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Motivation:	single-thread	performance	is	critical	for	many	applications
Problem:	improving	single-thread	performance	in	modern	processors	requires	
techniques	that	significantly	increase	the	hardware	cost
Goal:	revisit	Load	Value	Prediction	as	an	efficient	way	to	improve	single-thread	
performance
Contributions:
• We	propose	optimizations	for	reducing	the	hardware	cost	of	load	value	prediction
• We	propose	a	new	taxonomy of	Value	Prediction	Policies
• AVPP:	
• New	load	value	predictor	that	predicts	the	address	first	and	the	value	next.
• Increases	the	coverage	of	the	predictor	by	prefetching	the	value	of		a	future	
instance	of	the	load	instruction

Results:
• AVPP	outperforms	all	state-of-the-art value	predictors	in	the	context	of	load	value	
prediction,	and	it	is	less	complex than	predicting	all	instructions
• AVPP	provides	11.2% system	performance	improvement	and	3.7% energy	savings	
compared	to	no	value	prediction.

Executive	Summary
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• True	data	dependencies	limit	single-thread	performance significantly
• We	simulate	an	oracle	predictor	that	predicts	the	output	of	instructions	
correctly:

• We	observe	that	an	oracle	predictor	achieves	almost	the	same	performance		
predicting	load	instructions as	predicting	all	instructions	
• Predicting	all	instructions	requires	large	predictors
• Our	goal	is	revisit	Load	Value	Prediction	as	a	low-cost alternative	to	improve	
single-thread	performance

Motivation	and	Goal
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32%28%
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Background:	Value	Prediction
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True	Data	Dependency:

• Value	Prediction	breaks	true	data	dependencies	by	
predicting	values	and	performing	speculative	execution
• Prediction: the	output	value	of	instr_0	(A)
• Speculation:	executes	instr_1	using	the	predicted	value	of	A
• instr_0	and	instr_1	are	executed	in	parallel

• Requires	a	Rollback	mechanism	to	recover	from	
mispredictions

instr_0: A = B + 1
instr_1: C = A + 3

Read-After-Write	(RAW)
Depends	on	the	result	of	the	previous	instruction



State-of-the-art	Value	Predictors
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• Last	Value	Predictor	(LVP) [Lipasti+	MICRO’96]
• The	predicted	value	is	the	last	value

• Stride	Predictor	(Stride) [Mendelson+	TR’96]
• The	predicted	value	is	the	last	value	+	stride
• 2D-Stride [Eickemeyer+	IBM	Journal’93]:	variant	that	improves	
performance	in	loops

• Finite	Context	Method	(FCM)	predictor [Sazeides+	TR’97]
• Context	based	predictor
• Large	prediction	tables
• D-FCM [Goeman+	HPCA’01]:	variant	that	uses	strides

• VTAGE [Perais+	HPCA’14]
• Uses	global	branch	history
• D-VTAGE [Perais+	HPCA’15]:	variant	that	uses	strides
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Reducing	Hardware	Complexity
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• Predicting	only	load	instructions instead	of	predicting	all	
instructions has	some	advantages:
• Decrease	the	hardware	cost:	we	show	that	load	value	
predictors	have	a	smaller	area	footprint

• Less	pressure	over	shared	resources	(e.g.,	Physical	
Register	File):	we	show	how	to	reduce	the	number	of	
ports	in	the	paper

• We	leverage	the	Load	Queue for	implementing	load	
value	prediction

Load Instructions are 25% of all instructions on average

Small modifications to support Load Value Prediction
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Previous	Works	on	Reducing	Complexity	of	Value	Prediction

AVPP
512

11.2%
Minimal hardware Modifications 

to an OoO processor

Load	Value	Prediction:

Main contribution
for reducing
complexity

Work [Perais+ HPCA’14] EOLE [Perais+ ISCA’14] BeBOP [Perais+ HPCA’15] [Perais+ MICRO’16]
Predictor Entries 8192 8192 2048 2048

Speedup ~10% ~10% 11.2% 5%

- Introduces Confidence
Counters

- Reduces the extra ports
required on the PRF
- Increases the
complexity of the in-order
front-end and back-end

Single predictor entry for a 
cache line

- Register reuse
- Low hardware cost

- Simple mechanism to
recover from
value mispredictions

Value	prediction	for	all	instructions:
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Taxonomy	of	Value	Prediction	Policies	
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We	propose	a	new	taxonomy for	analyzing	value	
prediction	design	choices
1. Predictor	update
2. Prediction	availability
3. In-flight	pending	updates



Taxonomy:	Predictor	Update	Policies	
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Where is	the	predictor	updated in	the	pipeline?
1. Correct	update:
• The	predictor	is	updated	at	the	commit	stage

