
Lois Orosa, Rodolfo Azevedo and Onur Mutlu

AVPP: 
Address-first Value-next Predictor 

with Value Prefetching for Improving the 
Efficiency of Load Value Prediction



Motivation:	single-thread	performance	is	critical	for	many	applications
Problem:	improving	single-thread	performance	in	modern	processors	requires	
techniques	that	significantly	increase	the	hardware	cost
Goal:	revisit	Load	Value	Prediction	as	an	efficient	way	to	improve	single-thread	
performance
Contributions:
• We	propose	optimizations	for	reducing	the	hardware	cost	of	load	value	prediction
• We	propose	a	new	taxonomy of	Value	Prediction	Policies
• AVPP:	
• New	load	value	predictor	that	predicts	the	address	first	and	the	value	next.
• Increases	the	coverage	of	the	predictor	by	prefetching	the	value	of		a	future	
instance	of	the	load	instruction

Results:
• AVPP	outperforms	all	state-of-the-art value	predictors	in	the	context	of	load	value	
prediction,	and	it	is	less	complex than	predicting	all	instructions
• AVPP	provides	11.2% system	performance	improvement	and	3.7% energy	savings	
compared	to	no	value	prediction.

Executive	Summary

2



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

3

AVPP	Outline



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

4

AVPP	Outline



• True	data	dependencies	limit	single-thread	performance significantly
• We	simulate	an	oracle	predictor	that	predicts	the	output	of	instructions	
correctly:

• We	observe	that	an	oracle	predictor	achieves	almost	the	same	performance		
predicting	load	instructions as	predicting	all	instructions	
• Predicting	all	instructions	requires	large	predictors
• Our	goal	is	revisit	Load	Value	Prediction	as	a	low-cost alternative	to	improve	
single-thread	performance

Motivation	and	Goal

5

32%28%



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

6

AVPP	Outline



Background:	Value	Prediction

7

True	Data	Dependency:

• Value	Prediction	breaks	true	data	dependencies	by	
predicting	values	and	performing	speculative	execution
• Prediction: the	output	value	of	instr_0	(A)
• Speculation:	executes	instr_1	using	the	predicted	value	of	A
• instr_0	and	instr_1	are	executed	in	parallel

• Requires	a	Rollback	mechanism	to	recover	from	
mispredictions

instr_0: A = B + 1
instr_1: C = A + 3

Read-After-Write	(RAW)
Depends	on	the	result	of	the	previous	instruction



State-of-the-art	Value	Predictors

8

• Last	Value	Predictor	(LVP) [Lipasti+	MICRO’96]
• The	predicted	value	is	the	last	value

• Stride	Predictor	(Stride) [Mendelson+	TR’96]
• The	predicted	value	is	the	last	value	+	stride
• 2D-Stride [Eickemeyer+	IBM	Journal’93]:	variant	that	improves	
performance	in	loops

• Finite	Context	Method	(FCM)	predictor [Sazeides+	TR’97]
• Context	based	predictor
• Large	prediction	tables
• D-FCM [Goeman+	HPCA’01]:	variant	that	uses	strides

• VTAGE [Perais+	HPCA’14]
• Uses	global	branch	history
• D-VTAGE [Perais+	HPCA’15]:	variant	that	uses	strides



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

9

AVPP	Outline



Reducing	Hardware	Complexity

10

• Predicting	only	load	instructions instead	of	predicting	all	
instructions has	some	advantages:
• Decrease	the	hardware	cost:	we	show	that	load	value	
predictors	have	a	smaller	area	footprint

• Less	pressure	over	shared	resources	(e.g.,	Physical	
Register	File):	we	show	how	to	reduce	the	number	of	
ports	in	the	paper

• We	leverage	the	Load	Queue for	implementing	load	
value	prediction

Load Instructions are 25% of all instructions on average

Small modifications to support Load Value Prediction



11

Previous	Works	on	Reducing	Complexity	of	Value	Prediction

AVPP
512

11.2%
Minimal hardware Modifications 

to an OoO processor

Load	Value	Prediction:

Main contribution
for reducing
complexity

Work [Perais+ HPCA’14] EOLE [Perais+ ISCA’14] BeBOP [Perais+ HPCA’15] [Perais+ MICRO’16]
Predictor Entries 8192 8192 2048 2048

Speedup ~10% ~10% 11.2% 5%

- Introduces Confidence
Counters

- Reduces the extra ports
required on the PRF
- Increases the
complexity of the in-order
front-end and back-end

Single predictor entry for a 
cache line

- Register reuse
- Low hardware cost

- Simple mechanism to
recover from
value mispredictions

Value	prediction	for	all	instructions:



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

12

AVPP	Outline



Taxonomy	of	Value	Prediction	Policies	

13

We	propose	a	new	taxonomy for	analyzing	value	
prediction	design	choices
1. Predictor	update
2. Prediction	availability
3. In-flight	pending	updates



Taxonomy:	Predictor	Update	Policies	

14

Where is	the	predictor	updated in	the	pipeline?
1. Correct	update:
• The	predictor	is	updated	at	the	commit	stage

