address-�rst Value-next Predictor with Value Prefetching
(AVPP). The key idea of our predictor is to predict the load address �rst (which, we �nd, is much more predictable than
the value) and to use a small non-speculative Value Table (VT) -indexed by the predicted address- to predict the value next.
To increase the coverage of AVPP, we aim to increase the hit rate of the VT by predicting also the load address of a future
instance of the same load instruction and prefetching its value in the VT. We show that AVPP is relatively easy to implement,
requiring only 2,5% of the area of a 32KB L1 data cache. We compare our mechanism with �ve state-of-the-art value prediction
techniques, evaluated within the context of load value prediction, in a relatively narrow out-of-order processor. On average,
our AVPP predictor achieves 11.2% speedup and 3.7% of energy savings over the baseline processor, outperforming all the
state-of-the-art predictors in 16 of the 23 benchmarks we evaluate. We evaluate AVPP implemented together with di�erent
prefetching techniques, showing additive performance gains (20% average speedup). In addition, we propose a new taxonomy
to classify di�erent value predictor policies regarding predictor update, predictor availability, and in-�ight pending updates.
We evaluate these policies in detail.
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1 INTRODUCTION
Improving single thread performance is critical to accelerate modern applications. In many cases, these applications
are di�cult to parallelize and scale with a large number of threads [8, 24, 36]. Also, many parallel applications
spend a large amount of time in serialized code portions [3, 29, 60], which limits their overall performance.

Value prediction is a technique that aims to improve single thread performance in out-of-order processors by
increasing Instruction Level Parallelism (ILP). The key idea is to break true data dependencies by predicting the
output value of an instruction and execute dependent instructions speculatively. The technique was simultaneously
proposed by Lipasti et al. [34, 35] and Mendelson and Gabbay [37]. Many subsequent works proposed new value
prediction techniques [9, 20, 22, 44, 52, 55, 62, 63, 66].
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More recently, Perais and Seznec revisited the topic [16, 46–49] with the main goal of reducing complexity,
which is a major reason as to why value prediction is still not implemented in current processors. They simpli�ed
value prediction with four di�erent proposals.

First, in [48], the authors propose a con�dence estimation mechanism that improves value prediction accuracy.
This allows the use of a much simpler mechanism to recover from value mispredictions (pipeline squashing).
This work also proposes the VTAGE predictor, which outperforms all prior state-of-the-art predictors.

Second, EOLE [47] tackles the problem of extra ports required in the Physical Register File (PRF) for value
prediction. EOLE modi�es the architecture to enable the execution of single-cycle instructions in both the in-order
front-end and the in-order back-end. The operands of such single-cycle instructions are not read from the PRF.
EOLE reduces the complexity of the out-of-order engine but increases the complexity of the in-order front-end
and back-end (by adding extra ALUs and logic). As a result, EOLE allows a narrower out-of-order instruction
window without causing performance loss.

Third, BeBoP [49] tackles the problem of high number of ports required by the value predictor to provide
several predictions and updates per cycle. BeBoP uses a single entry to place all the predictions associated with a
single cache block, instead of using a single entry per instruction. This work also proposes Di�erential VTAGE,
which provides better performance and lower cost than VTAGE, but it requires additional hardware to predict
tight loops correctly.

Fourth, in [46], the authors propose a technique that reuses registers with values that are predicted to be the
same as the output of the current instruction. They use Instruction Distance (IDist) to identify which physical
registers contain values that can be used as predictions. They propose an In�ight Shared Registers Bu�er (RSET)
for tracking reuse opportunities. RSET provides 5% average speedup with realistic 10.1KB structures, lower than
previous value prediction schemes [47] [48].

Even though these previous works have proposed excellent alternatives to reduce complexity, the cost of value
prediction is, unfortunately, still a concern, especially in energy-constrained processors. In [48] and EOLE [47],
the predictors are large (8192 entries), and they have several ports to satisfy the demand (up to 8 predictions per
cycle in an 8-issue core). BeBop [49] proposes a solution to the multi-port problem, but it still requires predictors
with many (2048) entries (one entry per fetch block). Finally, in [46], Perais and Seznec reduce the predictor
structure size, but this comes at the cost of lower performance.

Our goal in this paper is to reduce value prediction complexity while preserving its performance bene�ts. Our
contributions are based on three observations: First, predicting only load values provides speedup very close
to that of predicting all instruction’s values. Second, load instructions comprise only 25% of all instructions,
which allow us to 1) use small predictors with fewer ports and 2) reduce the back pressure over the PRF. Third,
load addresses are more predictable than load values. Based on these observations, we design a new load value
predictor, the Address-�rst Value-next Predictor with Value Prefetching (AVPP).

The key idea of our AVPP is to leverage the better predictability of a load instruction’s e�ective address to more
accurately estimate the value of a load instruction. The AVPP predictor is divided into two consecutive parts; the
�rst part is a classical predictor indexed by the Program Counter (PC), which returns the predicted address for
the current instance of a given load instruction. The second part of the predictor is a non-speculative Value Table
(VT) indexed by the predicted address, which returns the value predicted for the load instruction. To increase the
coverage of AVPP, we increase the hit rate in the VT by using an adaptive algorithm to prefetch future predicted
addresses on time in the VT. Our AVPP predictor outperforms �ve state-of-the-art predictors [15, 22, 34, 48, 49],
which we evaluate in the context of load value prediction on a relatively narrow out-of-order processor. AVPP
reduces the overall hardware overhead dedicated to value prediction, as we leverage, as much as possible, existing
structures for the implementation (i.e., the load queue).

We make the following three key contributions:

(1) We introduce a new load value predictor that exploits predictability of load addresses to provide accurate
load value prediction, the AVPP predictor (Section 4). This predictor outperforms �ve state-of-the-art
predictors and it signi�cantly improves the performance of several benchmarks that do not bene�t from
any of the other predictors. The size of our AVPP predictor is only 2.5% that of a 32KB L1 data cache size;
it has only 1 read port, 1 write port and 512 entries. AVPP provides an average speedup of 11.2% (up to
53%) and average energy savings of 3.7% (up to 15%), outperforming all the state-of-the-art predictors in
16 of 23 benchmarks. We also show that our predictor is complementary to conventional prefetchers.
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(2) We propose a new taxonomy for value prediction policies (Section 5) based on di�erent design choices
that can be made to implement value prediction. Although most of the policies were already used by
previous works, they were not formally classi�ed, compared or evaluated. We divide the policies into
three categories: predictor updates, predictor availability and in-�ight pending updates.

(3) We propose specialized microarchitecture optimizations for load value prediction (Section 6) that simplify
the required pipeline changes and make load value prediction easier to implement.

2 MOTIVATION
The potential gain of value prediction depends on two factors. First, the data dependency patterns between the
instructions being executed. The more dependencies between instructions, the better the potential for speculation.
Second, the number of in-�ight instructions that can be maintained simultaneously in the instruction window
(i.e., the aggressiveness of the processor). The bigger the instruction window, the more the opportunities for
value prediction to issue speculative instructions.

In this work, we focus on narrow, energy-constrained microarchitectures. Many processors have relatively
small instruction windows (128 entries) due to power considerations, as is the case with the ARM Cortex-A72 [4]
or the Intel Westmere microarchitecture [19]. In this section, we show the potential of value prediction in a
4-issue processor (con�guration details in Section 7) by evaluating an oracle value predictor that always provides
correct value predictions. All the correctly-predicted values are consumed by the dependent instructions, thereby
breaking the true data dependencies. We run four experiments where an oracle predictor predicts the following
four categories of instructions: 1) only loads that hit in L1 cache (L1HITS), 2) only loads that miss in L1 (L1MISS),
3) all load instructions (LOADS) and 4) all instructions (ALL).

Figure 1 shows the speedup resulting from these experiments on the benchmarks tested in our evaluation.
We make two key observations. First, in most cases, correctly speculating only on load instructions provides
almost the same potential speedup (28% on average) as speculating on all the instructions (32% on average),
which provides the theoretical maximum speedup for a particular architecture. Second, speculating on L1 hit
loads provides more performance than speculating on L1 miss loads on 16 of 23 benchmarks. The reason is that,
even though L1 hits provide lower gain per instruction, they are also much more frequent than L1 misses, which
results in a better overall speedup. We will show in our evaluation (Section 7) that, in practice, most of the correct
predictions are L1 hits.
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Fig. 1. Speedup when speculating with perfect value prediction on only L1 hit loads (L1HITS); only L1 miss loads (L1MISS);
all LOADS; and ALL instructions.

Although load instructions are the primary cause of pipeline stalls [1, 41, 43], they represent, on average, only
25% of all dynamic instructions in our experiments, which implies that the performance gain per speculated load
instruction is more signi�cant than with non-load instructions.

