
Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu
1

Christopher J. Hughes
2

Nadathur Satish
2

Onur Mutlu
3

Srinivas Devadas
1

1
MIT

2
Intel Labs

3
ETH Zürich

ABSTRACT
Placing the DRAM in the same package as a processor enables

several times higher memory bandwidth than conventional off-

package DRAM. Yet, the latency of in-package DRAM is not appre-

ciably lower than that of off-package DRAM. A promising use of

in-package DRAM is as a large cache. Unfortunately, most previous

DRAM cache designs optimize mainly for cache hit latency and do

not consider bandwidth efficiency as a first-class design constraint.

Hence, as we show in this paper, these designs are suboptimal for

use with in-package DRAM.

We propose a new DRAM cache design, Banshee, that optimizes

for both in-package and off-package DRAM bandwidth efficiency

without degrading access latency. Banshee is based on two key

ideas. First, it eliminates the tag lookup overhead by tracking the

contents of the DRAM cache using TLBs and page table entries,

which is efficiently enabled by a new lightweight TLB coherence

protocol we introduce. Second, it reduces unnecessary DRAM cache

replacement traffic with a new bandwidth-aware frequency-based

replacement policy. Our evaluations show that Banshee signifi-

cantly improves performance (15% on average) and reduces DRAM

traffic (35.8% on average) over the best-previous latency-optimized

DRAM cache design.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
Heterogeneous (hybrid) systems;

KEYWORDS
DRAM Cache, Main Memory, In-Package DRAM, Hybrid Memory

Systems, TLB Coherence, Cache Replacement

ACM Reference format:
Xiangyao Yu, Christopher J. Hughes, Nadathur Satishi, Onur Mutlu, Srini-

vas Devadas. 2017. Banshee: Bandwidth-Efficient DRAM Caching via Soft-

ware/Hardware Cooperation. In Proceedings of MICRO-50, Cambridge, MA,
USA, October 14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3124555

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00

https://doi.org/10.1145/3123939.3124555

1 INTRODUCTION
In-package DRAM technology integrates a CPU and a high-capacity

DRAM in the same package, enabling much higher main mem-

ory bandwidth to the CPU than traditional off-package DRAM.

For memory bandwidth-bound applications (e.g., graph process-

ing, some machine learning algorithms, sparse linear algebra-based

HPC codes), in-package DRAM can significantly boost system per-

formance [9, 10, 17, 30, 34]. Several hardware vendors are offer-

ing processors with in-package DRAM (e.g., Intel’s Knights Land-

ing [56], AMD’s Fiji [3], and Nvidia’s Pascal [2]) and a large number

of systems have been designed to take advantage of in-package

DRAM [18, 20, 27, 32, 38, 39, 41, 45, 50, 54, 59].

One critical property of in-package DRAM is that, while it pro-

vides high bandwidth, its latency is similar to or even worse than
off-package DRAM [1, 19, 55]. This is because the throughput com-

puting applications that modern in-package DRAM products target

are typically latency-tolerant, but bandwidth-intensive. Many previ-

ous DRAM cache designs, however, assume low-latency in-package

DRAM and therefore are not necessarily the best fit for practical

systems with in-package DRAM.

In particular, many of the existing DRAM cache designs incur

large amounts of traffic to in-package and/or off-package DRAM

for metadata management (e.g., fetching DRAM cache tags) and

cache replacement. Since the tag array of a multi-gigabyte cache

cannot easily fit in on-die SRAM, many previous designs (especially

fine-granularity designs)
1
store the tag array in the in-package

DRAM itself [32, 45, 50], which is accessed for each tag lookup.

Although the latency of a tag lookup can be largely hidden using

previously proposed techniques [32, 45, 50], the metadata accesses

consume valuable bandwidth. To reduce metadata traffic, previous

works [28, 38] propose to manage data at page-granularity and

track the contents of the DRAM cache using the Page Table Entries

(PTEs) and Translation Lookaside Buffers (TLBs). Tag lookups be-

come essentially free in terms of latency via this page-table-based

mapping mechanism. Unfortunately, these existing designs incur

considerable complexity and performance overhead for maintaining

coherent address mappings in TLBs across all the cores.

For page-granularity DRAM cache designs, cache replacement

can incur excessive DRAM traffic because each replacement moves

a full page of data between in-package and off-package DRAM.

For pages with little spatial locality, most of the transfered data is

never accessed by the processor, wasting both in-package and off-

package DRAM bandwidth. The problem becomes evenworse when

large pages (e.g., 2MB or 1GB) are used in the system. Furthermore,

accessing and updating the metadata (e.g., the LRU bits or the

1
By a fine-granularity design, we refer to a DRAM cache design with a block size

that is equal to the block size of the processor’s L1/L2 caches (e.g., 64 bytes). A page-

granularity DRAM cache, in contrast, has a block size that is the same as a virtual

memory page (e.g., 4 KB).

1

https://doi.org/10.1145/3123939.3124555
https://doi.org/10.1145/3123939.3124555

frequency counters) also incurs extra DRAM traffic if the metadata

is stored in the DRAM cache itself. Existing solutions, like the

footprint cache [28, 31], can mitigate the bandwidth pressure to

some extent, by caching only the parts of a page that will likely

be accessed by the processor. However, our evaluation (Section 6)

shows that significant room for improvement still remains.

In this paper, we propose Banshee, a DRAM cache design whose

goal is to maximize the bandwidth efficiency of both in-package

and off-package DRAM, while also providing low access latency.

Banshee is based on two key ideas.

First, similar to previous work [38], Banshee avoids tag lookups

by tracking the DRAM cache contents using the PTEs and TLB en-

tries. Different from previous work, however, Banshee uses a novel,

lightweight TLB coherence mechanism that has low complexity.

Specifically, Banshee maintains a small hardware table (called the

Tag Buffer) at each memory controller that stores information about

whether or not a page is cached, for recently inserted or replaced

pages. The PTEs and TLB entries are lazily updated only when

the Tag Buffer is full, which greatly amortizes the performance

overhead of TLB coherence.

The second key idea in Banshee is a bandwidth-efficient
frequency-based replacement (FBR) policy, whose goal is to reduce

unnecessary DRAM cache replacement traffic. To this end, Banshee

reduces 1) the number of replacements in an FBR policy by limiting

the rate at which replacements happen, via a bandwidth-aware FBR
policy, 2) the amount of metadata traffic (i.e., reads and updates to

frequency counters), by accessing the metadata for only a sampled
fraction of memory accesses.

Specifically, this work makes the following contributions:

(1) We propose a lazy, lightweight TLB coherence mechanism,

which is simpler and more efficient than the TLB coherence

mechanism in previous page-table-based DRAM cache de-

signs.

(2) We propose a new bandwidth-aware frequency-based re-

placement policy, which significantly improves DRAM band-

width efficiency by minimizing unnecessary data and meta-

data movement in a page-granularity DRAM cache.

(3) By combining page-table-based page mapping management

and bandwidth-efficient cache replacement, Banshee signif-

icantly improves in-package DRAM bandwidth efficiency.

Compared to three other state-of-the-art DRAM cache de-

signs, Banshee outperforms the best of them (Alloy Cache [50])

by 15.0% while reducing in-package DRAM traffic by 35.8%.

2 BACKGROUND
Data set sizes are increasing in application domains like big data

analytics, machine learning, and high performance computing. For

these applications, memory bandwidth can be a primary perfor-

mance bottleneck. To meet the high memory bandwidth require-

ments of these applications, in-package DRAM have been built into

both CPUs and GPUs, and, in some existing systems, are managed

as caches [2, 56].

The bandwidth of an in-package DRAM should be used judi-

ciously for maximal performance. This is because some carefully-

optimized applications can fully utilize the in-package DRAM band-

width such that transferring data that is not used by the application

(e.g., DRAM cache metadata, extra traffic caused by excessive cache

replacement) can limit system performance.

While in-package DRAM bandwidth is growing, so is the com-

pute capability of a chip. We do not expect the bandwidth/compute

ratio to change drastically in the near future. Therefore, improving

the bandwidth efficiency of DRAM caches will be beneficial for over-

all system performance. To make this more concrete, we computed

the Bandwidth/FLOPS
2
ratio for Nvidia’s P100 (Pascal) system

(0.14 B/FLOP) [4], Nvidia’s V100 (Volta) system (0.12 B/FLOP) [6],

and Intel’s Knights Landing system (0.12 B/FLOP) [56]. We found

them to be very similar, even though these three systems’ abso-

lute in-package DRAM bandwidth is different by 2×.3 This shows

that compute power increases as additional DRAM bandwidth is

available.

In this section, we discuss the design space of DRAM caches,

and where previous proposals fit in that space. We show the band-

width inefficiency of previous schemes with respect to two major

design considerations: 1) tracking the cache contents, i.e., map-

ping (Section 2.1), 2) changing the cache contents, i.e., replacement

(Section 2.2).