2. Speculative	update:
• The	predictor	is	updated	at	the	fetch	stage	



Taxonomy:	Prediction	Availability	Policies	

15

What happens	when	the	prediction	is	not	ready	at	
dispatch	time?
1. Delay	dispatch
• The	pipeline	is	stalled waiting	for	the	
prediction

2. Not-delay	dispatch
• The	prediction	is	discarded



Taxonomy:	In-flight	Pending	Update	Policies	

16

What	happens	with	back-to-back	predictions?
1. In-flight	ignore
• The	predictor	ignores previous	in-flight	
instructions

2. In-flight	wait
• The	predictor	waits for	previous	in-flight	
instructions	to	update	the	predictor		



Taxonomy

17

We	evaluate	different	combinations	of	these	
policies	for	all	predictors	we	evaluate



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

18

AVPP	Outline



AVPP:	Address-first	Value-next	Value	Predictor
with	Data	Prefetching	

19

Observations:	
• Predicting	load	instructions	has	almost	the	same	
potential	performance	benefits	 as	predicting	all	
instructions

• Addresses are	usually	more	predictable than	values

Key	Ideas:
• Predict	only	load	instructions	to	reduce	hardware	cost
• Leverage	the	better	predictability	of	addresses	on	load	
instructions	to	improve	performance



AVPP:	Predictor	Overview

20

Two	main	hardware	structures:
1. Address	Table	(AT):

1. Implemented	with	any	predictor
2. Indexed	by	the	load	instruction	address
3. Calculates	the	predicted	address

AT VT
1 2 3

Predicted
address	

LD	instruction
address	

Predicted
value	

Confidence

3bits

pdis

3bits 1bit

2.		Value	Table	(VT):	
1. Indexed	by	the	predicted	
address

2. Returns	the	predicted	value

dAT predictor entry

AT entry VT entry

valuetag



AVPP:	Prediction	Overview	(II)

21

• AVPP	predicts	the	output	of	every	
load	instruction

• The	prediction happens	in	the	
front-end of	the	pipeline

• Confidence	mechanism	to	improve	
accuracy	[Perais+	HPCA’14]

• If	the	prediction	is	confident,	write	
the	result	in	the	target	register

• Speculatively	execute	all	the	
dependent	instructions

Front-end Exec. (OoO) CommitLoad

1 2 3

AT VT
1 2 3

Predicted
address	

LD	Instruction
address	

Predicted
value	

1 2 3

3

Front-end Exec. (OoO) Commit
Dependent
instruction

TIME

4

4



AVPP:	Update	Overview

22

• Update	the	AT	at commit	of	every	load	instruction
• Update	the	VT:
• At	the	commit	of	every	store	instruction.	Keeps	the	VT	
coherent	with	memory

• At	the	commit	of	every	load	instruction?
Front-end Exec. (OoO) CommitLoad

765

Front-end Exec. (OoO) CommitStore

TIMEAT VT7

LD	instruction
address	

Load	
Address

Load	
Address Value

98

Store	
Address

7

Store	
Address

9

Store	
Value

9

TIME

Should we update the VT 
at the commit of every load instruction ?



40 4
tag Last	value

-
Stride

81216 4

AVPP:	Updating	the	VT	at	Each	Load	Instruction	

23

40:	LD	[4]
40:	LD	[8]
40:	LD	[12]
40:	LD	[16]

AT

4 10
8 3

12 9
16 13

addr value

VT

PC Instruction

4 10
8 3

12 9
16 13

tag val

L1 Cache

Correct	
predictions	:		0

MISS MISS

• VT always misses
• No valid predictions

Last	addr

Stride
Predictor

HITHIT MISSHIT

8+4=1212+4=16

Predictor stage: predictingPredictor stage: updating



AVPP:	Prefetching	Overview	

24

• Idea: Prefetch	values	from	the	memory	hierarchy	into	VT	to	
increase	the	VT	hit	ratio

• The	prefetch	address	is	calculated	at	each	address	prediction
• Generated	when	the	prediction	is	confident
• Predicted	to	be	accessed	by	future	instances of	the	same	load	
instruction

• Dynamic	prefetch	distance	(details	in	the	paper)
• The	VT is	updated	with	the	prefetched	values

Prefetch
address

VT
Prefetch
Value

AT
1 2

Predicted
address	

LD	Instruction
address	

3 Prefetch
address	

4

4

3

The goal of prefetching is to increase the predictor 
coverage, not to hide memory latency



40 4
tag Last	value

-
Stride

81216 4

AVPP:	Updating	the	VT	with	Prefetching	

25

40:	LD	[4]
40:	LD	[8]
40:	LD	[12]
40:	LD	[16]

AT
12 9
16 13
20 2

addr value

VT

PC Instruction

4 10
8 3

12 9
16 13

tag val

L1 Cache

Correct	
predictions	:		0

MISS HIT

Last	addr

Stride
Predictor

HITHIT HITHIT

8+4=1212+4=16

Predictor stage: predictingPredictor stage: updating

20 2

12

• Valid Predictions
• VT hits because we prefetch the

right values into it



AVPP:	Putting	All	Together

26

• Leverages	the	better	predictability	of	
addresses on	load	instructions	to	improve	
performance