In the benchmarks used in our evaluation, the average performance gain resulting from speculating on 1) all
instructions is 0.19 cycles per instruction, 2) only the non-load instructions is 0.07 cycles per instruction and 3)
only the load instructions is 0.6 cycles per instruction. Thus, the per-instruction bene�t of speculating on load
instructions is ≈10x higher than that of speculating on non-load instructions. Based on these observations, we
argue that predicting the values of only load instructions is likely a more e�cient way of implementing value
prediction (i.e., the way that likely provides the best performance/cost ratio).
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Another alternative to maximize prediction e�ciency is to use mechanisms to �nd the most critical instructions
for speculation. Calder et al. [11] propose to speculate only on important instructions that are expected to be
on the critical path. Similarly, Tune et al. [64] dynamically identify instructions likely to be on the critical path.
However, determining the critical path in a program is a di�cult problem [18, 29, 30], which requires additional
complexity and sophisticated hardware structures.

The current research trend in value prediction is to: 1) predict all instructions to achieve very high performance,
and 2) try to reduce the hardware cost as much as possible [46–49]. We argue that such approaches are limited
by the very large number of instructions these approaches have to predict.

In this work, we revisit the idea of load value prediction, i.e., predicting the values of only load instructions. The
�rst value predictors were also focused on predicting the values of only load instructions [35], but they did not
focus on reducing the hardware cost and complexity. We propose an e�cient and low-cost load value prediction
scheme that uses fewer resources than the best state-of-the-art approaches, without sacri�cing performance. We
achieve our goals by 1) leveraging existing structures in conventional out-of-order processors, and 2) using a new
load value predictor that outperforms all the state-of-the-art value predictors, achieving speedups close to the
oracle in L1HITS (11.2% vs 12.3%).

3 STATE-OF-THE-ART VALUE PREDICTORS
In this section, we describe the most important state-of-the-art value predictors, �ve of which are later used in
our evaluations (Section 7).

The Last Value Predictor LVP [34, 35] predicts that the next value will be the same as the last one. The predictor
latency can be one cycle for such a simple predictor (because it is implemented as a single direct-mapped array).

The Stride predictor [37] is able to detect stride patterns between consecutive values. It predicts that the next
value will be the sum of the last value plus the calculated stride. When the predictor is updated, the stride is
calculated by subtracting the last value from the new value, and the last value is updated with the new value. It is
implemented as a tagged cache that contains the last value and the stride. The predictor latency can be 2 cycles
(one cycle for reading the table, another cycle for calculating the predicted value).

The 2-Delta Stride (2D-Stride) predictor [15] is an optimization of the Stride predictor that is designed to
minimize the number of mispredictions in regular stride patterns that eventually have breaks in their sequence.
For example, in a loop processing an array, when the array reaches its end and starts again to iterate in the same
or in another array, the 2D-Stride predictor mispredicts only once. The 2D-Stride predictor latency is the same as
the Stride predictor (2 cycles).

The Finite Context Method (FCM) predictor [54] is a context-based predictor. It is implemented with two
tables: the Value History Table (VHT) is indexed by the PC and it keeps the history of the last values accessed
by the instruction. The Value Prediction Table (VPT) keeps the actual prediction and is indexed by the hashed
history from the VHT. The predictor latency is 2 cycles, one cycle to read the VHT and another cycle to read the
VPT. The predictor update requires one additional cycle to compute the hash.

The Di�erential FCM (DFCM) predictor [22] stores strides instead of values in the VHT. This technique
improves the FCM predictor’s accuracy signi�cantly. The predictor latency is one more cycle than FCM to sum
the value and the stride (3 cycles in total).

The VTAGE predictor [48] calculates its predictions based on the control �ow history. VTAGE is an adaptation
of the ITTAGE indirect branch predictor [57], which exploits correlations on the global branch history. VTAGE
predictor performs well when the instruction values depend on the control �ow. VTAGE uses several tables, each
one composed of the value, a con�dence counter, a tag and a bit used for the replacement policy. Each table is
indexed by an increasing number of bits from the global branch history, hashed with the PC. There is also a
base predictor that is accessed only by the PC, and it is implemented as a tagless last-value predictor (with a
con�dence counter). The VTAGE predictor latency is two cycles (one cycle to hash the PC and the global history,
and one cycle to read the tables).

Finally, similarly to the DFCM predictor, the Di�erential VTAGE (DVTAGE) predictor [49] is an improvement
over the VTAGE predictor that stores strides instead of full values. The predictor latency is one more cycle than
VTAGE to perform the stride addition (3 cycles in total).
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4 THE AVPP PREDICTOR: ADDRESS-FIRST VALUE-NEXT PREDICTOR
WITH VALUE PREFETCHING

The load address patterns of many applications are more predictable than their value access patterns [23]. This is
common, for example, in a loop that accesses an array of values: the addresses follow a regular pattern (stride),
whereas the values themselves could be completely random.

To leverage this observation, we create a new load value predictor that relies on address prediction. Our AVPP
predictor (Address-�rst Value-next Predictor with Value Prefetching) achieves high coverage and accuracy, which
leads to better performance than the best state-of-the-art value predictors (as we show in Section 7).

The key idea of AVPP is to predict the address �rst, and use it to index a small non-speculative table to obtain
the predicted value next. AVPP is composed of two main parts. First, the value prediction part (called AVPP
prediction), which predicts the output value of a load instruction and allows dependent instructions to execute
speculatively (Section 4.1). Second, the value prefetching part (called value prefetching), which allows improving
the coverage of the value prediction part (i.e., the �rst part) by increasing the predictor hit rate (Section 4.2). As
a positive side e�ect, value prefetching brings data to L1, which could also be bene�cial for reducing the load
access latency of a regular request (as in conventional prefetching techniques). However, as we show in our
evaluation (Section 7.3), this prefetching e�ect has much less in�uence on the overall performance improvement
provided by AVPP. Most of the performance bene�ts come from the ability of AVPP to accurately predict load
values in a timely manner.

4.1 AVPP Prediction
To facilitate the description of our mechanism, we de�ne the four types of addresses involved in a load instruction:
1) the instruction address is the PC of the load instruction, 2) the load address is the address accessed by the load
instruction, 3) the predicted address is the address that AVPP predicts to be accessed by the current instance of the
load instruction (or the load address prediction), 4) the prefetch address is an address that AVPP predicts will be
accessed by a future instance of the load instruction.

Figure 2a shows the high-level description of the two tables that compose the AVPP predictor. The Address
Table (AT) is indexed by the instruction address 1 , and it returns the predicted address 2 . The Value Table (VT) is
indexed by the predicted address, and it returns the corresponding predicted value 4 , which has to be prefetched
in advance 3 . Figure 2b shows when the key actions of the predictor happen in the pipeline. Figure 2c shows
the AT and VT entry format. AT can be implemented with any of the state-of-the-art predictors (with some
restrictions, as we will see in Section 4.2), and VT is a tagged direct mapped array (in our implementation). A
con�dence counter (conf) is maintained in each AT entry to improve the accuracy of the predictor.

AT VT1 2
3

45 6

1
2
3

4
5
6

Instruction address

Predicted address

Prefetch address

Predicted value

AT update

VT update

(a) High-level overview.

Front-endLoad:

1 4 5 6

Exec. (OoO) commit

Front-endStore: Exec. (OoO) commit

6
time

2 3

(b) Load (LD) and Store (ST) pipeline.

AT pred. entry* conf pdis dAT entry:

tag valueVT entry:

3bits 3bits 1bits

*It depends on the AT implementation 

(c) AT and VT entries.

Fig. 2. The AVPP predictor: (a) high-level overview, (b) timeline of load (LD) and store (ST) execution and (c) AT and VT
entries.

Although VT is a small cache, we do not leverage the L1 cache for the same purpose. The main reason is that
prediction and load access are performed in di�erent places in the pipeline. The prediction has to be performed
in the front-end, whereas the load access is performed later in the Out of Order (OoO) execution engine. Even
assuming that we can overcome this issue, we would have two other issues if we leverage the L1 cache to store
the VT values. First, the L1 cache is designed with a number of ports appropriate to support the processor
read and write requests. The value predictor would increase the number of requests signi�cantly, degrading the
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performance of the overall system. To solve this problem, the L1 cache could be designed with a larger number of
ports, increasing its area and energy overheads. Second, the prediction latency would increase because of the
contention and con�ict misses caused by demand requests.
Predictions are made in two steps at the early stages of each load instruction. First, the AT is accessed with

the instruction address 1 . If the AT hits and the con�dence counter is saturated (a.k.a. the address prediction is
reliable), the AT generates a predicted address 2 and AVPP moves on to the second step. Otherwise, AVPP does
not generate a load value prediction. Second, the VT is indexed by the predicted address generated by the AT in
the �rst step. If the predicted address hits in the VT, the VT returns the predicted value 4 , and the processor
feeds this value to the dependent instructions, which are executed speculatively. Otherwise, the processor does
not speculate.

In a single-core system, AVPP predicts the load value correctly if the predicted address is correct. In case the
address prediction is wrong, the value prediction would also likely be wrong (unless the memory location at
the wrong predicted address has the same value as the memory location of the correct load address). If the value
prediction is wrong, the con�dence counter is reset. In a single-core system, we keep the contents of VT coherent
with memory by updating the VT with the new values generated by store instructions. In Section 4.3, we explain
how our mechanism works in a multi-core system.
Predictor Updates are made at commit time. The AT is updated with the load address generated by the

instruction 5 , which at this point of the pipeline is already known. The VT is updated 6 with 1) the values
prefetched by our mechanism and 2) the values of each store instruction (to keep the VT coherent with memory).