2. Speculative	update:
• The	predictor	is	updated	at	the	fetch	stage	



Taxonomy:	Prediction	Availability	Policies	
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What happens	when	the	prediction	is	not	ready	at	
dispatch	time?
1. Delay	dispatch
• The	pipeline	is	stalled waiting	for	the	
prediction

2. Not-delay	dispatch
• The	prediction	is	discarded



Taxonomy:	In-flight	Pending	Update	Policies	
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What	happens	with	back-to-back	predictions?
1. In-flight	ignore
• The	predictor	ignores previous	in-flight	
instructions

2. In-flight	wait
• The	predictor	waits for	previous	in-flight	
instructions	to	update	the	predictor		



Taxonomy
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We	evaluate	different	combinations	of	these	
policies	for	all	predictors	we	evaluate
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AVPP:	Address-first	Value-next	Value	Predictor
with	Data	Prefetching	
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Observations:	
• Predicting	load	instructions	has	almost	the	same	
potential	performance	benefits	 as	predicting	all	
instructions

• Addresses are	usually	more	predictable than	values

Key	Ideas:
• Predict	only	load	instructions	to	reduce	hardware	cost
• Leverage	the	better	predictability	of	addresses	on	load	
instructions	to	improve	performance



AVPP:	Predictor	Overview
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Two	main	hardware	structures:
1. Address	Table	(AT):

1. Implemented	with	any	predictor
2. Indexed	by	the	load	instruction	address
3. Calculates	the	predicted	address

AT VT
1 2 3

Predicted
address	

LD	instruction
address	

Predicted
value	

Confidence

3bits

pdis

3bits 1bit

2.		Value	Table	(VT):	
1. Indexed	by	the	predicted	
address

2. Returns	the	predicted	value

dAT predictor entry

AT entry VT entry

valuetag



AVPP:	Prediction	Overview	(II)

21

• AVPP	predicts	the	output	of	every	
load	instruction

• The	prediction happens	in	the	
front-end of	the	pipeline

• Confidence	mechanism	to	improve	
accuracy	[Perais+	HPCA’14]

• If	the	prediction	is	confident,	write	
the	result	in	the	target	register

• Speculatively	execute	all	the	
dependent	instructions

Front-end Exec. (OoO) CommitLoad

1 2 3

AT VT
1 2 3

Predicted
address	

LD	Instruction
address	

Predicted
value	

1 2 3

3

Front-end Exec. (OoO) Commit
Dependent
instruction

TIME

4

4



AVPP:	Update	Overview
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• Update	the	AT	at commit	of	every	load	instruction
• Update	the	VT:
• At	the	commit	of	every	store	instruction.	Keeps	the	VT	
coherent	with	memory

• At	the	commit	of	every	load	instruction?
Front-end Exec. (OoO) CommitLoad

765

Front-end Exec. (OoO) CommitStore

TIMEAT VT7

LD	instruction
address	

Load	
Address

Load	
Address Value

98

Store	
Address

7

Store	
Address

9

Store	
Value

9

TIME

Should we update the VT 
at the commit of every load instruction ?



40 4
tag Last	value

-
Stride

81216 4

AVPP:	Updating	the	VT	at	Each	Load	Instruction	
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40:	LD	[4]
40:	LD	[8]
40:	LD	[12]
40:	LD	[16]

AT

4 10
8 3

12 9
16 13

addr value

VT

PC Instruction

4 10
8 3

12 9
16 13

tag val

L1 Cache

Correct	
predictions	:		0

MISS MISS

• VT always misses
• No valid predictions

Last	addr

Stride
Predictor

HITHIT MISSHIT

8+4=1212+4=16

Predictor stage: predictingPredictor stage: updating



AVPP:	Prefetching	Overview	
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• Idea: Prefetch	values	from	the	memory	hierarchy	into	VT	to	
increase	the	VT	hit	ratio

• The	prefetch	address	is	calculated	at	each	address	prediction
• Generated	when	the	prediction	is	confident
• Predicted	to	be	accessed	by	future	instances of	the	same	load	
instruction

• Dynamic	prefetch	distance	(details	in	the	paper)
• The	VT is	updated	with	the	prefetched	values

Prefetch
address

VT
Prefetch
Value

AT
1 2

Predicted
address	

LD	Instruction
address	

3 Prefetch
address	

4

4

3

The goal of prefetching is to increase the predictor 
coverage, not to hide memory latency
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AVPP:	Updating	the	VT	with	Prefetching	
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40:	LD	[4]
40:	LD	[8]
40:	LD	[12]
40:	LD	[16]

AT
12 9
16 13
20 2

addr value

VT

PC Instruction

4 10
8 3

12 9
16 13

tag val

L1 Cache

Correct	
predictions	:		0

MISS HIT

Last	addr

Stride
Predictor

HITHIT HITHIT

8+4=1212+4=16

Predictor stage: predictingPredictor stage: updating

20 2

12

• Valid Predictions
• VT hits because we prefetch the

right values into it



AVPP:	Putting	All	Together

26

• Leverages	the	better	predictability	of	
addresses on	load	instructions	to	improve	
performance

