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High-Bandwidth In-Package DRAM

* In-package DRAM has

- 5X higher bandwidth than
off-package DRAM

- Similar latency as off-
package DRAM

- Limited capacity (up to 16
GB)

* In-package DRAM can be
used as a cache
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Bandwidth Inefficiency in Existing DRAM Cache Designs

* Drawback 1: Metadata traffic ® Hit » Metadata
(e.g., tags, LRU bits, frequency
counters, etc.)
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Bandwidth Inefficiency in Existing DRAM Cache Designs

* Drawback 1: Metadata traffic
(e.g., tags, LRU bits, frequency
counters, etc.)

* Drawback 2: Cache replacement
traffic

- Especially for coarse-granularity
(e.g., page-granularity) DRAM
cache designs
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Banshee Improves DRAM Bandwidth Efficiency

* Idea 1: Page-table-based
contents tracking with efficient
translation lookaside buffer (TLB)
coherence

- Track contents of DRAM cache using
page tables and TLBs

- Lightweight TLB coherence
mechanism
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Banshee Improves DRAM Bandwidth Efficiency

* Idea 1: Page-table-based " Hit Metadata Replacement
contents tracking with efficient
translation lookaside buffer (TLB)

coherence
This paper

* ldea 2: Bandwidth-aware 3
frequency-based replacement l

(FBR) policy

- Replacement traffic reduction: Limit
the rate of DRAM cache replacement 0

Bytes per Instruction
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- Metadata traffic reduction: Access
Cache Cache

metadata for a sampled fraction of
memory accesses DRAM Cache Traffic Breakdown



Page-Table-Based DRAM Cache Contents Tracking

Software Hardware
®* Track DRAM cache contents =

using the the virtual memory Cage Tablo Entre Core
mechanism PPN[--] TLB Entry
VPN | PPN |...
* Advantage -
2 Page Table/ : | translation Lookaside Buffer (TLB)

- Zero overhead for tag storage
and lookup

SRAM Cache Hierarchy

* Disadvantage
- TLB coherence overhead

- Cache replacement overhead
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|ldea 1: Efficient TLB Coherence

Software Hardware

* Track DRAM cache contents Core Cached | Way
| Page Tabl (1 bit) | (2 bits) .
using page tables and TLBs “:i; ‘ab e Entry — ' ts
VPN | PPN
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|ldea 1: Efficient TLB Coherence

Software Hardware

* Track DRAM cache contents Core Cached | Way
. (1 bit) (2 bits) -
using page tables and TLBs ":I:imab'e Entry — ' it
* Maintain latest mapping for VPN | PPN

Page Table

recenﬂy remapped pages iNn ' | Translation Lookaside Buffer (TLB)
the Tag Buffer E SRAM Cache Hierarchy
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|ldea 1: Efficient TLB Coherence

Software Hardware

* Track DRAM cache contents Core Cached | Way
: (1 bit) | (2 bits) |
using page tables and TLBs ":I:imab'e Entry TLB Entry >
* Maintain latest mapping for VPN | PPN

Page Table

Translation Lookaside Buffer (TLB)
SRAM Cache Hierarchy

recently remapped pages In
the Tag Buffer

Reverse

* Enforce TLB coherence lazily (Fing":,','?ﬁ'E"ﬁhat ' |Tag Buffer
when the Tag Buffer is full to maptoagven PPN)) : | BHEHEEH PPN V[Mapping]
' CTICT 1 0T 1

amortize the cost

- Memory Controller

In-Package || Off-Pack
DRAM DRAM

* Assuming 4-way set-associative DRAM cache
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ldea 2: Bandwidth-Aware Cache Replacement

* DRAM cache replacement
Incurs significant DRAM
traffic

- Cache replacement traffic

- Metadata traffic (e.qg., frequency
counter lookups/updates)
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ldea 2: Bandwidth-Aware Cache Replacement

* DRAM cache replacement
Incurs significant DRAM
traffic

- Cache replacement traffic

- Metadata traffic (e.qg., frequency
counter lookups/updates)
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ldea 2: Bandwidth-Aware Cache Replacement

* DRAM cache replacement
Incurs significant DRAM
traffic

- Cache replacement traffic

- Metadata traffic (e.qg., frequency
counter lookups/updates)
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ldea 2: Bandwidth-Aware Cache Replacement

* DRAM cache replacement
Incurs significant DRAM

traffic
Cache Misses
* Limit cache replacement rate (64 B) |
- Replace only when the Memory |Cache Hits Off-
incoming page’s frequency Controller| (64 B)— Package
counter is greater than the Pg%ﬁ%e
victim pages’s counter by a —
Frequency Limited Cache
threshold Counter Replacements