4.2 Value Prefetching: Increasing the Hit rate in the VT
To improve the hit rate in the VT, AVPP uses the prefetch address to prefetch data into the VT that is predicted to
be accessed by future instances of the same load instruction. The AVPP prefetch address is generated at address
prediction time, and it is used to prefetch data into the VT only when the predicted address generated in the AT is
reliable.

Figure 3 illustrates why the VT needs a prefetching mechanism. The AT column shows the predicted address
for the load instruction and the VT column shows if the predicted address hits or misses in the VT. The load
instruction represented in the �gure follows an address pattern with a stride-4 pattern. Figure 3a and Figure 3b
show six consecutive predictions. We assume that all the address predictions are correct in AT (a.k.a., the predicted
address is equal to the load address). Figure 3a shows a naive VT update policy, where the VT updates are made
with the values of the load addresses that are accessed by the load instructions. The VT-Update column shows
the address whose value updates the VT at the commit time of the load instruction. With this policy, a simple
stride pattern in the load address will always miss in the VT (i.e., not obtaining any valid value prediction).

AT VT VT-Update

addr
addr+4
addr+8
addr+12

miss
miss

addr
addr+4
addr+8
addr+12

. . .

. . .

. . .

miss
miss

addr+16
addr+20

miss
miss

addr+16
addr+20

(a) VT update without prefetching. The load instruction
follows a stride-4 pa�ern, and the VT is updated with the
commi�ed value of the current load address.

AT VT VT-Prefetch

addr
addr+4
addr+8
addr+12

miss
miss
hit
hit

addr+8
addr+12
addr+16
addr+20

. . .

. . .

. . .

addr+16
addr+20

hit
hit

addr+24
addr+28

(b) VT update with value prefetching. The load instruc-
tion follows a stride-4 access pa�ern. The mechanism
prefetches into the VT the value of the load address from
two iterations ahead of the current load access.

Fig. 3. Examples of (a) VT update without prefetching and (b) VT update with prefetching.

Figure 3b shows the prefetching-based VT update policy, which updates the VT with the value of the prefetch
address calculated by our value prefetching mechanism (VT-Prefetch). The prefetch address is predicted to be
used some iterations ahead of the current instance of the load instruction. In the �rst occurrence of the load
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instruction, the predicted address misses in VT, and the mechanism prefetches the value of addr+8. After two
occurrences, the predicted address starts hitting the VT.

The ideal prefetch distance depends on three main factors. First, the frequency with which the load instruction
is executed. Second, the latency to access the memory location requested by the load instruction. Third, the
probability that other load instructions evict the value from VT. However, a mechanism that predicts these factors
would increase the complexity of the predictor.

We make two observations that simplify the calculation of the prefetch distance in our mechanism. First, if the
prefetch is performed too early, the corresponding VT entry has a higher probability of being evicted from VT.
Second, if the prefetch is performed too late, the predicted address has a high probability of missing in the value
table. Considering these observations, we design an algorithm to calculate the prefetch distance of each load
instruction dynamically. In each occurrence of a load instruction, AVPP decides between keeping the current
distance, increasing it, or decreasing it. To implement our approach, we add N extra bits (pdis in Figure 2c) per
AT entry to indicate the prefetch distance. In our experiments, we found that a maximum distance of 8 (3 bits) is
enough to provide good results.

Inspired by the forward probabilistic counters (FPC) used by Perais and Seznec [48], the AVPP updates pdis
with a certain probability (probUp), which emulates a small con�dence counter. Finally, each entry of the AT also
requires a direction bit (d in Figure 2c) to indicate the direction of the pdis update (keep, increase or decrease).

For each value prediction, if the predicted address in the AT is reliable, AVPP calculates the prefetch address
with distance pdis and it prefetches the prefetch address value into VT.

The prefetch address and the predicted address are calculated at the same time in the AT, and they should be
generated with low latency and low-cost. Therefore, not all the classical predictors are suitable for the prefetching
part of our AVPP predictor. The main requirement is that the prefetch address predictor implementation has
to be simple. For example, in a Stride predictor, predicting an address with prefetch distance of 8 is as easy as
left-shifting the stride by 3 bits and adding it to the last value. In other predictors, such as the FCM predictor,
the complexity and latency to calculate the prefetch address can be very high [22, 54]. For this reason, in our
evaluation (Section 7) we only consider the Stride and the DVTAGE predictors for implementing the AT. Unlike
the predicted address, the prefetch address is propagated into the memory access stage in the pipeline (in the OoO
engine). Our prefetch mechanism allocates an entry in the load queue for the prefetch address (which we call
value prefetch entry). Only if the prefetch address and the load address are the same, they coalesce into a unique
value prefetch entry. The load queue needs an extra bit to indicate if the entry corresponds to a value prefetch or
a demand load.

Figure 4 shows the increase in the memory requests caused by the value prefetch requests, with the AT
implemented either as a DVTAGE predictor or as a Stride predictor (Section 3). In both cases, the typical increase
is under 20%, and the geometric mean on a variety of benchmarks is under 5%. We show in our evaluation
(Section 7) that we can keep the load queue the same size as the baseline without degrading performance.
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Fig. 4. Increase in memory requests due to value prefetches.

Our mechanism adjusts the predictor distance (pdis) dynamically with the goal of prefetching at the right time
to increase the VT hit rate. AVPP detects the reason of the VT miss and acts accordingly. The two reasons why
the predicted address can miss the VT are 1) the value prefetching is late, or 2) the value prefetching is too early
(and it is replaced by some other value in the VT). The mechanism is triggered when the predicted addressmisses
in the VT, and it works as follows:
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• If the load queue has a value prefetch entry for the predicted address, the prefetched memory access is
not completed yet. This indicates that the current prefetch distance is too short, and the distance (pdis)
should be increased. Therefore:
– If d is 1 (increase direction), pdis is increased with probability probUp (if it is not saturated).
– If d is 0 (decrease direction), we change the direction of the updates by setting the d bit to 1 (increase

direction). pdis is not updated.
• If the load queue does not have any value prefetch entry for the predicted address, the prefetch memory

access request must have already been served and also evicted from the VT. This indicates that the current
prefetch distance is too large, and the distance (pdis) should be decreased. Therefore:
– If d is 0 (decrease direction), pdis is decreased with probability probUp (if it is not zero).
– If d is 1 (increase direction), we change the direction of the updates by setting the d bit to 0 (decrease

direction). pdis is not updated.
If the predicted address hits in the VT, pdis is not updated.

4.3 Coherence in Multi-core Processors
In multi-core processors, di�erent cores could have di�erent versions of the same data in their private caches.
Most modern multi-core processors keep the data coherent between cores by implementing a cache coherence
protocol in hardware.

The VT is coherent with memory in a single-core processor, but to keep the data in VT coherent in a multi-core
processor, we would need a VT coherence mechanism. To keep the design simple, our approach does not keep
the VT coherent with memory, which might cause some additional mispredictions. These mispredictions do not
a�ect the correctness of execution. In our evaluation with multi-core processors (Section 7.11) we do not observe
any mispredictions caused by incoherent data in VT.

5 TAXONOMY OF VALUE PREDICTION POLICIES
A variety of value prediction proposals do not explain or pay much attention to the description of the predictor
policies used in their mechanisms, which makes some of these proposals di�cult to reproduce and compare
with. In an attempt to normalize these design choices, we introduce a new taxonomy of di�erent policies for
three fundamental aspects of value prediction: predictor update, predictor availability, and in-�ight pending
updates. Our taxonomy is general: it can be applied to load value prediction or value prediction for all instructions.
Previous taxonomies [53] cover several aspects of the microarchitecture details, but ours is the �rst covering
these three prediction-level considerations. We evaluate the design space of our taxonomy in Section 7. Figure 5
summarizes all the policies that we discuss in the following sections.
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Fig. 5. Di�erent policies for predictor update, predictor availability and in-flight pending predictions.

5.1 Predictor Update Policies
The value predictor can be updated in di�erent places in the pipeline. In our taxonomy, as illustrated in Figure 5a,
we include two policies. First, the correct update policy, in which the predictor is updated at the commit stage.
The correct value is known at this point, so the predictor is updated with the correct value.

Second, the speculative update policy, in which the predictor is updated just after making the prediction at
the fetch stage, and before dispatch time. As the correct value is not known at this point, the predictor is updated
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with the predicted value. With the speculative update policy, a prediction is based on previous speculative updates.
When a misprediction is detected (at commit time), the predictor is updated with the correct value, by either
resetting the entry or by restoring the old state before the speculative update [27]. In this case, the complexity
of restoring the old state of the prediction entry depends on the predictor. A simple last value predictor only
requires overwriting the speculative value with the correct value.

