Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation
Xiangyao Yu1, Christopher Hughes2, Nadathur Satish2, Onur Mutlu3, Srinivas Devadas1
1MIT 2 Intel Labs 3 ETH Zürich

Motivation
• In-package DRAM has
 - 5X higher bandwidth than off-package DRAM
 - Similar latency as off-package DRAM
 - Limited capacity (up to 16 GB)
• In-package DRAM can be used as a cache

Banshee Contribution
• Bandwidth efficiency as a first-class design constraint
• High Bandwidth efficiency without degrading latency

Idea 1: Efficient TLB coherence for Page-Table-Based DRAM Caches
• Track DRAM cache contents using page tables and TLBs
• Maintain latest mapping for recently remapped pages in the Tag Buffer
• Enforce TLB coherence lazily when the Tag Buffer is full to amortize the cost

Idea 2: Bandwidth-Aware Cache Replacement
• DRAM cache replacement incurs significant DRAM traffic
 - Cache replacement traffic
 - Metadata traffic
• Limit cache replacement rate
 - Replace only when the incoming page’s frequency counter is greater than the victim pages’s counter by a threshold
• Reduce metadata traffic
 - Access frequency counters for a randomly sampled fraction of memory accesses

Evaluations
• Banshee improves performance by 15% on average over the best-previous (i.e., BEAR) latency-optimized DRAM cache design
• Banshee reduces 36% in-package DRAM traffic over the best-previous design
• Banshee reduces 3% off-package DRAM traffic over the best-previous design