Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation

Xiangyao Yu¹, Christopher Hughes², Nadathur Satish², Onur Mutlu³, Srinivas Devadas¹ ² Intel Labs ³ETH Zürich ¹MIT

Motivation

- In-package DRAM has
 - 5X higher bandwidth than offpackage DRAM
 - Similar latency as off-package DRAM
 - Limited capacity (up to 16 GB)
- In-package DRAM can be used as a cache

Banshee Contribution

- Bandwidth efficiency as a first-class design constraint
- High Bandwidth efficiency without degrading latency

Idea 1: Efficient TLB coherence for Page-**Table-Based DRAM Caches**

Bandwdith Inefficiency in Existing DRAM Caches

* Assuming 4-way set-associative DRAM cache

ETH zürich

intel,

Idea 2: Bandwidth-Aware Cache Replacement

- DRAM cache replacement incurs significant DRAM traffic
- Cache replacement traffic

BEAR Tagless Unison Alloy **DRAM Cache Traffic Breakdown**

- **Drawback 1**: Metadata traffic (e.g., tags, LRU bits, frequency counters, etc.)
- **Drawback 2**: Replacement traffic
- Especially for coarse-granularity (e.g., page-granularity) DRAM cache designs

- Metadata traffic
- Limit cache replacement rate
 - Replace only when the incoming page's frequency counter is greater than the victim pages's counter by a threshold
- Reduce metadata traffic
 - Access frequency counters for a randomly sampled fraction of memory accesses

Evaluations

Banshee reduces **36%** in-package DRAM

Banshee reduces 3% off-package DRAM