We can also implement a hybrid approach that only updates the predictor speculatively at fetch time if the
prediction is reliable. Otherwise, the predictor is updated with the correct value at commit time. In both cases,
the prediction is validated at commit time. To implement this hybrid policy, we need an additional bit in each
entry to indicate if the predictor is speculatively updated at fetch time, to avoid duplicate updates at commit time.

5.2 Prediction Availability Policies
To speculate using a predicted value, the predicted value has to be ready at dispatch time. However, this does not
always happen, as the prediction can be delayed for di�erent reasons (predictor contention, waiting for previous
predictions, etc). The system can be designed in two di�erent ways to deal with an instruction that doesn’t have
the prediction ready at dispatch time. First, the pipeline can be stalled waiting for the prediction (delay dispatch
policy). Second, the prediction can be discarded (there is no value speculation), not delaying the dispatch time
(not-delay dispatch policy). In this case, the predictor is still updated at commit time for training. Figure 5b
shows the behavior of both policies when the prediction latency is too long.

5.3 In-flight Pending Update Policies
If two instances of the same instruction are executed very close in time, the older instance of the instruction could
read the predictor before the younger instance updates it. We de�ne in-�ight pending update as the predictor
update that an in-�ight instruction (a.k.a., an instruction being executed) will eventually perform at the back-end
of the pipeline at commit time. We can manage in-�ight pending updates of di�erent instances of the same
instruction with two di�erent policies. The �rst policy ignores the in-�ight occurrences of the same instruction,
and it gets the prediction without waiting for the updates of the in-�ight instructions, which can produce
wrong value predictions (in-flight ignore policy). The second policy stalls the pipeline, waiting for all the
in-�ight instructions to update the predictor (in-flight wait policy). We de�ne in-flight delay as the time that
a back-to-back prediction is delayed waiting for the predictor update from the previous instance of the same
instruction. The in-�ight wait policy is a reasonable option for load value prediction, as the number of in-�ight
load instructions is small. Figure 5c shows the behavior of both policies when executing two instances of the
same instruction back-to-back.

The in-�ight pending update policies are not applicable to predictors that do not base their predictions on
values generated by previous instances of the same instruction (i.e., they don’t have in-�ight delay). This is
the case for LVP or VTAGE predictors but not for Stride or FCM preditors. Figure 6 shows an example of a
back-to-back prediction with two di�erent predictors. First, the LVP predictor, despite its name, does not need
to wait for the previous prediction to correctly predict the current instance of the instruction as long as the
predictor is trained (i.e., the in-�ight delay is zero). Second, the Stride predictor needs to wait for the update from
the previous instance of the same instruction to make a correct prediction. Otherwise, it would calculate the
prediction based on a stale value. In this example, the mechanism updates the predictor using the speculative
update policy from Section 5.1. The FCM predictor has an even longer in-�ight delay [48]. In general, a predictor
with a long in-�ight delay could have performance problems with the in-�ight wait policy (i.e., in tight loops that
could execute several instances of the same instruction very close in time).
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Fig. 6. Back-to-back prediction in an LVP and in a Stride predictor.
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We can implement the in-�ight wait policy by adding an extra bit in each predictor entry to indicate if there is
another instance of the same instruction in the pipeline.

5.4 Pu�ing It All Together
The previous three types of policies may have correlations between each other. We analyze these correlations in
pairs of policy types.

First, the predictor update policies and in-�ight pending update policies: the time at which the predictor update
is done in the pipeline in�uences the duration of pending updates. For example, if the predictor update is done in
the front-end (speculative update policy), the duration of the pending predictions is short. In this case, waiting
for the prediction (in-�ight wait policy) may provide the best performance, as it barely stalls the pipeline and
increases the predictor coverage.

Second, the predictor availability policies and the in-�ight pending update policies: whether or not to wait for
the prediction at dispatch time in�uences the duration of pending updates. For example, if the pipeline stalls
waiting for a prediction at dispatch time (delay dispatch policy), the pending update time also increases.

Third, the predictor update policies and the predictor availability policies are not correlated.
The best combination of policies and the best implementation depends on the target microarchitecture.

Section 7.4 evaluates all possible combinations of the di�erent policies from the three policy types.

6 REDUCING THE COMPLEXITY OF VALUE PREDICTION
Value prediction has not been implemented in real processors yet mainly due to its complexity issues. We have
already discussed some recent works that focus on reducing complexity [46–49] in Section 1. We go one step
further and analyze some problems and complexities of predicting values for all instructions, and we study and
propose new low-cost organization alternatives and new policies to implement load value prediction.

6.1 Predictor Area Footprint
One of the advantages of speculating on load instructions is that the predictor can be smaller, as it has to handle
only a fraction of the total instructions.

Table 1 shows the area footprint of the predictors we evaluate as the fraction of the area of a 32KB 8-way
L1 data cache. We calculate the area with McPAT [33] con�gured with a Westmere OoO architecture with a
frequency of 2.4Ghz and 22nm technology. The total area of the core (including L1 and L2 caches) is 11.4mm2,
whereas the L1 data cache is 0.33mm2. The predictors we use are con�gured in the same way as in the evaluation
(Section 7).

Table 1. Area of each value predictor as a fraction of the area of a 32KB 8-way L1 data cache (0.33mm2).
LVP 2D-Stride DFCM DVTAGE VTAGE AVPP-DVTAGE AVPP-Stride

1.7% 2.6% 3.6% 2.6% 3.6% 2.8% 2.8%

We make two main observations from the table. First, the area of the load value predictors is very small
compared to the data cache. Second, our predictors (AVPP-DVTAGE and AVPP-Stride) occupy a similar area as
the state-of-the-art predictors.

6.2 Register Port Pressure
The physical register �le (PRF) consumes an important portion of the energy in an OoO engine [71], and value
prediction puts even more pressure on it. Figure 7 shows the reads and writes in the PRF during the instruction
�ow in the front-end and the back-end in-order pipeline stages. Figure 7a represents a processor that does not
implement value prediction. The instruction reads the two input registers (requiring two read ports), and it writes
to the output register at commit time (requiring one write port).

Figure 7b shows a classical scheme proposed in the state-of-the-art value prediction schemes [47, 48]. It requires
reading two input registers and writing the prediction into the destination register before dispatch. The prediction
is also written into a FIFO queue to be validated at commit time. After the OoO execution, the resulting data is
written into the PRF (like in an unmodi�ed processor), and �nally, the prediction is validated by comparing the
real value in the PRF with the predicted value in the FIFO queue. This scheme requires one additional read port
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Fig. 7. PRF port pressure in (a) a processor without prediction, (b) a processor with value prediction and (c) our proposal for
load value prediction.

and one additional write port (two write ports in total), which increases the complexity of the PRF substantially.
The extra write port causes the growth of the power consumption by 50% [48, 71] (although, this extra power
consumption could be reduced by limiting the number of predictions per cycle, allocating physical registers in
di�erent register �le banks for consecutive instructions [48], or using other optimization techniques [11, 18, 64]).

To alleviate the PRF port pressure, we propose a new speci�c organization for load value prediction. Figure 7c
shows a brief summary of our approach. As in existing value prediction approaches, the two input registers
are read and the output register is written before dispatch. We leverage the Load Queue (LQ), which is part of
modern OoO processors, to keep the correct version of the data when received from memory, so our scheme
does not need an additional FIFO queue. When the value prediction is reliable, the speculative value is written
into the PRF, and the value coming from memory is written in the LQ. At commit time, the validation is done by
comparing the values in the PRF and in the LQ. The LQ does not need any extra read/write ports, as the prediction
validation and/or the PRF writing are done in the same pipeline stage, requiring just a single access to the LQ.

Compared to performing value prediction for all instructions, our approach reduces the port pressure in two
main ways. First, when a prediction is correct, the value in the PRF is already the correct value at commit time,
so the PRF does not need to be updated, reducing the write pressure. Implementing this optimization requires
only a small modi�cation to disable the writing of the value from the LQ to the PRF in case of a correct load
value prediction. The probability of mispredicting is very low, as a simple con�dence estimation mechanism
can increase the accuracy to more than 99% (see Section 7). Second, the extra reads and writes in the PRF are
performed only for load instructions, which are a fraction (≈25%) of all instructions. Notice also that all the
optimizations for reducing the register port pressure in value prediction [11, 18, 64] are also applicable to our
proposal.

Another approach to eliminating the FIFO queue is to carry the predicted value as part of the payload of the
load instruction. The additional payload bits require additional FFs/bitcells between the dispatch and execution
stages, but it is more desirable than adding read ports to the already expensive PRF (area, energy, cycle time).
Alternatively, we can eliminate the FIFO queue by just checking (not updating) the prediction after the load
execution (e.g., writeback) and setting a �ag in the ROB for a load with a mispredicted value.

6.3 Thrashing and Bandwidth
Performing value prediction for all instructions can pollute the predictor because of the large number of lookups
and updates. As a consequence, thrashing could be a problem if the prediction table is not large enough. Performing
value prediction only for load instructions lowers pollution because the reads and updates are signi�cantly reduced.
Therefore, we can implement smaller tables. The number of unique static load instructions is on the order of only
a few thousand in our evaluated benchmarks.