• Two	basic	hardware	structures:	
• AT:	predicts	the	address	first	
• VT:	predicts	the	value	next

• Prefetches future	instances	of	the	load	
instruction	to	improve	the	VT	hit	rate



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

AVPP	Outline

27



28

Experimental	Setup
Simulation	platform:
• ZSIM [Sanchez+	ISCA’13]	:	4-issue	OoO cores,	TAGE	branch	
predictor,	128-entry	ROB,	32KB	L1	caches,	256KB	L2s,	Stream	
prefetchers

• McPAT [Li+	MICRO’09]	for	estimating	the	energy	consumption
• Predictors	evaluated:
• LVP,	2D-Stride,	DFCM,	VTAGE,	DVTAGE,	AVPP-DVTAGE,	
AVPP-Stride

• 512	entries
23	selected	benchmarks	from
• SPEC2000
• SPEC2006
• PARSEC/SPLASH2



29

Evaluation:	Speedup

AVPP outperforms the state-of-the-art predictors
11.2% speedup over no value prediction

11.2%
5.9%



30

Evaluation:	Energy	

AVPP outperforms the state-of-the-art predictors
3.7% energy savings over no value prediction

2.6% 3.7%



Coverage	of	a	predictor:	percentage	of	loads	for	which	a	
prediction	is	used	for	speculation	

31

Coverage	of	the	Load	Value	Predictors	

AVPP covers more load instructions than the state-of-the-art
AVPP covers 44% of the load instructions

44%36%



32

Evaluation:	Accuracy

Accuracy is higher than 99.8% in all predictors
because of the use of the confidence counters



33

Where	are	the	Benefits	Coming	from?	

AVPP prefetching alone does not provide significant performance improvement
AVPP prediction alone provides only 4.8% speedup

The full AVPP achieves 10.6% speedup

1.8% 4.8% 10.6%



34

More	Results	in	the	Paper	

• Multi-core simulations
• Cache	hit	distribution
• Distribution	of	the	prefetch	request	that	hits	in	L1,	
L2	and	main	memory
• Sensitivity	studies	on
• Memory	hierarchy	(larger	caches)
• Load	Queue	size

• Impact	of	different	load	value	prediction	
implementation	policies



Motivation	and	Goal
Motivation	and	Goal
Background
Reducing	Hardware	Complexity
Taxonomy	of	Value	Prediction	
Mechanism:	AVPP
Evaluation	and	Results
Conclusion

35

AVPP	Outline



Motivation:	single-thread	performance	is	critical	for	many	applications
Problem:	improving	single-thread	performance	in	modern	processors	requires	
techniques	that	significantly	increase	the	hardware	cost
Goal:	revisit	Load	Value	Prediction	as	an	efficient	way	to	improve	single-thread	
performance
Contributions:
• We	propose	optimizations	for	reducing	the	hardware	cost	of	load	value	prediction
• We	propose	a	new	taxonomy of	Value	Prediction	Policies
• AVPP:	
• New	load	value	predictor	that	predicts	the	address	first	and	the	value	next.
• Increases	the	coverage	of	the	predictor	by	prefetching	the	value	of		a	future	
instance	of	the	load	instruction

Results:
• AVPP	outperforms	all	state-of-the-art value	predictors	in	the	context	of	load	value	
prediction,	and	it	is	less	complex than	predicting	all	instructions
• AVPP	provides	11.2% system	performance	improvement	and	3.7% energy	savings	
compared	to	no	value	prediction.

Executive	Summary

36



Lois Orosa, Rodolfo Azevedo and Onur Mutlu

AVPP: 
Address-first Value-next Predictor 

with Value Prefetching for Improving the 
Efficiency of Load Value Prediction



38

BACKUP	



Cache	Hit	Distribution	
of	the	predicted	load	instructions

39

Most of the predicted load instructions
hit into L1 cache



Cache	Hit	Distribution	
of	AVPP-DVTAGE	prefetch	requests

40

Most of the AVPP prefetch requests hit into L1 cache 



Coverage	of	AVPP-DVTAGE	
with	and	without	prefetching

41

The coverage of the predictor 
largely improves with prefetching



VT	hit	rate	with	and	without	prefetching

42

Prefetching increases the VT hit rate



Impact	of	the	Prediction	Policies

43

The best policy depends on the microarchitecture



Impact	of	the	Predictor	Size

44

512 entries is a sweet spot



Impact	of	the	VT	Table	Size

45

64 VT entries is a sweet spot



Impact	of	Cache	Configurations

46

The speedup of load value prediction does not 
depend much on the cache configuration



Store	Set	Prediction	
and	L2	Prefetching

47

The L2 Prefetcher and Load Value Prediction (LVP) 
are complementary



L1	prefetching	VS	AVPP

48

When AVPP and L1 prefetcher are used together
the performance is additive in many benchmarks 



Multithreaded	and	Multiprogram	Mixes

49

AVPP outperforms previous predictors