For our discussion, we assume, without loss of generality, that

the processor has an SRAM last-level cache (LLC) managed at

fine (64 B) granularity.
1
Physical addresses are mapped to memory

controllers (MC) statically at coarse (4 KB page) granularity. We

also assume the in-package DRAM is similar to the first-generation

High Bandwidth Memory (HBM) [29, 46]. The link width between

the memory controller and HBM is 16B, but with a minimum data

transfer size of 32B. Thus, reading a 64B cacheline plus the tag

requires the transfer of at least 96B. We also assume the in-package

and off-package DRAM have the same latency [55].

2.1 Tracking DRAM Cache Contents
For each LLC miss, the memory controller determines whether to

access the in-package or the off-package DRAM. Therefore, the

mapping of where each data block resides must be stored some-

where in the system. Mapping can be managed either using tags or

through the virtual-to-physical address remapping.

2.1.1 Using Tags. The most common technique for tracking

the contents of a cache is explicitly storing the set of tags, i.e., the

bits from each data block’s address to uniquely identify the block.

However, the tag storage can be significant when the DRAM cache

is large. A 16 GB DRAM cache, for example, requires 512 MB (or

8 MB) tag storage if managed at fine (or coarse) granularity.
1
As

a result, many state-of-the-art DRAM cache designs store tags in

the in-package DRAM itself. These designs consume extra DRAM

bandwidth for tag lookups associated with DRAM cache accesses.

Table 1 summarizes the characteristics of some state-of-the-

art DRAM cache designs, including two that store tags in the in-

package DRAM, Alloy Cache [50] and Unison Cache [32].

2FLOPS is the number of floating point operations per second that can be supported by

the processor.

3
P100 [4] has 16GB in-package High Bandwidth Memory (HBM) with a bandwidth of

732 GB/s. Its cores provide 5300 GFLOPS for double-precision operations. V100 [6]

has 16 GB of in-package HBM2 with a bandwidth of 900 GB/s. Its cores provide

7500 GFLOPS for double-precision operations. Intel Xeon Phi 7290 [56] has 16 GB

in-package DRAM with bandwidth of 400+GB/s. Its cores provide 3456 GFLOPS for

double-precision operations.

2

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs – We assume perfect way

prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use

different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

Scheme DRAM Cache Hit DRAM Cache Miss Replacement Traffic Replacement Decision Large Page Caching
Unison [32] In-package traffic: 128 B

(data + tag read and up-

date)

Latency: ∼1x

In-package traffic: 96 B

(spec. data + tag read)

Latency: ∼2x

On every miss

Footprint size [31]

Hardware managed,

set-associative,

LRU

Yes

Alloy [50] In-package traffic: 96 B

(data + tag read)

Latency: ∼1x

In-package traffic: 96 B

(spec. data + tag read)

Latency: ∼2x

On some misses

Cacheline size (64 B)

Hardware managed,

direct-mapped,

stochastic [20]

Yes

TDC [38] In-package traffic: 64 B

Latency: ∼1x

TLB coherence

In-package traffic: 0 B

Latency: ∼1x

TLB coherence

On every miss

Footprint size [28]

Hardware managed,

fully-associative,

FIFO

No

HMA [44] In-package traffic: 64 B

Latency: ∼1x

In-package traffic: 0 B

Latency: ∼1x

Software managed, high replacement cost Yes

Banshee
(This work)

In-package traffic: 64 B

Latency: ∼1x

In-package traffic: 0 B

Latency: ∼1x

Only for hot pages

Page size (4 KB)

Hardware managed,

set-associative,

frequency based

Yes

Alloy Cache [50] is a direct-mapped DRAM cache that stores data

at fine granularity. The tag and data for a set are stored adjacently

in the DRAM cache. For every tag probe, the data is speculatively

loaded as well. Thereby, on a cache hit, the latency is roughly that of

a single DRAM access. On a cache miss, Alloy Cache incurs latency

of an in-package DRAM access plus an off-package DRAM access.

In terms of bandwidth consumption, Alloy Cache 1) loads the tag

and data from DRAM cache, 2) loads the data from off-package

DRAM, and 3) inserts the accessed tag and data into the DRAM

cache. Therefore, both latency and bandwidth consumption double
for a miss and a replacement. The original Alloy Cache paper [50]

proposes to issue requests to in-package and off-package DRAM in

parallel to hide the miss latency. We assume an implementation that

serializes the accesses since speculatively accessing off-package

DRAM significantly increases the pressure on the already-limited

off-package DRAM bandwidth.

Unison Cache [32] stores data at coarse granularity and supports

set associativity. The design relies on way prediction to provide low

hit latency. On an access, the memory controller reads all of the

tags for a set and the data only from the predicted way. Loading the

data is speculative. On a hit and correct way prediction, the latency

is roughly that of a single DRAM access, since the speculative data

load is returned together with the tag access. The tag is then stored

back to the in-package DRAM with the updated LRU bits. On a

miss, latency is doubled due to the extra off-package DRAM access.

In terms of bandwidth consumption of a cache miss, Unison Cache

1) loads the tag and the data in the speculative way, 2) performs

cache replacement, where it loads a predicted footprint of the page

into the in-package DRAM, and 3) stores the updated tags and LRU

bits back into the DRAM cache. If the footprint size is large, the

bandwidth consumption for a cache miss and a replacement can be

dozens of times higher than the that of a cache hit.

2.1.2 Using Address Remapping. Another technique for

tracking data in the DRAM cache is via the virtual-to-physical

address mapping mechanism [38, 44] in the page tables. In these

designs, data is always managed at page granularity. The physical

address space is partitioned between in-package and off-package

DRAM. Where a virtual page address maps to can be strictly deter-

mined using its physical address. Thus, the system does not perform

tag lookups as done in the tag-based designs discussed earlier.

In these page-table-based designs, there are twomajor challenges.

The first challenge is the TLB coherence. Whenever a page is in-

serted into or replaced from the DRAM cache, its virtual-to-physical

mapping changes. This change in the mapping must be made co-

herent across all the TLBs in the system, such that no TLB stores an

incorrect, stale mapping. In current systems, this requires a global

TLB shootdown where each core in the system receives an interrupt

and flushes its local TLB. Since a TLB shootdown typically takes

multiple microseconds to service [58], frequent TLB shootdowns

can severely hurt performance.

The second major challenge in page-table-based designs is what

we call address consistency. When a virtual page is remapped, its

physical address is changed. To avoid having incorrect data in any

cache in the system, all the cachelines belonging to the remapped

physical page must be removed from all the on-chip SRAM caches.

Otherwise, if another virtual page is mapped to the same physical

page at a later time, an incorrect value in an SRAM cache may

be read by a core, leading to incorrect execution. Removing such

cachelines with stale physical addresses on each page remapping

can lead to significant performance overhead.

Heterogeneous Memory Architecture (HMA [44]) uses a software-

based solution to handle these problems. Periodically, the oper-

ating system (OS) ranks all pages and moves hot pages into the

in-package DRAM (and cold pages out). The OS updates all page

table entries (PTEs), flushes all TLBs for coherence, and flushes

cachelines of remapped physical pages from all on-chip caches for

address consistency. Due to the high performance overhead of this

process, remapping can be done only at a very coarse granularity

(e.g., 100 ms to 1 s) to amortize the overhead. Therefore, the DRAM

cache replacement policy may not fully capture temporal locality in

applications. Also, all programs running in the system have to stop

when the pages are moved between in-package and off-package

DRAM [44], causing undesirable performance degradation.

Tagless DRAMCache (TDC [38]) also uses address remapping, but

enables frequent cache replacement via a hardware-managed TLB

coherence mechanism. Specifically, TDC maintains a TLB directory

structure in main memory and updates it whenever an entry is

3

inserted or removed from any TLB in the system. Such fine-grained

TLB coherence incurs extra design complexity. Further, the storage

cost of the directory may be a potential scalability bottleneck as the

core count increases. TDC [38] does not discuss address consistency,

so it is unclear which solution, if any, TDC employs for the address

consistency problem.

2.2 DRAM Cache Replacement
Cache replacement is another important challenge in in-package

DRAM designs. We discuss both hardware and software approaches

presented in previous work.

2.2.1 Hardware-Managed. Hardware-managed caches are

able to make replacement decisions on each DRAM cache miss,

and thus can adapt rapidly to changing workload behavior. Many

designs, including Alloy Cache, Unison Cache and TDC, always
insert the fetched data into the DRAM cache for each cache miss.

Although this is common practice for SRAM caches, the incurred

extra replacement traffic is expensive for a DRAM cache due to

the its limited bandwidth. Some previous designs try to reduce the

replacement traffic with a stochastic mechanism [20, 33] where

replacement happens with a small probability upon each access.