Previous work [48] uses a predictor with 8k entries, and BeBoP [49] reduces this number to only 2k because it
uses a predictor that works with blocks of instructions, not with individual instructions. In our evaluation of load
value prediction, we have good results with a predictor of only 512 entries, which is a 75% reduction compared
with BeBoP [49], with good speedup results (see Section 7). The predictor misses are less than 10% in most of the
benchmarks for a predictor of this small size.

Performing value prediction for all instructions requires potentially serving several prediction requests per
cycle. Although the predictor has several cycles to provide the predicted value, if the processor issue width is
too large, it could create a bottleneck in the predictor. A practical way to alleviate this problem is to use value
prediction with processors that have a moderate issue-width. In this work, we demonstrate that predicting only
loads has signi�cant performance bene�ts in these relatively modest processors (4-issue processor in our case) at
low hardware cost.
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6.4 Microinstructions with the Same PC
In microarchitectures that implement ISAs with complex instructions, e.g., x86, each instruction is potentially
decoded into several microinstructions (µops). Thus, several microinstructions could be associated with the same
instruction address, and one unique entry in the predictor could correspond to several microinstructions (leading
to aliasing). In our tests, the fraction of x86 instructions that are decoded into more than one µop is up to 35% in
some cases, which is not negligible.

There are several ways to solve this problem when performing value prediction for all instructions. We describe
two of them. First, by hashing the µop sequence number to the index used for indexing the predictor. This solution
increases the design complexity. Second, by using a larger granularity than a single instruction. For example,
BeBoP [49] uses a block-based value predictor, in which each entry is associated with a fetch block and not with
individual instructions.

Fortunately, this is not a problem if we perform value prediction only for load instructions. Instructions
that contain more than one load microinstruction are rare in the x86 ISA: only the instruction for comparing
string operands produce two load microinstructions (CMPSB, CMPSW, CMPSD, CMPSQ). The presence of these
instructions in our benchmarks is negligible: only the h264re f benchmark executes 1 per 5 billion instructions,
and the perlbench benchmark executes one per 400.000 instructions.

6.5 Identification of Load instructions
Load value prediction has the disadvantage that, unlike value prediction for all instructions, it needs to identify
instructions that execute at least one load. To do so, the prediction is done when this information is available at
the pre-decode stage, which can potentially delay the prediction by 1 cycle. We take this delay into account in
our evaluations.

7 EVALUATION
In this section, we compare our AVPP load value predictor with �ve state-of-the-art load value predictors in
single-core and multi-core systems, in terms of both performance and energy e�ciency. We also compare AVPP
with prefetching and memory dependence prediction techniques.

Our evaluation mainly considers load value prediction, as we have already shown that predicting all instructions
provides incremental speedup bene�ts compared to load value prediction (Figure 1) while requiring much higher
cost (Section 6).

7.1 Experimental Setup
Our evaluation uses a customized version of the ZSIM open-source simulator [51] with support for load value
prediction. ZSIM resembles a 4-issue Westmere microarchitecture that is validated against a real Westmere
machine, reporting an IPC average error of 9.2%/11.2% for single/multi-thread applications [51]. Table 2 shows our
baseline con�guration, which includes a 32KB 8-way data cache with 4-cycle latency, a 32KB 4-way instruction
cache with 3-cycle latency, a 16-way L2 cache with 12-cycle latency and a Stream prefetcher. The baseline load
value prediction policies are correct update, not-delay dispatch and in-�ight wait.

Our ZSIM Westmere model implements load-store ordering, load forwarding, fences, and TSO. Each load
is implemented as an address computation µop and a memory read µop, and it does not issue until all prior
store addresses have been resolved. the processor can fetch 16B/cycle (the limit is the predecoder), and up to 4
µops/cycle. The processor is composed of 6 execution ports, 19 integer functional subunits, eight �oating-point
subunits and 36 reservation station entries. Branch mispredictions are resolved at commit time. They cancel all
in-�ight data misses that are in the wrong path. Branch misprediction penalties are simulated according to a
measured misprediction penalty of at least 17 clock cycles in the real Westmere architecture. The same mechanism
is used in our implementation for recovering from value mispredictions, which leads to a misprediction penalty
that is in the same order as the branch misprediction penalty. Long latency loads can increase this penalty (up
to 45 cycles in our tests), but for most of the benchmarks we tested, the average value misprediction penalty is
similar to the branch misprediction penalty.

We run a subset of the SPEC2006 and SPEC2000 benchmark suites with their reference inputs, and a subset of
benchmarks from PARSEC [7] and SPLASH2 [67] with their native inputs. We select a diverse set of workloads,
considering both good and bad candidates for load value prediction. We use the Pinpoint [50] methodology to
�nd representative simulation points, and Pinplay [45] to log these regions and deterministically replay them.
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Table 2. Configuration of our baseline system.

core

Westmere x86-64bit, 4-issue
TAGE branch pred., 4 tag tables (32KB)
128-entry ROB, 32-entry load queue
32-entry store queue

L1I Cache 32KB 4-way, LRU, 3-cycle latency
L1D Cache 32KB 8-way, LRU, 4-cycle latency

L2 Cache 256KB, 16-way, LRU, 12-cycle latency
16 MSHRs

Prefetcher L2 prefetcher, 16 stream bu�ers, 64-line bu�ers

Memory DDR3-1333-CL10, 4 ranks per channel,
8 banks per rank

Policies CNW: Correct update, Not-delay dispatch
and in-�ight Wait

Table 3. Predictors considered in our evaluation. Our
proposed new models are bold-faced.

type entries latency in-�ight delay

LVP 512 1 cycle –
2D-Stride 512 2 cycles 1 cycle

DFCM 512 3 cycles 2 cycles
DVTAGE 512 3 cycles 1 cycle

VTAGE 512 2 cycles –
AVPP-DVTAGE 512+64 4 cycles 1 cycle

AVPP-Stride 512+64 3 cycles 1 cycle

We generate the single-core PARSEC and SPLASH Pinpoints by running the application with a single thread. Our
multi-core evaluation (Section 7.11) is performed with 10 billion instructions of the region of interest, without
using Pinpoints.

We evaluate the behavior of di�erent value predictors for load value speculation. Table 3 shows the number of
entries, the latency (in cycles), and the in-�ight delay (see Section 5.3) of the predictors evaluated, namely LVP,
2D-Stride predictor, DFCM, DVTAGE and VTAGE, as a diverse set of the best state-of-the-art predictors, and the
AVPP-DVTAGE and AVPP-Stride as our new contributions (Section 4). The AVPP predictors are named depending
on the predictor used in the AT. We choose candidates with and without in-�ight delay to show the in�uence
of the in-�ight pending update policies (Section 5.3) in the performance. Latencies are calculated according to
Section 3 and Section 4.

All predictors use 3-bit FPC counters [48] for prediction con�dence estimation, with the vector {1, 1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
32 ,

1
32 ,

1
32 } (that resembles a 7-bit counter). When the prediction is correct, the counter is increased with the

probability de�ned by the vector. The counter is reset on a misprediction, and the prediction is used only when the
counter is saturated. We validate predictions at commit time, and we implement pipeline �ushing for recovering
from mispredictions.

We set up all predictors with 512 entries as our baseline system for maintaining a good trade-o� between area
and performance. In the AVPP predictors, AT has 512 entries and VT has only 64 entries (Section 7.5 justi�es
this decision). Each entry in AT has a 3-bit pdis, and 1-bit d (Section 4). All tagged tables of the predictors are
implemented as a direct-mapped cache.

We implement a four order DFCM in our evaluation. In the VHT, each new stride is encoded into 16 bits with a
hash function based on XORs [54], and the VPT is indexed by this compressed context (64 bits total). Furthermore,
we add a counter to each VPT entry to limit replacements due to interference [48]. The counter is increased if the
value matches the one already stored, and it is decreased otherwise. An entry is replaced only when the counter
is zero.

The implemented DVTAGE predictor [49], in addition to the base predictor and the last value table (512 entries
each), is composed of 6 tagged tables (64 entries each). It uses a use f ul bit in the tagged tables, and tags of
12+rank bits, with rank going from 1 to 6. The minimum history length is 2, and the maximum is 64. The VTAGE
predictor has the same con�guration, but without the last value table, and saving values (64 bits) instead of
strides.

All the predictors based on strides use only 16 bits to store the stride. We found out that strides are usually
small, and the impact of using only 16 bits instead of 64 bits is negligible in terms of performance. Furthermore,
AVPP predictors have 32-bit �elds in the AT for storing the addresses.

We also implement a Hybrid predictor composed of two predictors: 1) AVPP-DVTAGE predictor and 2) a
2D-Stride predictor. For choosing between predictors, we add an FPC con�dence counter per predictor, that
indicates the reliability of each predictor. The prediction is only used in case the counter is saturated, and in case
the counters for both predictor are saturated, we choose the AVPP predictor by default.
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We heavily modi�ed the ZSIM simulator to support load value prediction. We took into account the latencies
in Table 3, for reading and updating the predictor, as well as the appropriate order and timing of the lookups and
updates (depending on the policies), and the critical paths. Each predictor has one read port and one write port to
reduce complexity. We simulate port contention. Additionally, we include a 1-cycle delay to identify loads in our
simulator (see Section 6.5).