• Two	basic	hardware	structures:	
• AT:	predicts	the	address	first	
• VT:	predicts	the	value	next

• Prefetches future	instances	of	the	load	
instruction	to	improve	the	VT	hit	rate
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Experimental	Setup
Simulation	platform:
• ZSIM [Sanchez+	ISCA’13]	:	4-issue	OoO cores,	TAGE	branch	
predictor,	128-entry	ROB,	32KB	L1	caches,	256KB	L2s,	Stream	
prefetchers

• McPAT [Li+	MICRO’09]	for	estimating	the	energy	consumption
• Predictors	evaluated:
• LVP,	2D-Stride,	DFCM,	VTAGE,	DVTAGE,	AVPP-DVTAGE,	
AVPP-Stride

• 512	entries
23	selected	benchmarks	from
• SPEC2000
• SPEC2006
• PARSEC/SPLASH2
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Evaluation:	Speedup

AVPP outperforms the state-of-the-art predictors
11.2% speedup over no value prediction

11.2%
5.9%
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Evaluation:	Energy	

AVPP outperforms the state-of-the-art predictors
3.7% energy savings over no value prediction

2.6% 3.7%



Coverage	of	a	predictor:	percentage	of	loads	for	which	a	
prediction	is	used	for	speculation	
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Coverage	of	the	Load	Value	Predictors	

AVPP covers more load instructions than the state-of-the-art
AVPP covers 44% of the load instructions

44%36%



32

Evaluation:	Accuracy

Accuracy is higher than 99.8% in all predictors
because of the use of the confidence counters
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Where	are	the	Benefits	Coming	from?	

AVPP prefetching alone does not provide significant performance improvement
AVPP prediction alone provides only 4.8% speedup

The full AVPP achieves 10.6% speedup

1.8% 4.8% 10.6%



34

More	Results	in	the	Paper	

• Multi-core simulations
• Cache	hit	distribution
• Distribution	of	the	prefetch	request	that	hits	in	L1,	
L2	and	main	memory
• Sensitivity	studies	on
• Memory	hierarchy	(larger	caches)
• Load	Queue	size

• Impact	of	different	load	value	prediction	
implementation	policies
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Motivation:	single-thread	performance	is	critical	for	many	applications
Problem:	improving	single-thread	performance	in	modern	processors	requires	
techniques	that	significantly	increase	the	hardware	cost
Goal:	revisit	Load	Value	Prediction	as	an	efficient	way	to	improve	single-thread	
performance
Contributions:
• We	propose	optimizations	for	reducing	the	hardware	cost	of	load	value	prediction
• We	propose	a	new	taxonomy of	Value	Prediction	Policies
• AVPP:	
• New	load	value	predictor	that	predicts	the	address	first	and	the	value	next.
• Increases	the	coverage	of	the	predictor	by	prefetching	the	value	of		a	future	
instance	of	the	load	instruction

Results:
• AVPP	outperforms	all	state-of-the-art value	predictors	in	the	context	of	load	value	
prediction,	and	it	is	less	complex than	predicting	all	instructions
• AVPP	provides	11.2% system	performance	improvement	and	3.7% energy	savings	
compared	to	no	value	prediction.

Executive	Summary

36



Lois Orosa, Rodolfo Azevedo and Onur Mutlu

AVPP: 
Address-first Value-next Predictor 

with Value Prefetching for Improving the 
Efficiency of Load Value Prediction



38

BACKUP	



Cache	Hit	Distribution	
of	the	predicted	load	instructions
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Most of the predicted load instructions
hit into L1 cache



Cache	Hit	Distribution	
of	AVPP-DVTAGE	prefetch	requests
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Most of the AVPP prefetch requests hit into L1 cache 



Coverage	of	AVPP-DVTAGE	
with	and	without	prefetching
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The coverage of the predictor 
largely improves with prefetching



VT	hit	rate	with	and	without	prefetching
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Prefetching increases the VT hit rate



Impact	of	the	Prediction	Policies
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The best policy depends on the microarchitecture



Impact	of	the	Predictor	Size
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512 entries is a sweet spot



Impact	of	the	VT	Table	Size
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64 VT entries is a sweet spot



Impact	of	Cache	Configurations
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The speedup of load value prediction does not 
depend much on the cache configuration



Store	Set	Prediction	
and	L2	Prefetching
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The L2 Prefetcher and Load Value Prediction (LVP) 
are complementary



L1	prefetching	VS	AVPP
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When AVPP and L1 prefetcher are used together
the performance is additive in many benchmarks 



Multithreaded	and	Multiprogram	Mixes
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AVPP outperforms previous predictors