We will use a similar technique in Banshee as well (cf. Section 4.2).

For page-granularity DRAM cache designs, frequent replacement

also causes over-fetching, where a whole page is cached but only a

subset of the corresponding cachelines are accessed before eviction.

This leads to unnecessary DRAM traffic. The DRAM traffic due

to replacement can be even higher than when DRAM caching is

completely disabled, leading to large performance degradation, as

shown in [33]. To solve this problem, previous works use a sector

cache design [40, 52] and rely on a footprint predictor [28, 35] to
determine which cachelines within a page to load on a cache miss.

We show how Banshee improves bandwidth efficiency over these

designs in Section 6.

A replacement policy must select a victim to evict. Alloy Cache is

direct-mapped, and so has only one victim to replace. Conventional

set-associative caches (e.g., Unison Cache) use the Least-Recently-

Used (LRU) [32] or a Frequency-Based Replacement (FBR) [33]

policy. These policies require additional metadata to track the rela-

tive age-of-access or access-frequency for cachelines. Loading and

updating the metadata incurs significant DRAM traffic. TDC imple-

ments a fully-associative DRAM cache, but uses a FIFO replacement

policy, which hurts hit rate for certain applications. Since TDC per-

forms replacement at page granularity for each cachemiss, it cannot

support large pages efficiently [38].

2.2.2 Software-Managed. Software-based cache replacement

algorithms (e.g., HMA [44]) can be relatively sophisticated. Thus,

they may perform better than hardware mechanisms at predicting

the best data to keep in the DRAM cache. However, they incur

significant execution time overhead, and therefore, are generally

invoked only periodically (e.g., as in [44]). This makes them much

slower to adapt to changing application behavior.

3 BANSHEE DRAM CACHE DESIGN
Banshee aims tomaximize bandwidth efficiency for both in-package

and off-package DRAM. In this section, we describe how Banshee

tracks the contents of the DRAM cache. We describe how Banshee

handles cache replacement in Section 4.

3.1 Banshee Architecture
Figure 1 shows the architecture of Banshee. For simplicity, we

assume that both the in-package and the off-package DRAM share

the same memory controller. Our techniques also work if they have

separate memory controllers. The in-package DRAM is a memory-

side cache and is not inclusive with respect to the on-chip SRAM

caches. Threemajor changes aremade to the hardware and software,

and they are highlighted in red. First, PTEs and TLB entries are

extended to indicate whether a page is cached, and if so, where it

is cached. Second, a new hardware structure, Tag Buffer, is added
to the memory controller for efficient TLB coherence. Third, the

logic in the memory controller is changed for both cache content

tracking and cache replacement, as we describe below.

Off-Package
DRAM

Hardware Software

TLB Extensions

CPU

TLBL1 Cache

…
Last Level Cache (LLC)

Page Table

Page Table
Extensions

In-Package
DRAM

Memory Controller (MC)

Tag BufferMC Logic Reverse Mapping
(Find all virtual pages that

map to a given physical page)

Figure 1: Overall Architecture of Banshee – Changes to hard-

ware and software components are highlighted in red.

Banshee manages the DRAM cache at page granularity and

uses the page tables and TLBs to track DRAM cache contents, like

TDC [38] and HMA [44]. Unlike previous page-table-based designs,

however, Banshee uses the same address space for in-package and
off-package DRAM to solve the address consistency problem (dis-

cussed in Section 2.1.2). Banshee adds extra bits to the correspond-

ing PTE and TLB entry to indicate whether or not a page is cached.

This simple change solves the address consistency problem. Be-

cause the physical address of a page does not change when it is

remapped, all cachelines within the page that are present in SRAM

caches always have consistent addresses.
4

To simplify the TLB coherence problem, Banshee implements

a lazy, software/hardware cooperative TLB coherence protocol

using the Tag Buffer. Information of recently-remapped pages is

stored only in the Tag Buffer but not updated in the correspond-

ing PTEs and TLB entries. All memory requests are able to find

the latest mapping information by checking the Tag Buffer at the

4
In contrast, previous page-table-based DRAM cache designs use different physical

address spaces for in-package and off-package DRAM. This causes the address consis-

tency problem. If a page is inserted into or evicted from an in-package DRAM, not

only do we need to update the PTEs, but all the cachelines in on-chip caches belonging

to the affected page need to be updated or invalidated, since their physical addresses

have changed.

4

memory controller. When the Tag Buffer becomes full, the mapping

information stored in it propagates to PTEs and TLB entries via

software support. Banshee thus significantly reduces the cost of

TLB coherence using this mechanism.

3.2 Page Table and TLB Extension
The DRAM cache in Banshee is set-associative. Each PTE is ex-

tended with two pieces of mapping information indicating whether

and where a page is cached: 1) a new cached bit indicates whether

a page is resident in the DRAM cache, and 2) some new way bits

indicate which way the page is cached in.

Every L1 miss carries the mapping information (i.e., the cached

and way bits) from the TLB throughout the memory hierarchy. If

the request is satisfied before reaching a memory controller, the

cached and way bits are simply ignored. If the request misses the

LLC and reaches a memory controller, it first looks up the Tag Buffer

for the latest mapping of the page. A Tag Buffer miss means the

information attached to the request is up-to-date. For a Tag Buffer

hit, the mapping information carried with the request is ignored

and the correct mapping information from the Tag Buffer is used.

Hardware prefetch requests from the L2 or higher (e.g., L3) levels

present a complication. These caches typically operate in the phys-

ical address space, and thus cannot access the TLB for the mapping

information. In most systems, however, a prefetch of this sort stops

at the page boundary [5], since the data beyond that boundary in the

physical address space can be unrelated to the data in the adjacent

virtual page. Further, these prefetches are usually triggered (directly

or indirectly) by demand or prefetch requests coming from the core

or the L1 cache. Thus, we can copy the mapping information from

a triggering request to the prefetches it triggers.

3.3 Tag Buffer
Banshee adds a Tag Buffer to each memory controller. The Tag

Buffer holds the mapping information of recently-remapped pages

belonging to that memory controller. Figure 2 shows the organiza-

tion of a Tag Buffer. It is organized as a small set-associative cache.

The physical page number serves as the tag. The valid bit indicates

whether the entry contains a valid mapping. For a valid entry, the

cached bit and way bits indicate whether and where the page exists

in the DRAM cache. The remap bit is set for a page whose remap-

ping information is not updated in the page table entry for the page.

The remap bit enables an optimization we discuss next.

Physical Page Number
(48 - 12 = 36 bits)

…
…Tag Value Tag Value Tag Value

Cached
(1 bit)

Way
(2 bits)

Valid
(1 bit)

Remap
(1 bit)

Figure 2: Tag Buffer Organization – The Tag Buffer is organized

as a set-associative cache. The DRAM is 4-way set-associative in

this example.

Unlike requests arriving at a memory controller, LLC dirty evic-

tions do not carry mapping information. For those, if the mapping

information of the evicted cacheline is not in the Tag Buffer, then

the memory controller needs to probe the tags stored in the DRAM

cache (cf. Section 4.1) to determine if the request is a hit or a miss.

These tag probe operations consume DRAM cache bandwidth and

may hurt performance.

To reduce such tag probes, we use otherwise-empty entries in

the Tag Buffer to hold mappings for pages cached in the LLC. On

an LLC miss that also misses in the Tag Buffer, we allocate an entry

in the Tag Buffer for the page: the valid bit of the entry is set to 1,

indicating a useful mapping, but the remap bit is set to 0, indicating
that the entry stores the same mapping as in the PTEs. For a Tag

Buffer hit, a dirty LLC eviction does not probe the DRAM cache,

thereby reducing DRAM traffic. An entry with its remap bit set to

0 can be replaced from the Tag Buffer without affecting correctness

(We use the LRU replacement policy among such entries).

3.4 Page Table and TLB Coherence
As the Tag Buffer fills, the mapping information stored in it needs to

be propagated to the page table, to make space for future cache re-

placements. Since the Tag Buffer contains only the physical address

of a page, yet the page table is indexed using the virtual address,

we need a mechanism to identify all the PTEs corresponding to a

physical address.

TDC proposes a hardware-based inverted page table to map a

page’s physical address to its PTE [38]. This solution, however,

cannot handle the page aliasing problem where multiple virtual

pages are mapped to the same physical page. To identify whether

aliasing exists, some internal data structure in the OS (i.e., the

page descriptors) has to be accessed, which incurs significant extra

overhead.

We observe that a modern operating system already has a reverse
mapping mechanism to quickly identify the associated PTEs for

a physical page, regardless of any aliasing. This functionality is

necessary to implement page replacement between main memory

and secondary storage (e.g., hard disk or solid-state drive) since

reclaiming a main memory page frame requires accessing and up-

dating all the PTEs corresponding to it. Reverse mapping in existing

systems is implemented via either an inverted page table (e.g., as in

Ultra SPARC and PowerPC [57]) or a special reverse mapping mech-

anism (e.g., Linux [12]). In Banshee, we use this reverse mapping

to identify PTEs that map to a given physical page.