All the predictors are pipelined, implying that they can accept a new lookup/update request each cycle. Predictor
updates have the same latencies as the lookups in almost all cases (DFCM has one extra cycle). We take into
account all predictor latencies and contention in our simulations.

From the described policies in Section 5, we choose for our baseline the CNW (Correct update, Not-delay
dispatch, and in-�ight Wait) policy as it is one of the best performing in our tests (see Section 7.4).

Energy results are obtained with a customized version of McPAT [33] to take into account di�erent value
predictors, additional operations in the register �le and the load queue, value mispredictions, and extra prefetch
memory requests.

7.2 Results in a Single-core Processor
To show the bene�ts of AVPP, we simulate the system described in Table 2 implementing the �ve value predictors
described in Table 3, running the benchmarks in Table 4.

Table 4. Single-core benchmarks.

SPEC2000 art, gzip, lucas, sixtrack, equake

SPEC2006 astar, bzip2, gcc, libquantum, mcf, omnetpp, perlbench, bwaves,
dealII, leslie3D, namd, soplex, tonto, wrf, zeusmp

PARSEC/SPLASH2 (1 thread) bodytrack, raytrace, water_spatial

Figure 8 shows the speedup of a processor with eight di�erent load value predictors compared to the baseline
(no value prediction). We make three main observations. First, AVPP outperforms all state-of-the-art predictors
in 16 of the 23 benchmarks. The average speedup of AVPP is 11.2% versus 5.9% of the best state-of-the-art
predictor. Second, the address predictability leveraged by AVPP is re�ected in the performance improvements
of the benchmarks art , libquantum, bwaves and дzip, where none of the state-of-the-art predictors achieve
performance similar to AVPP. Third, the Hybrid predictor does not have much better performance than AVPP
alone, as AVPP alone covers most of the accurate predictions made by the 2D-Stride predictor. We conclude that
1) AVPP is very e�ective and 2) a Hybrid predictor is not worth the hardware cost compared to AVPP alone.
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Fig. 8. Speedup and energy comparison of di�erent value predictors.

Figure 8 (bottom graph) shows the energy reduction provided by the di�erent value predictors. The main
observation is that almost all the predictors provide energy savings and that these savings are directly correlated
with the speedup the predictor provides. AVPP’s energy savings is 3.7% versus 2.6% of the best previous predictor.
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To better show the performance of the load value predictors, we de�ne coverage and accuracy: 1) coverage
of a predictor is the percentage of loads to which a prediction is used for speculation, and 2) accuracy is the
percentage of predictions used for speculation that are correct. Figure 9 shows the coverage, and Figure 10 shows
the accuracy of the evaluated load value predictors. The main observation from these �gures is that our AVPP
predictor achieves better coverage than with other predictors in most of the benchmarks while maintaining a
very high level of accuracy. On average, our best AVPP predictor (AVPP-DVTAGE) has better coverage (44%)
than DVTAGE, the best state-of-the-art predictor (36%). Because of the use of FPC con�dence counters, AVPP’s
accuracy is very high, which minimizes the total squash penalties.
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Fig. 9. Coverage of the evaluated predictors.
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Fig. 10. Accuracy of the evaluated predictors.

Figure 11 shows the cache hit distribution of the predicted (i.e., covered) load instructions for the AVPP
predictor. The results are similar for the other predictors. The main observation is that most of the predicted loads
are L1 cache hits. This observation suggests that, for the tested workloads and system con�gurations, load value
prediction should be complementary to prefetching. We will demonstrate this in Section 7.9 and Section 7.10.
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Fig. 11. Cache hit distribution among the predicted loads (the ones covered in Figure 9) for the AVPP-DVTAGE predictor.

7.3 Where are the Benefits Coming From?
We analyze whether the AVPP bene�ts are coming from AVPP prediction or AVPP prefetching (Section 4).
Figure 12 shows the performance of our AVPP only with prefetching (AVPP-Prefetch), only with load value
prediction (AVPP-Predict) and the complete AVPP with both prefetching and load value prediction (AVPP-Full).
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Fig. 12. Speedup of AVPP-DVTAGE when only the prefetch is active (AVPP-Prefetch), when only the prediction is active
(AVPP-Predict), and when both are active (AVPP-Full).
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Fig. 13. Distribution of the AVPP-DVTAGE prefetch re-
quests that hit in L1, L2 and main memory.
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Fig. 14. Coverage of AVPP without prefetching (AVPP-
Predict), and the full AVPP including prefetching (AVPP-
Full).

We make three main observations. First, the bene�t of AVPP prefetching is low in general (1.8% speedup
on average). This is because in many cases the prefetch requests are L1 hits, as we show in Figure 13. Second,
AVPP value prediction has better performance than value prefetching (4.8% speedup on average). Third, when
the complete AVPP predictor (with both prediction and prefetching) is used, the performance improvement is
signi�cant (10.6% speedup in average). The main reason for the large speedup jump when full AVPP is used is
that the prefetches in VT highly increase its hit rate, and consequently, the prefetching coverage also increases.
Figure 14 shows the coverage of the full AVPP load value predictor (AVPP-Full) and the AVPP predictor without
prefetching (AVPP-Predict). The average coverage of AVPP without prefetching is 12.3% (99.7% accuracy), whereas
in the full AVPP is 50.2% (99.9% accuracy).

Figure 15 shows the hit rate of the VT table in our AVPP predictor with prefetching (AVPP-DVTAGE and AVPP-
Stride) and without prefetching (AVPP-DVTAGE-Noprefetch and AVPP-Stride-Noprefetch). The prefetching
schemes use dynamic distance with a 5% probUp, and non prefetching implementations update the VT with the
value of the current instruction. The main observation is that dynamic prefetching improves the VT hit ratio in
almost all benchmarks.
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Fig. 15. VT hit rate with and without prefetching.
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7.4 Impact of the Value Prediction Policies
Figure 16 shows the average speedup of the combination of the policies described in Section 5. The �rst letter
indicates Correct update (C), Speculative update (S), or Hybrid update (H) (Section 5.1). The second letter indicates
Delay dispatch (D) or Not-delay dispatch (N) (Section 5.2). The third letter indicates in-�ight Ignore (I) or in-�ight
Wait (W) (Section 5.3).
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Fig. 16. Impact of the implemented policies (Section 5.3).

We make four main observations. First, the combination of the Delay dispatch (D) and in-�ight Wait (W)
policies generally have poor performance, because they create a lot of contention together. With these policies,
the predictor is on the critical path, and it can generate stalls in the pipeline. Second, Correct update (C) and Hybrid
update (H) policies have similar behavior, which indicates that the hybrid policy provides almost no bene�t.
Third, in-�ight Wait (W) has better results than in-�ight Ignore (I) if it is not combined with Delay dispatch (D).
This shows the bene�ts of making the prediction using the updated value from the previous in-�ight instruction,
provided that waiting for the updated value does not delay the dispatch time. Fourth, LVP and VTAGE predictors,
which do not have in-�ight delay (Section 5.3), always provide performance improvements compared to the
baseline, independently of the policy.

These observations are valid for the tested microarchitecture, and they can not be easily generalized or
formalized. The study of these policies in microarchitectures with di�erent speci�cations and design choices is
out of the scope of this work.

7.5 Impact of the Predictor Size
Figure 17 shows the impact of the predictor size on system performance. Unlike our baseline system, in this
experiment we over-sized the VT (i.e., with the same size as AT) to emphasize the impact of the AT size in the
AVPP predictors. We make three main observations. First, a large predictor table does not provide a signi�cant
performance improvement. Increasing the number of entries from 512 to 8192 does not a�ect performance
signi�cantly. Second, the most signi�cant performance jump is produced when we increase the size of the
predictor from 256 to 512 entries. This is the reason why we establish 512 entries as our baseline.
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Fig. 17. Impact of predictor size on speedup. For this study,
the AT and the VT have the same size in the AVPP predictors,
to emphasize the e�ect of AT size.
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Fig. 18. Impact of VT table size for an AVPP predictor with
an AT of 512 entries.