Accesses
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ldea 2: Bandwidth-Aware Cache Replacement

* DRAM cache replacement
Incurs significant DRAM
traffic

* Limit cache replacement rate

* Reduce metadata traffic

- Access frequency counters for
a randomly sampled fraction
of memory accesses
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Banshee Extensions

* Supporting large pages (e.g., 2MB)
- A large page Is cached either in its entirety or not at all

* Supporting multi-socket processors
- Coherent DRAM caches
- Partitioned DRAM caches
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Performance Evaluation

* 7Sim simulator ]

* 16 cores (4-issue, out-of-order, 2.7 GHz)
* In-package DRAM (1 GB, 84 GB/s)

* Off-package DRAM (21 GB/s)

* Tag Buffer

- One Tag Buffer per memory controller (MC)
- 1024 entries, 5 KB In size

[1] Sanchez, Daniel, and Christos Kozyrakis. "ZSim: fast and accurate microarchitectural
simulation of thousand-core systems." ISCA, 2013.

17



Speedup (Normalized to off-package DRAM only)

Perfect In-package
DRAM Cache

23% within perfect DRAM cache |
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* Banshee improves performance by 15% on average over the best-previous
(.e., BEAR) latency-optimized DRAM cache design
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DRAM Bandwidth Efficiency

H Hit Metadata Replacement
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* Banshee reduces 36% in-package DRAM traffic over the best-previous design
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DRAM Bandwidth Efficiency

mHit Metadata Replacement
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* Banshee reduces 36% in-package DRAM traffic over the best-previous design
* Banshee reduces 3% off-package DRAM traffic over the best-previous design
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Effect of Replacement Traffic Reduction

2 Sampling Frequency Counters

Limiting Cache
1.5 |Replacement Rate

Normalized Speedup
-
O A

Banshee LRU Banshee FBR Banshee
(No Sample)

* Limiting replacement rate and sampling frequency counters are both
Important for bandwidth efficiency in Banshee
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More Analysis Iin the Paper

* Performance with large (2 MB) pages

* Balancing in- and off-package DRAM bandwidth

* Overhead for page table update and TLB coherence
* Storing tags in SRAM

* Sweep DRAM cache latency and bandwidth

* Sampling coefficient

* DRAM cache associativity

27



Summary

Need to optimize for bandwidth efficiency to fully exploit the performance
of in-package DRAM

Idea 1: Improving page-table-based DRAM cache designs with
efficient Translation Lookaside Buffer (TLB) coherence

Idea 2: Bandwidth-aware frequency-based replacement (FBR) policy

Banshee improves performance by 15% and reduces in-package DRAM
traffic by 36% over the best-previous latency-optimized DRAM cache
design
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Backup Slides
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Summary of Operational Characteristics of
Different State-of-the-Art DRAM Cache Designs

Scheme DRAM Cache Hit DRAM Cache Miss Replacement Traffic Replacement Decision | Large Page Caching
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec. data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,

frequency based
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Tag Buffer Organization

Physical Page Number || Valid |Cached] Way | Remap
(48 - 12 = 36 bits) (1bit) | (1bit) |2 bits)| (1 bit)

Figure 2: Tag Buffer Organization — The Tag Bufter is organized
as a set-associative cache. The DRAM is 4-way set-associative in
this example.
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DRAM Cache Layout
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Speedup Normalized to NoCache

B NoCache B Unison 1 TDC 1] AIon1 B Alloy 0.1 (1 Banshee BT CacheOnly
] GRAPH SPEC e

‘moa(\\uﬁ‘ Y “\\\o ope*

((\\‘l:\ ((\'\7(2

Figure 4: Speedup Normalized to NoCache - Speedup is shown in bars and misses per kilo instruction (MPKI) is shown in red dots.
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Bytes per Instruction

In-Package DRAM Traffic Breakdown
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Figure 5: In-package DRAM Traffic Breakdown.
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Off-Package DRAM Traffic
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Figure 6: Off-package DRAM Traffic.
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Sensitivity to Page Table Update Cost

Table 5: Sensitivity to Page Table Update Cost.

Update Cost (us) Avg Pert. Loss | Max Pertf. Loss

10 0.11% 0.76%
20 0.18% 1.3%
4() 0.31% 2.4%
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Sensitivity to DRAM Cache Latency and Bandwidth
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Figure 8: Sensitivity to DRAM Cache Latency and Band-
width - Each data point is the geometric mean over all bench-
marks. Default parameter setting is highlighted on x-axis. Latency
and bandwidth values are relative to oftf-package DRAM.
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