When a Tag Buffer fills up to a pre-determined threshold, it

sends an interrupt to a randomly-chosen core. The core receiving

the interrupt executes a software routine. Specifically, the core reads

all entries from the Tag Buffers (that have the remap bit set to one)

in all memory controllers (these entries are memory mapped). The

physical address stored in each Tag Buffer entry is used to identify

the corresponding PTEs through the reverse mapping mechanism.

Then, the cached and way bits are updated for each PTE, based on

their values in the Tag Buffer entry. During this process, the Tag

Buffers are locked so that no DRAM cache replacement happens.

However, the DRAM can still be accessed and no programs need to

stopped (in contrast to prior work [44]).

After all Tag Buffer entries have been propagated to the PTEs,

the software routine issues a system wide TLB shootdown to en-

force TLB coherence. After this, a message is sent to all Tag Buffers

5

to clear the remap bits for all entries. Note that the mapping infor-

mation can stay in the Tag Buffer to reduce tag probes for dirty

evictions (cf. Section 3.3).

The TLB coherence mechanism described here enforces coher-

ence for the cached and way bits. These are the only two fields

that can be temporarily incoherent and stale. Other fields of a PTE

(e.g., physical address, permission bits) are always coherent since

Banshee does not change them. Therefore, OS functionalities (e.g.,

scheduling) that require these PTE fields are not affected when the

page tables and TLBs are incoherent.

Depending on a system’s software and hardware, the mechanism

described above may take tens of thousands of cycles [12]. However,

since this cost only needs to be paid when a Tag Buffer is almost full,

the cost of TLB coherence is amortized. Furthermore, as we will see

in Section 4, remapping pages too often leads to poor performance

due to high replacement traffic. Therefore, our design tries to limit

the frequency of page remapping, further reducing the occurrence

and thus the cost of such TLB coherence.

4 BANDWIDTH-EFFICIENT CACHE
REPLACEMENT

As discussed in Section 2.2, the cache replacement policy can sig-

nificantly affect traffic in both in-package and off-package DRAM.

This is especially true for page-granularity DRAM cache designs

due to the over-fetching problem within a page. In this section, we

propose a new frequency-based replacement (FBR) policy that uses

sampling to achieve a good cache hit rate while minimizing DRAM

traffic.

We first discuss the physical layout of the data and metadata in

the DRAM cache in Section 4.1. We then describe Banshee’s cache

replacement algorithm in Section 4.2.

4.1 DRAM Cache Layout
Many previously-proposed tag-based DRAM cache designs store

the metadata (e.g., tags, LRU bits) and data in the same DRAM row

to exploit row buffer locality, since they always load the metadata

along with data. Such an organization can be efficient for a fine-

granularity DRAM cache. For a page-granularity DRAM cache,

however, pages and tags do not align well within a DRAM row

buffer [32], leading to extra design complexity and inefficiency.

In Banshee, the metadata is not accessed for each main memory

request. Therefore, we store the metadata and the data separately

for better alignment. Figure 3 shows the layout of a data row and

a metadata row in a DRAM cache that has a row buffer size of 8

KB and a page size of 4 KB. The metadata of each DRAM cache set

take 32 bytes in a tag row. For a 4-way associative DRAM cache,

each set contains 16 KB of data and 32 bytes of metadata, so the

metadata storage overhead is only 0.2%.

Banshee stores metadata for each cached page (the grey portion

in Figure 3) and also for a set of candidate pages that it is considering
to cache. The metadata for each page includes a tag and a count
indicating how frequently the page is accessed. The metadata for

a cached page also includes a valid and a dirty bit. Intuitively, the

most frequently accessed pages (i.e., pages with the large frequency

counters) should stay in the DRAM cache. Among uncached pages,

the ones that are most frequently accessed should be tracked as

candidate pages.

4.2 Bandwidth-Aware Replacement Policy
An FBR policy incurs DRAMcache traffic by 1) reading and updating

the frequency counters and 2) replacing data. In Section 4.2.1, we

introduce a sampling-based counter maintenance scheme to reduce

the counter read/update traffic. In Section 4.2.2, we discuss our new

bandwidth-aware replacement algorithm that aims to minimize

replacement traffic while maintaining a good cache hit rate.

4.2.1 Sampling-BasedCounterUpdates. In a standard FBR
policy [36, 51], each access to a page increments the associated

page’s frequency counter.We observe that incrementing the counter

for each access is not necessary. Instead, an access in Banshee up-

dates the frequency counter only with a certain sample rate. For
a sample rate of 10%, for example, the frequency counters are ac-

cessed/updated once for every 10 main memory accesses. This

reduces counter read/update traffic by 10×. Furthermore, since sam-

pling slows down the incrementing rate of the counters, we can

use fewer bits to represent each counter.

It may seem that updating the counters via such sampling leads

to inaccurate detection of “hot” pages. However, the vast majority

of applications exhibit some spatial locality. When a request to a

64-byte L1 cacheline misses in the DRAM cache, other cachelines

belonging to the same page (there are 64 of them for a 4 KB page)

are likely to be accessed soon as well. Each of these accesses has a

chance to update the frequency counter of the page. In fact, without

sampling, we find that counters quickly reach large values and only

the high order bits matter for replacement decisions. Sampling

effectively “discards” the need to store and track the low-order bits

of each counter, which have little useful information anyway.

Data Row Layout

Metadata Row Layout

Metadata for one Cache Set

4 KB Page 4 KB Page

…

32 bytes
…

Cached Page Metadata Format Candidate Page Metadata FormatTag Count Valid Dirty Tag Count

Figure 3: Banshee DRAM Cache Layout (Not Drawn to Scale) – An example 4-way set-associative DRAM cache with an 8 KB row

buffer and 4 KB pages. Data and metadata are stored separately on different rows. Metadata is also kept for some pages that are currently not
cached in the DRAM cache but are considered to be cached, called candidate pages.

6

We further observe that when the DRAM cache works well,

i.e., it has a low miss rate, replacement should be rare and the

counters need not be frequently updated. Therefore, Banshee uses

an adaptive sample rate which is the product of the cache miss rate

(tracked dynamically) and a constant sampling coefficient.

4.2.2 Replacement Algorithm. DRAM cache replacement

can be expensive, in terms of memory traffic, for coarse-granularity

designs. For each replacement, the memory controller transfers

an entire page from off-package DRAM to in-package DRAM. If a

page has poor spatial locality (i.e., the page experiences only a few

accesses before being replaced), the in-package and off-package

DRAM traffic due to replacement can be even higher than when the

DRAM cache is not present. This leads to performance degradation

(cf. Section 6).

Frequency-based replacement does not inherently solve this

problem because the algorithm may repeatedly keep replacing

the least-frequently-accessed page in the cache with a candidate

that has a larger frequency counter. When pages have similar

counter values, a large number of such replacements can be trig-

gered, thrashing the cache and wasting valuable in-package and

off-package DRAM bandwidth.

Banshee solves this problem by replacing a page only when

the incoming page’s counter is greater than the potential victim

page’s counter by a certain threshold. This ensures that a page

just evicted from the DRAM cache is expected to be accessed for

(2 × threshold/samplinд rate) times before it can enter the cache

again (i.e., the page’s frequency counter becomes greater than a

cached page’s frequency counter by threshold). This prevents a
page from entering and leaving the cache frequently. Note that

reducing the frequency of replacement also increases the time be-

tween Tag Buffer overflows, indirectly reducing the overhead of

TLB coherence.

Algorithm 1 shows the complete cache replacement algorithm of

Banshee. For each request coming from the LLC, a random number

is generated to determine whether the current access should be

sampled (line 3). If it is not sampled, which is the common case, then

the access is made to the proper DRAM (in-package or off-package)

directly. No metadata is accessed and no replacement happens.

If the current access is sampled, then the metadata for the cor-

responding set is loaded from the DRAM cache to the memory

controller (line 4). If the currently-accessed page exists in the meta-

data (line 5), its counter is incremented (line 6). If the current page is

one of the candidate pages and its counter is greater than a cached

page’s counter by a threshold, then cache replacement should hap-

pen (lines 7-9). By default, the threshold is the product of the number

of cachelines in a page and the sampling coefficient divided by two

(threshold = page_size × sampling_coeff / 2). Intuitively, this means

that replacement can happen only if the benefit of swapping the

pages outweighs the cost of the replacement operation. If a counter

saturates after being incremented, all counters in the metadata are

halved by a shift operation in hardware (lines 10-15).