Figure 18 shows the impact of the VT size of the AVPP predictor. The �gure shows the speedup of the AVPP-
DVTAGE and the AVPP-Stride predictors when changing the VT size from 512 to 1. In this experiment the AT has
a �xed size of 512 entries. The main observation is that the performance bene�ts of having 512 entries in the VT
are very close to those of having 64 entries, which is the reason why we choose 64 as the VT size for our baseline.
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7.6 Impact of the Prefetch Dynamic Distance Mechanism
AVPP calculates the prefetch distance dynamically by observing the VT misses (Section 4.2). Figure 19 shows the
impact of the probability of updating the prefetch distance (probUp). We make two observations. First, di�erent
values of probUp can signi�cantly change performance for speci�c applications in AVPP-DVTAGE (e.g., moving
from probUp=1% to probUp=5%, improves the speedup by 8% for art and by 6% forwater_spatial ). In AVPP-Stride
we do not observe large di�erences. Second, the AVPP-DVTAGE predictor achieves the best average speedup
with probUp=5%, and the AVPP-Stride predictor achieves the best average speedup with probUp=1%. We chose
probUp=5% for our baseline as AVPP-Stride performs better with probUp=5% than AVPP-DVTAGE performs with
probUp=1%.
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Fig. 19. E�ect of the probability of updating the prefetch
distance (probUp) on AVPP speedup.
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Fig. 20. AVPP prefetch distance distribution. The common
case is distance=1 (i.e., to prefetch the next address), but other
distances are also significant in some benchmarks.

Figure 20 shows the predictor distance (pdis) distribution when probUp is 5%. We make two observations.
First, as the common case is hitting in L1 (low latency), most of the prefetch distances are one (next value).
Second, some benchmarks (e.g., art ) have a signi�cant number of distances larger than one, which contributes to
signi�cant performance improvements. In the case of sixtrack , although most of the prefetches have a distance
greater than one, we do not see large performance bene�ts as sixtrack does not exhibit many data dependencies
and consequently, it cannot bene�t much from value prediction.

7.7 Impact of the Load �eue Size
We quantify the impact of the load queue size on the performance of a system implementing AVPP, with the goal
of measuring the pollution caused by the additional value prefetch requests in the load queue. Figure 21 shows
the speedup provided by several load value prediction mechanisms compared to our baseline. Both baseline and
load value prediction based systems have the same load queue size. Our main observation is that the size of the
load queue does not have much in�uence on the performance of our AVPP predictors. We conclude that value
prefetching of AVPP does not add much pressure to the load queue.
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Fig. 21. Impact of the LQ size on the predictor performance. The load queue is the same size in the baseline system and in
the value prediction system.

7.8 Sensitivity to the Cache Hierarchy
We study the sensitivity of load value prediction to the cache hierarchy. Table 5 shows the di�erent con�gurations
we evaluate, including 1) our baseline described in Section 7.1 (Baseline), 2) our baseline augmented with a 2MB
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L3 cache (Baseline+L3), and 3) a larger system with double-size L1, L2, L3 caches (Baseline+L3 Large). Figure 22
shows the speedup results (plotted with color bars), as well as the Instructions per Cycle (IPC, plotted with hoops)
for the three con�gurations.

Table 5. Configurations for the cache sensitivity analysis.

Baseline L1D&I: 32KB, L2: 256KB
Baseline+L3 L1D&I: 32KB, L2: 256KB,

L3: 2MB
Baseline+L3 large L1D&I: 64KB, L2: 512KB,

L3: 4MB
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Fig. 22. Speedup of load value prediction with the three
cache configurations shown in Table 5.

We make two observations. First, as expected, IPC increases when the cache size is larger. Second, the speedup
of value prediction does not depend much on the cache con�guration, because most of the value predictions
are for load instructions that hit in L1 (see Section 7.2). We conclude that neither AVPP nor other load value
predictors are largely in�uenced by the cache hierarchy con�guration, which suggests that load value prediction
could be a low-cost performance accelerator for processors with various cache sizes.

7.9 Comparison with Prefetching and Memory Dependency Prediction
There are other techniques than load value prediction to hide load latencies and to break true data dependencies.
In this section, we analyze two of them, data prefetching and memory dependence prediction, which are already
present in most commodity processors, and we study their interactions with load value prediction.

Memory dependence prediction allows dispatching loads before the previous store addresses have been resolved,
in case the prediction is that they are accessing di�erent addresses. If the speculation was wrong, the pipeline
has to be �ushed, similarly to value prediction or branch prediction.

Store Set Prediction [14] is an easy way to implement memory dependence prediction. The scheme identi�es
the set of stores upon which a load depends (the store set) and communicates that information to the instruction
scheduler. We implement this technique with a Store Set ID table (SSIT) (indexed by the instruction PC), which
maintains the store sets identi�er (SSID), and with a Last Fetched Store Table (LFST) (indexed by the SSID), that
maintains dynamic information about the most recent store in the store set. In our evaluation, we use store sets
with an SSIT of 4096 entries, and an LFST of 128 entries.

Our baseline is the same as in Table 2 but without any prefetcher. Figure 23 shows the speedup of the system
with the store set predictor (SS), the L2 prefetcher (Prefetch), load value prediction with an AVPP-DVTAGE
predictor (LVP), and the combination of all of them.
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Fig. 23. Interaction between store set prediction (SS), L2 prefetching (Prefetch) and Load Value Prediction (LVP).

We make three main observations. First, the performance improvement of SS over our baseline is negligible
(the bars are not visible in almost all the benchmarks). We even tested a perfect memory dependence predictor (an
oracle) and �nd similar negligible performance improvements. The cause is the relatively narrow 4-issue processor,
which does not experience that many loads to wait for store resolution. Furthermore, in the evaluated processor,
store address calculation and the store data are two di�erent microinstructions, which reduces the load-store
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scheduling problem even more. Second, the L2 prefetcher and our AVPP load value predictor achieve the best
speedups (11% and 8% on average). Third, L2 prefetcher and our AVPP are complementary and, if implemented
together, their speedups are additive (20% average speedup). We conclude that AVPP is complementary to
prefetching and memory dependency prediction. The three mechanisms can be implemented together in the
same system with additive performance gains.

7.10 Comparison with L1 Prefetching
AVPP does prefetching into the VT to increase the predictor coverage and accuracy, but also brings the data to L1.
In this section, we compare our AVPP predictor with two state-of-the-art L1 prefetching approaches, with the
goal of showing the relationship between both. We implemented an L1 Stream prefetcher (similar to the one
described in Table 2) and the Access Map Pattern Matching (AMPM) prefetcher [28]. Both prefetchers request
their prefetches through the load queue.

To analyze the e�ects of L1 prefetching, we disable L2 prefetching. Other than that, we maintain the con�g-
uration of the baseline (Table 2). Figure 24 compares the two L1 prefetchers (L1PF-Stream and L1PF-AMPM)
with the AVPP alone (AVPP) and with the AVPP working with the two L1 prefetchers (AVPP+L1PF-Stream
and AVPP+L1PF-AMPM). In this section, we consider the full AVPP (with both AVPP prediction and AVPP
prefetching).
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Fig. 24. Performance e�ect of L1 prefetching vs. AVPP.

We make three main observations. First, performance improvements provided by the L1 prefetchers (especially
AMPM) are signi�cant, as expected (because there is no L2 prefetching). Second, AVPP provides approximately
the same performance bene�ts as the L1 prefetchers. Third, when AVPP and the L1 prefetchers are used together,
the performance is additive in many benchmarks. The main reason is that most of the bene�ts are coming from
value prediction (e.g., breaking true data dependencies), not from prefetching. We conclude that AVPP and L1
prefetching can e�ectively coexist in the same system. They are complementary and provide additive performance
bene�ts.

7.11 Evaluation in a Muti-core Processor
In this section, we evaluate our AVPP predictor in a multi-core processor. The baseline is a 4-core processor with
32KB L1D&I private caches, 256KB private L2 caches and 2MB (per core) shared L3 cache (Table 6). We evaluate
two di�erent types of workloads (Table 6). First, we evaluate 6 multithreaded applications from PARSEC and
SPLASH benchmarks. Second, we evaluate 50 randomly assembled workloads, each comprising 4 benchmarks
from Table 4 (Table 6 shows 6 of these workload mixes). We run all the benchmarks for 10 billion instructions in
the region of interest.
7.11.1 Multithreaded. Figure 25 shows the speedup of a system with load value prediction running multi-

threaded applications in a multi-core system. Two observations are in order. First, the AVPP predictors perform
better than other predictors in 5 of 6 benchmarks. Second, in the two benchmarks which we also use on single-core
evaluation with only one thread (bodytrack and raytrace), the speedups we observe here are on the same order
of those we observe for the single-core system.

As pointed out in Section 4.3, VT is not coherent with memory, which could cause additional mispredictions. In
our experiments, we do not observe any misprediction due to this cause because of three main reasons. First, the
percentage of invalidations in L1 caches caused by other cores is very small (the number of invalidation requests
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Table 6. Configuration of the multi-core baseline processor, multithreaded benchmarks and a subset of multiprogrammed
benchmarks with detailed results.