If the current page does not exist in the metadata (line 17), then

one of the candidate pages is randomly selected as the victim (line

19). However, Banshee does not always replace the chosen victim:

instead, the current page can only replace the chosen victim with

a certain probability, which decreases as the victim’s counter gets

Algorithm 1: Banshee Cache Replacement Algorithm
1 Input : tag
2 # rand(): random number between 0 and 1.0
3 if rand() < cache_miss_rate × sampling_coefficient then
4 metadata = dram_cache.loadMetadata(tag)
5 if tag is in metadata then
6 metadata[tag].count ++
7 if tag is in metadata.candidates and metadata[tag].count >

metadata.cached.minCount() + threshold then
8 Insert the page being requested into the DRAM cache. Evict the

page with the minimum count from the DRAM cache. Swap the
metadata of the two pages.

9 end
10 if metadata[tag].count == max_count_value then
11 # Counter overflow, divide by 2
12 forall t in metadata.tags do
13 metadata[t].count /= 2
14 end
15 end
16 dram_cache.storeMetadata(tag, metadata)
17 else
18 # The page is not tracked in the tag
19 victim = pick a random page in metadata.candidates
20 if rand() < (1 / victim.count) then
21 Replace victim with the page being requested.
22 end
23 end
24 end

larger (line 20-24). This way, it is less likely that a warm candidate

page is evicted.

5 BANSHEE EXTENSIONS
In this section, we discuss two important extensions of Banshee to

support large pages and multiple sockets.

5.1 Supporting Large Pages
Large pages have been widely used to reduce TLB misses and there-

fore should be supported in DRAM caches. For designs that use

tags to track the DRAM cache contents (e.g., Unison Cache and

Alloy Cache), supporting large pages does not require changes to

the hardware. A large page is simply broken down into and man-

aged as smaller pages or cachelines. For page-table-based designs,

however, a large page should be cached either in its entirety or not

at all, since its mapping is stored in a single page table entry. In

this section, we describe how Banshee supports large pages. The

mechanism works for any page size.

In Banshee, the DRAM cache can be partitioned for different-

sized pages. Partitioning can happen at context switch time by the

OS, which knows how many large pages each process is using.

Partitioning can also be done dynamically using runtime statistics

based on access counts and hit rates for different page sizes. Since

most of our applications either make very heavy use of large pages,

or very light use, partitioning could give either most or almost

none of the cache, respectively, to large pages. We leave a thorough

exploration of Banshee cache partitioning policies for future work.

We force each page (regular or large) tomap to a singleMC (mem-

ory controller) to simplify the management of frequency counters

and cache replacement. Bits are attached to each cacheline in the

LLC to indicate the size of the page it belongs to. A processor re-

quest or an LLC dirty eviction uses the page size information to

7

determine which MC to access (e.g., by hashing the page number

of the accessed page). When the OS reconfigures the large pages,

which happens very rarely [11], all lines within the reconfigured

pages should be flushed from the on-chip caches and the in-package

DRAM cache.

In terms of the DRAM cache layout, a large page mapped to

a particular way spans multiple cache sets occupying the corre-

sponding way in each set. One difference between regular and large

pages is the cache replacement policy. Banshee manages large page

replacement just like regular page replacement using frequency

counters with sampling. However, since replacing a large page

consumes more memory bandwidth than replacing a regular page,

we use a greater threshold when comparing frequency counters of

large pages. We also reduce the sample rate of updating frequency

counters to prevent counter overflow. Note that large pages do not
work well for page-table-based schemes that perform replacement

on each DRAM cache miss. TDC, for example, disables caching of
large pages for this reason.

5.2 Multi-Socket Support
In a multi-socket shared-memory system, each socket has its own

DRAM cache. We can design the DRAM caches to be either coherent
(i.e., the DRAM cache at one socket can cache pages resident in

another socket’s off-package DRAM) or partitioned (i.e., a DRAM

cache caches only the data resident in the local socket’s off-package
DRAM). We discuss both designs here.

Coherent DRAM caches. If the DRAM caches are coherent,

then we need a separate DRAM cache coherence protocol [21, 26]

for DRAM caches in different sockets. We use such a protocol

in our multi-socket design. In addition, with a page-table-based

DRAM cache design, like Banshee, the page tables and TLBs need

to be kept coherent across sockets as well. To indicate whether a

page is stored in any socket’s local DRAM cache, the mapping

information in each PTE and each Tag Buffer entry is extended

to contain the cached and way bits for all sockets in the system.

The lazy TLB coherence mechanism in Banshee (Section 3.4) can

be easily enhanced to simplify TLB coherence in the multi-socket

scenario, as follows. When a page’s mapping information changes

(e.g., the page is inserted into or removed from a DRAM cache),

the updated mapping information is temporarily stored in the Tag

Buffer. This information is lazily propagated to the PTEs and TLBs

of other cores/sockets, i,e., only when one of the Tag Buffers in

the entire multi-socket system is full. This simple extension of our

lazy TLB coherence protocol greatly reduces the overhead of TLB

coherence in a multi-socket system. We leave its detailed evaluation

for future work.

Partitioned DRAM Caches. Keeping DRAM caches, Page Ta-

bles, and TLBs coherent across multiple sockets allows the DRAM

caches to be shared across sockets. However, such a solution re-

quires a complex DRAM cache coherence protocol. When the num-

ber of sockets is large, it also incurs significant storage overhead

because an entry in a TLB or a page table includes the mapping

information for all sockets. The partitioned DRAM cache design

is simpler because it restricts the DRAM cache to store only data

resident in the local socket’s off-package DRAM. This eliminates

the complexity of handling DRAM cache coherence since data is

never replicated in in-package DRAM in different sockets. With

good NUMA allocation policies and properly-tuned applications,

the vast majority of accesses are to local DRAM, in which case the

partitioned DRAM cache design is likely good enough to exploit

most of the benefits of DRAM caching.

6 EVALUATION
We evaluate the performance of Banshee and compare it to three

state-of-the-art DRAM cache designs. Section 6.1 discusses the

methodology of our experiments. Sections 6.2 and 6.3 show the per-

formance and DRAM bandwidth consumption of different DRAM

cache designs. Section 6.4 shows the effect of our extensions to

Banshee. Section 6.5 presents sensitivity studies.

6.1 Methodology
We use ZSim [53] to simulate a multi-core processor whose configu-

ration is shown in Table 2.
5
The chip has one channel of off-package

DRAM and four channels of in-package DRAM. We assume that

the timing and bandwidth characteristics of all channels are the

same, to model the behavior of in-package DRAM [29, 46, 56]. The

maximum bandwidth this configuration offers is 21 GB/s for off-

package DRAM and 84 GB/s for in-package DRAM. In comparison,

Intel’s Knights Landing [55] has roughly 4× the bandwidth and the

number of cores (72 cores, 90 GB/s off-package DRAM and 300+

GB/s in-package DRAM bandwidth), so our baseline configuration

has roughly the same bandwidth per core.

Table 2: System Configuration.
System Configuration

Core Frequency 2.7 GHz

Number of Cores 16

Core Model 4-issue, out-of-order

Memory Subsystem

Cacheline Size 64 bytes

L1 I Cache 32 KB, 4-way

L1 D Cache 32 KB, 8-way

L2 Cache 128 KB, 8-way

Shared L3 Cache 8 MB, 16-way

DRAM

Off-Package DRAM 1 channel

In-Package DRAM 4 channels, 256 MB per channel

Rank 4 ranks per channel

Bank 8 banks per rank

Bus Frequency 667 MHz (DDR 1333 MHz)

Bus Width 128 bits per channel

tCAS-tRCD-tRP-tRAS 10-10-10-24

Table 3 shows the default parameters of Banshee. The DRAM

cache is 4-way set-associative. Each PTE and TLB entry is extended

with 3 bits (i.e., one cached bit and two way bits) for the mapping

information. A fully-associative TLB entry needs to at least store

the virtual and physical page number for the corresponding page,

which require 64 - 12 = 52 bits and 48 - 12 = 36 bits respectively

(assuming 64-bit virtual address space and 48-bit physical address

space with 4 KB page size). Therefore, the storage overhead of

the TLB extension is only 3.4%. The storage overhead of the PTE

extension is zero since we are using otherwise-unused bits. Each

request in the memory hierarchy carries the 3 mapping bits. Each

5
The source code of our simulator and the implementation of evaluated DRAM cache

designs are available at https://github.com/yxymit/banshee

8

memory controller has an 8-way set associative Tag Buffer with

1024 entries, requiring only 5 KB storage per memory controller.

The memory controller triggers a “Tag Buffer full” interrupt when

the buffer is 70% full. We assume the interrupt handler runs on

a single randomly-chosen core and takes 20 microseconds. For a

TLB shootdown, the initiating core (i.e., initiator) is unavailable for

program execution for 4 microseconds and every other core (i.e.,

slave) is unavailable for 1 microsecond [58].

Table 3: Banshee Configuration.
DRAM Cache and Tags

Associativity 4

Page Size 4 KB

Tag Buffer 1 Tag Buffer per MC

8-way, 1024 entries

Flushed when 70% full

PTE Coherence Overhead 20 µs
TLB Shootdown Overhead Initiator 4 µs, slave 1 µs

Cache Replacement Policy

Metadata per DRAM Cache Set Tags and frequency counters for 4 cached

pages and 5 candidate pages

Frequency Counter 5 bits

Sampling Coefficient 10%

Each frequency counter is 5-bit wide. The 32-byte per-set meta-

data holds information for 4 cached pages and 5 candidate pages.
6

The default sampling coefficient is 10% – the actual sample rate is

this multiplied by the DRAM cache miss rate observed for the last

one million memory accesses.

6.1.1 Baselines. We compare Banshee to five baselines.

No Cache: The system contains only off-package DRAM.

Cache Only: The system contains only in-package DRAM with

infinite capacity.

Alloy Cache [50]: A fine-granularity design, described in Sec-

tion 2. We also include the bandwidth-efficient cache fills and the

bandwidth-efficient writeback probe optimizations from BEAR [20]

to improve bandwidth efficiency. This includes a stochastic replace-

ment mechanism that performs replacement with only a 10% prob-

ability. In some experiments, we show results for always replacing

(Alloy 1), and replacing only 10% of the time (Alloy 0.1).
Unison Cache [32]: A state-of-the-art coarse-granularity de-

sign, described in Section 2.1.1. We model an LRU replacement

policy. We implement an oracular footprint prediction and assume

perfect way prediction. For footprint prediction, we first profile each
workload offline to collect the average number of blocks touched

per page fill, as the footprint size; in the actual experiment, each

replacement moves only the number of cachelines specified by the

footprint size. The footprint is managed at a 4-line granularity. We

assume the predictors incur no latency or bandwidth overhead.

Tagless DRAM Cache (TDC) [38]: A state-of-the-art page-

granularity design, described in Section 2.1.2.Wemodel an idealized

TDC configuration. Specifically, we assume a zero-performance-

overhead TLB coherence mechanism and ignore all the side effects

of the mechanism (i.e., address consistency, page aliasing). We also

implement the same oracular footprint predictor for TDC just as

we do for Unison Cache.

6
With a 48-bit address space and the DRAM cache parameters, the tag size is 48 -

16 (2
16

sets) - 12 (page offset) = 20 bits. Each cached page 20 + 5 + 1 + 1 = 27 bits of

metadata and each candidate page has 25 bits of metadata (Figure 3).

6.1.2 Benchmarks. We use SPEC CPU2006 [25] and graph

analytics benchmarks [60].

We select a subset of SPEC benchmarks that have large memory

footprints. We consider both homogeneous and heterogeneous

multi-programmed workloads. For homogeneous workloads, each

core in the simulated system executes one instance of a benchmark

and all the instances run in parallel. Heterogeneous workloads

model a multi-programmed environment where the cores run a

mix of benchmarks. We use three randomly-selected mixes, shown

in Table 4.

Table 4: Mixed SPECWorkloads.
Name Benchmarks in mix

Mix1 libq-mcf-soplex-milc-bwaves-lbm-omnetpp-gcc × 2

Mix2 libq-mcf-soplex-milc-lbm-omnetpp-gems-bzip2 × 2

Mix3 mcf-soplex-milc-bwaves-gcc-lbm-leslie-cactus × 2

To represent throughput computing workloads, the target appli-

cations for modern systems employing in-package DRAM [2, 56],

we evaluate multi-threaded graph analytics workloads. We use all

graph workloads from [60].

In our experiments, Each graph benchmark runs to completion

and each combination of SPEC benchmarks runs for 100 billion

instructions across all the cores. We warm up the DRAM cache

until it is full. By default, all benchmarks use 4 KB pages only.

Many benchmarks that we evaluate have very high memory

bandwidth requirements. With the CacheOnly configuration, for

example, 10 of the 16 benchmarks have an average DRAM band-

width consumption of over 50 GB/s (bursts may exceed this). This

bandwidth requirement exerts enough pressure on the in-package

DRAM (with a maximum bandwidth of 85 GB/s) such that main

memory requests experience high latency due to contention. Our

memory-intensive benchmarks (e.g., pagerank, lbm, libquantum) ex-

perience 2–4× higher memory access latency compared to compute-

intensive benchmarks (e.g., gcc, sgd, soplex) due to the memory

bandwidth bottleneck.

6.2 Performance
Figure 4 shows the speedup of different cache designs normalized

to NoCache. The geo-mean bars indicate geometric mean across

all the workloads. On average, Banshee provides a 68.9% speedup

over Unison Cache, 26.1% over TDC and 15.0% over Alloy Cache.

Improved bandwidth efficiency is the main contributor to the per-

formance improvement (as we will show in Section 6.3). Compared

to Unison Cache and Alloy Cache, Banshee also reduces the cache

miss latency since the DRAM cache is not probed to check tags for

a cache miss.

Unison Cache and TDC have worse performance than other de-

signs on some benchmarks (e.g., omnetpp and milc). These bench-
marks have poor spatial locality. As Unison Cache and TDC replace

a whole page of data for each DRAM cache miss, they generate

unnecessary DRAM traffic for cache replacement. Having a foot-

print predictor helps but does not completely solve the problem

since the footprint cannot be managed at fine granularity due to

the storage overhead (we model a 4-line granularity). Banshee also

9

pagerank
tri count

graph500 sgd lsh
bwaves lbm mcf

omnetpp
libquantum gcc milc

soplex mix1 mix2 mix3
geo-mean

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
or

m
.

S
pe

ed
up

GRAPH SPEC

0

10

20

30

40

50

M
P

K
I(

re
d

do
ts

)

NoCache Unison TDC Alloy 1 Alloy 0.1 Banshee CacheOnly

Figure 4: Speedup Normalized to NoCache – Speedup is shown in bars and misses per kilo instruction (MPKI) is shown in red dots.

pagerank
tri count

graph500 sgd lsh
bwaves lbm mcf

omnetpp
libquantum gcc milc soplex mix1 mix2 mix3

average
0

2

4

6

8

10

12

B
yt

es
pe

rI
ns

tr
uc

tio
n

Unison
TDC
Alloy 1
Alloy 0.1
Banshee

HitData MissData Metadata Replacement

Figure 5: In-package DRAM Traffic Breakdown.

pagerank
tri count

graph500 sgd lsh
bwaves lbm mcf

omnetpp
libquantum gcc milc soplex mix1 mix2 mix3

average
0.0

0.5

1.0

1.5

2.0

B
yt

es
pe

rI
ns

tr
uc

tio
n 2.74 2.9 2.93 3.19 4.63 3.84

Unison TDC Alloy 1 Alloy 0.1 Banshee

Figure 6: Off-package DRAM Traffic.

uses page granularity, but its bandwidth-aware replacement pol-

icy significantly reduces unnecessary replacement traffic for these

benchmarks.

On lbm, both Banshee and Alloy 0.1 give worse performance

than other baselines. lbm has very good spatial locality on each

page, but a page is accessed only a small number of times before

it gets evicted. Alloy 1, Unison Cache and TDC have good per-

formance on lbm since they perform replacement for every DRAM

cache miss, thereby exploiting the existing locality well. Banshee

and Alloy 0.1, in contrast, cannot exploit all the locality due to

their selective caching mechanisms. One solution is to dynamically

switch between different replacement policies based on a program’s

access pattern. For example, we can design some pre-determined

sets in the cache to use different replacement policies and select

the best-performing policy for the rest of the cache, called set sam-

pling/dueling [20, 48, 49]. We leave the exploration of such ideas

for future work.

The red dots in Figure 4 show the DRAM cache Misses Per Kilo
Instruction (MPKI) for each DRAM cache scheme (except NoCache
and CacheOnly). Unison Cache and TDC have very low miss rates

since they can exploit spatial locality within a page. However, their

highmemory bandwidth consumption due to frequent DRAM cache

replacement offsets the benefits of low miss rates (cf. Section 6.3).

Alloy Cache and Banshee have higher miss rates. The miss rate is

high for Alloy Cache because it is managed at fine granularity, and

therefore it cannot exploit spatial locality well. The miss rate is high

for Banshee because of its bandwidth-efficient cache replacement

policy, which does not perform cache replacement for every DRAM

cache miss.

For some benchmarks (e.g., pagerank, omnetpp), Banshee per-

forms even better than CacheOnly. This is because CacheOnly has

no external DRAM. Thus, CacheOnly’s total available DRAM band-

width is lower than Banshee’s which has both in-package and off-

package DRAM. We provide more discussion on balancing DRAM

bandwidth in Section 6.4.2.