Processor Con�guration Multithreaded Benchmarks Example Multiprogrammed Benchmarks

Cores: 4 cores
PARSEC Bench.:

bodytrack, MIX1: art, art, libquantum, gzip
from Table 2 freqmine, MIX2: leslie3d, soplex, libquantum, dealII

streamcluster MIX3: mcf, gzip, art, bodytrack

Caches:
L1D&I: 32KB

SPLASH2 Bench.:
barnes, ocean_cp, MIX4: wrf, bodytrack, libquantum, bodytrack

L2: 256KB, raytrace MIX5: water_spatial, libquantum, zeusmp, dealII
L3: 8MB water_spatial MIX6: raytrace, gzip, art, wrf

 0%

 5%

10%

15%

20%

25%

30%

bodytrack
barnes ocean_cp

ocean_ncp
raytrace

water_nsquared
GMEAN

Sp
ee

du
p

LVP
2D-Stride

DFCM
DVTAGE

VTAGE
AVPP-DVTAGE

AVPP-Stride
Hybrid

Fig. 25. Speedup of 6 multithreaded workloads.
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Fig. 26. Speedup of 50 multiprogram mixes of workloads.

is less than 0.002% of the read requests). Second, the VT is much smaller than the L1 cache, which causes its
entries to be evicted and refreshed with updated values much more frequently than L1, reducing the probability
of having stale values. Third, AVPP does not speculate until the prediction is con�dent, which requires 128
consecutive correct predictions in our setup. In regions of code where invalidations are common, the prediction is
not con�dent and consequently, the probability of misprediction is very low. We conclude that AVPP outperforms
all previous predictors in most of the multithreaded benchmarks without requiring any coherence mechanisms
in the VT.

7.11.2 Multiprogrammed. Figure 26 shows the weighted speedup [17] of a system with load value prediction
running di�erent combinations of single-threaded programs. The �gure shows the speedup on 6 mixes out of
50, and the geometric mean speedup across all 50 mixes. We make two observations. First, the AVPP predictor
outperforms the previous predictors in 40 of the mixes. Second, the geometric mean speedup across the 50 mixes
has similar gains we do observed for our single-core evaluation (Section 7.2). We conclude that AVPP outperforms
all previous predictors in most of the multiprogrammed workload mixes.

8 RELATED WORK
In this work, we propose a novel load value prediction scheme that 1) is based on address prediction, and 2)
uses prefetching to increase the prediction coverage and accuracy. AVPP is complementary to conventional
prefetching (Section 7.3). We have already discussed and evaluated other state-of-the-art value prediction
mechanisms [15, 16, 22, 34, 35, 37, 46–49, 54].
Mechanisms that have Similarities with AVPP. AVPP has a similar philosophy with store instructions as

the EXACT [2] branch predictor. EXACT updates the branch predictor information when a store is performed to
an address which dynamic branch prediction depends on, in a similar way than AVPP updates the VT when a
store is performed. Otherwise, AVPP and EXACT are totally di�erent mechanisms.

APDP [23] is a stride value predictor for load and store instructions that prefetches the next load address. It
consists of a single 2048-entry Memory Prefetching Table (MPT), each MPT entry composed by several �elds
including the last e�ective address, the current stride, and the prefetched value. It also implements a 1024-entry
Prefetching Validation Vable (PVT) that maintains the state of the prefetched values in the MPT. When a store
instruction overwrites a load address present in the MTV, APDP invalidates such entry. APDP is not designed
for being a simple mechanism, and as a consequence it has a high implementation cost. APDP has four main
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di�erences with our AVPP. First, AVPP is simple and easy to integrate into current microarchitectures: it does
not require selective re-execution on mispredictions and it leverages existing microarchitectural structures (e.g.,
load queue) instead of incorporating new hardware. Second, AVPP predicts only load instructions to improve the
performance/cost ratio. Third, AVPP decouples the address and the value tables for enabling a smaller and simpler
predictor, that it is also more accurate. Fourth, AVPP uses a prefetching mechanism that is dynamic and more
accurate.

Decoupled Load Value Prediction (DLVP) [58] is a context-based load value predictor that predicts the load
address in the fetch stage, requests this address from memory, and stores the prefetched value into a non-
speculative value table (that resembles the AVPP value table) before dispatch time. DLVP has at least three major
di�erences from AVPP. First, DLVP prefetches the value of the predicted address for the current load instruction.
As DLVP relies on accessing the L1 cache, the prediction fails when the predicted address misses in L1, or when
the memory system is busy serving a demand memory request, which limits the coverage of the predictor. AVPP
uses a dynamic algorithm that predicts the address of the current and future instances of the load instruction with
the goal of increasing coverage and hiding the memory latency. Second, DLVP uses a prediction mechanism that
relies on issuing a memory request to the L1 cache (placed far away from the front-end) and retrieve the value
back to the value table before the current load instruction is issued. The authors assume very low latencies that
could not be implementable in other architectures (e.g., a latency of 2 cycles to access L1 data cache ), like the one
used in AVPP, limiting the generality of the approach. Third, DLVP is a context-based predictor that has limited
performance when predicting back-to-back, in a similar way to other context-based predictors, such as FCM (see
Section 5.3). The paper does not discuss this issue, which could limit the performance of some workloads. AVPP
is a high-performance predictor that takes into account this and other issues (Section 7.4).
Prefetching Mechanisms. AVPP, although it gets most of its bene�ts from value prediction (Section 7.3), it

also performs prefetching into the VT to increase coverage and accuracy of value prediction.
Prefetching is one of the most e�ective techniques to reduce the e�ective load access time [5, 13]. Some

proposals focus on LLC misses [12, 32, 59], as they are a major source of pipeline stalls. Other works prefetch
into the L1 cache [31, 42, 43].

Runahead [42, 43] is a prefetching mechanism that speculatively executes independent instructions when
the instruction window is full, with the goal of generating cache misses. Runahead can achieve very accurate
predictions, as it uses branch prediction information. More advanced versions of runahead achieve better
coverage [25, 26].

B-Fetch [31] is a prefetching mechanism driven by branch prediction and address prediction. B-Fetch operates
in two steps. First, B-Fetch predicts the future path of execution with a mechanism based on branch prediction.
Second, B-Fetch predicts and prefetches the e�ective address of the load instructions along the previously
predicted path. B-Fetch uses the register content at earlier branch instructions to predict the e�ective address.

Zhou et.al. [70] propose a recovery-free value prediction mechanism that aims to increase memory level
parallelism. The mechanism speculatively breaks true data dependencies of dependent load instructions with the
sole purpose of prefetching data into L1.
Approximate Load Value Prediction. In applications that are resilient to errors, load value prediction can be

relaxed to improve performance and e�ciency at the cost of potentially lower prediction accuracy [38, 61, 68, 69].
RFVP [61, 68] predicts the requested value of the load instructions that are safe-to-approximate, and it never
checks or recovers from mispredictions, thereby avoiding pipeline �ushes. The programmer, however, has to
annotate the code to identify which loads are safe-to-approximate.
Other Related Techniques. In addition to the previous alternatives to speculate on load instructions, depen-

dence prediction [21, 39, 56] and memory renaming [40, 65] have been proposed. However, it has been shown
that load value prediction is, by far, the most e�ective of them all [10].

Address prediction is another technique that resembles AVPP. This technique is used for speculating on the
address of a load during the early stages of the pipeline, with the goal of hiding the load latency [6]. Unlike AVPP,
address prediction does not break true data dependencies and has limited performance gains.

9 CONCLUSION
Value prediction can signi�cantly improve instruction level parallelism at the cost of introducing additional
hardware. Despite recent advances, complexity is still a barrier that prevents value prediction to be widely

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: September 2018.



AVPP: Address-first Value-next Predictor with Value Prefetching • 1:23

adopted. The goal of this work is to go a step further and reduce complexity and hardware cost while maintaining
most of the performance bene�ts of value prediction. To this end, we revisit load value prediction (i.e., predicting
the values of only load instructions) as an e�cient alternative to predicting the values of all instructions.

We propose a new, low-cost load value predictor that leverages address predictability to achieve high coverage
and accuracy: the Address-�rst Value-next Predictor with Value Prefetching (AVPP). The key idea of AVPP is to
predict the load address �rst, which is used to index a small non-speculative Value Table (VT) to get the predicted
value next. To increase the predictor coverage, AVPP also predicts and prefetches the load address of a future
instance of the same load instruction into the VT, which increases the VT hit rate of future load instructions.
Our extensive evaluation shows that a system with AVPP is, on average, 11.2% faster and 3.7% more energy
e�cient than the baseline (outperforming all the previous state-of-the-art predictors in 16 of the 23 benchmarks
we evaluate), and its area is only 2,5% of the area of a 32KB L1 data cache. We show that both AVPP and L1/L2
prefetchers implemented together achieve additive performance improvements.

We propose, analyze and evaluate a taxonomy of value prediction policies based on di�erent design choices that
can be made to implement value prediction. These policies were not formally classi�ed, compared or evaluated
by previous works. This taxonomy will help to better de�ne, understand and reproduce future value prediction
works.

We propose microarchitectural optimizations that make load value prediction a better approach than value
prediction for all instructions in terms of complexity: we reduce the register port pressure and we leverage
existing hardware instead of introducing specialized elements for value prediction. Also, we reduce the size of
the predictor by 90% compared to the state-of-the-art approaches that predict all instructions.

We conclude that predicting only load instructions enables the implementation of AVPP, a simple, low-cost and
high-performance value predictor that requires minimal modi�cations to the architecture of existing processors.
AVPP addresses the key challenges against enabling wide adoption of value prediction in current processors.
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