6.3 DRAM Traffic
Figures 5 and 6 show, respectively, the in-package and off-package

DRAM traffic. Traffic is measured in bytes per instruction to convey

the memory intensity of a workload, in addition to comparing the

bandwidth efficiency of different cache designs.

In Figure 5, HitData is the DRAM cache traffic for DRAM cache

hits. This is the only useful data transfer; everything else can be

considered as overhead. Metadata is the traffic for metadata ac-

cesses (e.g., tags, LRU bits, frequency counters). Replacement is

the traffic for DRAM cache replacement. For Alloy and Unison

Cache, MissData is the traffic to load data from the DRAM cache

10

when a cache miss happens. MissData exists because, in both de-

signs, a request to a memory controller loads both the tag and the

data from the DRAM cache. The tag is loaded to check whether the

request is a hit or a miss; the data is loaded speculatively to hide

latency if it is a DRAM cache hit (cf. Section 2.1.1). For a DRAM

cache miss, however, speculatively loading the data (i.e., MissData)
consumes DRAM cache bandwidth unnecessarily.

Both Unison and Alloy Cache incur significant traffic for tag ac-

cesses. Alloy Cache also consumes considerable traffic for MissData
at cache misses. Unison Cache has small MissData traffic due to its

low miss rate. Both schemes also require significant replacement

traffic. Stochastic replacement (Alloy 0.1) reduces Alloy Cache’s

replacement traffic, but other overheads still remain.

TDC eliminates the tag traffic by managing mapping informa-

tion using page tables and TLBs. However, like Unison Cache, it

still incurs significant traffic for DRAM cache replacement. For

most benchmarks, the traffic difference between Unison and TDC

is mainly the removal of Metadata traffic. On some benchmarks

(e.g., mcf, libquantum), TDC incurs less replacement traffic than

Unison Cache because of its higher hit rate due to full associativity.

On some other benchmarks (e.g., pagerank, tri_count), however,
TDC incurs more traffic due to FIFO replacement. Overall, we find

that the replacement traffic reduces the performance of both Unison

Cache and TDC.

Because of our bandwidth-aware replacement policy, Banshee

provides significantly better bandwidth efficiency for in-package

DRAM (35.8% less traffic than the best baseline, i.e., Alloy 0.1).
Banshee achieves this without incurring extra off-package DRAM

traffic (shown in Figure 6), which is a major reason why Banshee

provides the best performance. On average, Banshee’s off-package

DRAM traffic is 9.7% lower than the best previous scheme in terms

of performance (Alloy 0.1), 3.1% lower than the best previous

scheme in terms of off-package DRAM traffic (Alloy 1), 42.4%
lower than Unison Cache, and 43.2% lower than TDC.

Graph Processing Workloads. As mentioned earlier, graph

processing workloads are arguably more important for our modeled

system, which is targeted towards throughput computing work-

loads. We observe that for graph codes with high main memory

traffic (i.e., pagerank, tri_count and graph500), Banshee provides
some of its largest performance improvements over the best base-

line, while also significantly reducing both in-package and off-

package DRAM traffic compared to all baseline schemes.

We conclude that Banshee is very effective at improving both

system performance and main memory bandwidth efficiency.

6.4 Banshee Extensions
6.4.1 Supporting Large Pages. Banshee can efficiently sup-

port large pages, as discussed in Section 5.1. Here, we evaluate the

performance impact of large pages on Banshee. To simplify the

evaluation, we assume that all data resides in large (2 MB) pages.

The sampling coefficient is chosen to be 0.001 and the replacement

threshold is calculated accordingly (Section 4.2.2). When comparing

performance with large and small pages, we assume perfect TLBs

to isolate the impact of the DRAM subsystem.

Our evaluation shows that on graph analytics benchmarks, with

large pages, Banshee’s performance is on average 3.6% higher than

the baseline Banshee with 4 KB pages. The performance gain of

Banshee with large pages comes from 1) the more accurate hot page

detection at the larger page granularity, 2) the reduced frequency

counter updates, and 3) the reduced TLB coherence overhead.

6.4.2 Balancing DRAMBandwidth. Some related works [7,

8, 19] propose to balance the accesses to in-package and off-package

DRAM in order to maximize the overall bandwidth efficiency. These

optimizations are orthogonal to Banshee and can be used in combi-

nation with Banshee.

We implemented the technique from BATMAN [19], which turns

off parts of the in-package DRAM if it has too much traffic (i.e., over

80% of the total DRAM traffic). On average, this optimization leads

to 5% (up to 24%) performance improvement for Alloy Cache and

1% (up to 11%) performance improvement for Banshee. The gain is

smaller in Banshee since it has less total bandwidth consumption

to begin with. Even with bandwidth balancing used in both designs,

Banshee still outperforms Alloy Cache by 12.4%.

6.5 Sensitivity Studies
In this section, we study the performance of Banshee with different

design parameters.

6.5.1 DRAM Cache Replacement Policy. Figure 7 shows

the normalized performance and in-package DRAM traffic of dif-

ferent replacement policies to provide insight into where the per-

formance gain of Banshee is coming from.

0.0

0.5

1.0

1.5

2.0

N
or

m
. S

pe
ed

up

0
2
4
6
8
10

By
te

s
Pe

r I
ns

tru
ct

io
n

Banshee LRU
Banshee FBR No Sample
Banshee
TDC

Figure 7: Sensitivity of Banshee to Cache Replacement Pol-
icy – Speedup normalized to NoCache (bars) and in-package DRAM
traffic (red dots) of different replacement policies on Banshee. Re-

sults averaged over all benchmarks.

Banshee LRU uses an LRU policy similar to Unison Cache but

does not use a footprint cache. It has low performance and high

bandwidth consumption due to frequent page replacements which

occur on every miss.

Using frequency-based replacement improves performance and

bandwidth efficiency over LRU since only hot pages are cached.

However, if the frequency counters are updated on every DRAM

cache access (Banshee FBR No Sample, similar to CHOP [33]),

significant metadata traffic is incurred, which leads to perfor-

mance degradation. We conclude that both FBR and sampling-based

counter management should be used to achieve good performance

in Banshee.

6.5.2 Page Table Update Overhead. One potential disad-

vantage of Banshee is the overhead of updating page tables when

enforcing TLB coherence (cf. Section 3.4). However, this cost is paid

only when the Tag Buffer fills up after many page remappings. Fur-

thermore, our replacement policy intentionally slows remapping

11

(cf. Section 4). On average, the page table update is triggered once

every 14 milliseconds, which has low overhead in practice.

Table 5 shows the average and maximum performance degra-

dation across our benchmarks, compared to an ideal baseline that

incurs zero cost for page table updates, for a range of page table

update costs. The average performance degradation is less than 1%,

and scales sublinearly with the page table update cost. We find that

doubling the Tag Buffer size has a similar effect on performance as

reducing the page table update cost by half (not shown).

Table 5: Sensitivity to Page Table Update Cost.
Update Cost (µs) Avg Perf. Loss Max Perf. Loss

10 0.11% 0.76%

20 0.18% 1.3%

40 0.31% 2.4%

6.5.3 Storing Tags in SRAM. For systems with small DRAM

caches, storing tags in on-chip SRAM may also be a good design

option. Compared to the page-table-based mapping management

in Banshee, storing tags in SRAM incurs higher latency and more

storage requirement, but doing so reduces the design complexity.

Note that the bandwidth-aware FBR policy proposed in this pa-

per is orthogonal to mapping management. Therefore, Banshee’s

replacement policy can improve DRAM bandwidth efficiency for

designs that store tags in SRAM.

We evaluated a version of Banshee where the tags are stored in

SRAM instead of page tables and TLBs. For a 1 GB DRAM cache,

the tags and FBR metadata consume 2 MB of SRAM storage (cf.

Figure 3) which is 1/4th of the LLC size. We assume the tag array

lookup latency to be the same as the LLC latency. With SRAM tags

and bandwidth-efficient FBR, the performance of this version of

Banshee is on average 3% (up to 10%) worse than our proposed

Banshee design. Banshee with SRAM tags still outperforms other

baseline DRAM cache designs.

6.5.4 DRAM Cache Latency and Bandwidth. Figure 8

shows the performance (normalized to NoCache) of different DRAM
cache schemes for different DRAM cache latency and bandwidth

parameters. Each data point is the geometric mean performance

over all benchmarks. The x-axis of each figure shows the latency

and bandwidth of in-package DRAM relative to off-package DRAM.

By default, we assume in-package DRAM has the same latency as

and 4× the bandwidth of off-package DRAM.

100% 66% 50%
DRAM Cache Latency

0.0

0.5

1.0

1.5

2.0

N
or

m
. S

pe
ed

up

100% 8X 4X 2X
DRAM Cache Bandwidth

0.0

0.5

1.0

1.5

2.0

N
or

m
. S

pe
ed

up

Banshee
Alloy
TDC
Unison

8X 4X 2X
DRAM Cache Bandwidth

0.0

0.5

1.0

1.5

2.0

N
or

m
. S

pe
ed

up

Banshee
Alloy
TDC
Unison

4X

Figure 8: Sensitivity to DRAM Cache Latency and Band-
width – Each data point is the geometric mean over all bench-

marks. Default parameter setting is highlighted on x-axis. Latency

and bandwidth values are relative to off-package DRAM.

As the in-package DRAM’s latency decreases and bandwidth

increases, the performance of all DRAM cache schemes improves.

We observe that performance is more sensitive to bandwidth than

to zero-load latency. Although not shown in the figure, changing

the core count in the system has a similar effect as changing the

DRAM cache bandwidth. Since Banshee’s performance gain over

the baselines is more significant when the DRAM cache bandwidth

is more limited, we expect Banshee to have larger performance gain

with more cores.

6.5.5 SamplingCoefficient. Figure 9 shows theDRAMcache

miss rate (fraction of accesses that miss) and traffic breakdown for

different values of the sampling coefficient in Banshee. As the sam-

pling coefficient decreases, miss rate increases and the amount of

traffic for updating the frequency counters (Counter) decreases. We

chose 0.1 as the default sampling coefficient since it has reasonably

low miss rate, and the incurred traffic overhead is small enough.

1 0.1 0.01
Sampling Coefficient

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
is

s
R

at
e

0.1

D
R

A
M

 C
ac

he
 M

is
s

R
at

e

Sampling Coefficient

(a) DRAM cache miss rate

1 0.1 0.01
Sampling Coefficient

0.0

0.5

1.0

1.5

2.0

2.5

By
te

s
pe

r I
ns

tru
ct

io
n

HitData
MissData
Tag

Counter
Replace

0.1

(b) DRAM cache traffic

Figure 9: Sensitivity of Banshee to Sampling Coefficient –
The default sampling coefficient is 0.1.

6.5.6 Associativity. Table 6 shows the cache miss rate for dif-

ferent values of set-associativity in Banshee. Doubling the number

of ways requires adding one more bit to each PTE, and doubles the

per-set metadata. Higher associativity reduces the cache miss rate.

Since we observe diminishing miss rate reduction with more than

four ways, we choose the 4-way set-associative DRAM cache as

our default design point.

Table 6: Cache Miss Rate vs. Associativity in Banshee
Associativity 1 way 2 ways 4 ways 8 ways

Miss Rate 36.1% 32.5% 30.9% 30.7%

7 RELATEDWORK
Besides those discussed in detail in Section 2, other DRAM cache

designs are proposed in the literature. PoM [54] and CAMEO [18]

manage in-package and off-package DRAM in different address

spaces at fine (64 B) granularity. Tag Tables [23] compress the tag

storage for Alloy Cache to make it cheaper to put in on-chip SRAM.

Bi-Modal Cache [24] supports heterogeneous block sizes (cacheline

and page) to get the best of both worlds. All these schemes focus

on minimizing latency of the design and incur significant traffic for

tag lookups and/or cache replacement.

Similar to this paper, several other papers propose DRAM

cache designs with optimizations to improve bandwidth efficiency.

CHOP [33] targets the off-package DRAM bandwidth bottleneck

12

for page-granularity DRAM caches, and uses FBR instead of LRU.

However, their scheme still incurs significant traffic for counter

updates (cf. Section 6.5.1), whereas Banshee uses sampling-based

counter management and bandwidth-aware replacement to reduce

such traffic. Several other papers propose to improve off-package

DRAM traffic for page-granularity DRAM caches using a footprint
cache [28, 31, 32]. As we showed in Section 6, however, a footprint

cache alone cannot eliminate all unnecessary replacement traffic.

That said, the footprint cache idea is orthogonal to Banshee and

can be combined with Banshee for even better performance. A few

papers [7, 8, 19] propose to balance the bandwidth utilization be-

tween in-package and off-package DRAM to maximize efficiency.

As we evaluated in Section 6.4.2, these techniques are orthogonal

to Banshee.

BEAR [20] improves Alloy Cache’s DRAM cache bandwidth

efficiency. Our implementation of Alloy Cache already includes

some of the key BEAR optimizations. These optimizations cannot

eliminate all tag lookups, and, as we have shown in Section 6.3,

Banshee provides higher DRAM cache bandwidth efficiency as well

as higher performance.

Several other works consider heterogeneous memory technolo-

gies beyond in-package DRAM. These include designs for hybrid

DRAM and Phase Change Memory (PCM) [22, 39, 45, 59], a single

DRAM chip with fast and slow portions [13–15, 37, 42], and the

design of different off-chip DRAM channels with various different

characteristics (e.g., latency, reliability, power consumption) [16,

43, 47] .We believe the ideas in this paper can be applied to such

heterogeneous memory systems, as well.

Among all previous designs, TDC [38] is the one closest to

Banshee. Both TDC and Banshee use page tables and TLBs to track

data mapping at page granularity. The key novelty of Banshee com-

pared to TDC is 1) the bandwidth-efficient frequency-based DRAM

cache replacement policy, 2) the low-overhead lazy TLB coherence

mechanism using the Tag Buffer, and 3) using the same address
space for in-package and off-package DRAM to solve the address

consistency problem. As a result, Banshee significantly reduces the

large TLB coherence overheads and the unnecessary bandwidth

consumption in both in-package and off-package DRAM, thereby

boosting system performance over a wide range of workloads.

8 CONCLUSION
We propose a new DRAM cache design called Banshee. Ban-

shee aims to maximize both in-package and off-package DRAM

bandwidth efficiency and performs better than previous latency-

optimized DRAM cache designs on memory-bound applications.

Banshee achieves this through a software/hardware co-design ap-

proach. Specifically, Banshee uses a new, low-overhead lazy TLB
coherence mechanism and a bandwidth-aware DRAM cache replace-
ment policy to minimize the memory bandwidth overhead for 1)

tracking the DRAM cache contents, and 2) performing DRAM cache

replacement. Our extensive experimental results show that Ban-

shee provides significant performance and bandwidth efficiency

improvements over three state-of-the-art DRAM cache schemes.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers of MICRO 2017, ISCA 2017,

HPCA 2017 and MICRO 2016 for their helpful feedback. An earlier

version of this work was posted on arXiv in 2017 [61]. This work

is supported in part by the Intel Science and Technology Center

(ISTC) for Big Data.

REFERENCES
[1] Hybrid Memory Cube Specification 2.1. http://www.

hybridmemorycube.org, 2014.

[2] NVLink, Pascal and Stacked Memory: Feeding the Appetite for

Big Data. https://goo.gl/y6oYqD, 2014.

[3] The Road to the AMD “Fiji” GPU. https://goo.gl/ci9BvG, 2015.

[4] Data Sheet: Tesla P100. https://goo.gl/Y6gfXZ, 2016.

[5] Intel®64 and IA-32 Architectures Optimization Reference Man-

ual. https://goo.gl/WKkFiw, 2016.

[6] NVidia Tesla V100 GPU Accelerator. https://goo.gl/5eqTg5,

2017.

[7] Agarwal, N., et al. Page Placement Strategies for GPUswithin

Heterogeneous Memory Systems. In ASPLOS (2015).
[8] Agarwal, N., et al. Unlocking Bandwidth for GPUs in CC-

NUMA Systems. In HPCA (2015).

[9] Ahn, J., et al. A Scalable Processing-in-Memory Accelerator

for Parallel Graph Processing. In ISCA (2015).

[10] Ahn, J., et al. PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture. In ISCA
(2015).

[11] Bailey, L., and Chris, C. Configuring Huge Pages in Red Hat

Enterprise Linux 4 or 5. https://goo.gl/lqB1uf, 2014.

[12] Bovet, D. P., and Cesati, M. Understanding the Linux kernel.
O’Reilly Media, Inc., 2005.

[13] Chang, K., et al. Low-Cost Inter-Linked Subarrays (LISA):

Enabling Fast Inter-Subarray Data Movement in DRAM. In

HPCA (2016).

[14] Chang, K., et al. Understanding Latency Variation in Modern

DRAM Chips: Experimental Characterization, Analysis, and

Optimization. In SIGMETRICS (2016).
[15] Chang, K., et al. Understanding Reduced-Voltage Opera-

tion in Modern DRAMDevices: Experimental Characterization,

Analysis, and Mechanisms. SIGMETRICS (2017).
[16] Chatterjee, N., et al. Leveraging Heterogeneity in DRAM

Main Memories to Accelerate Critical Word Access. In MICRO
(2012).

[17] Chi, P., et al. PRIME: A Novel Processing-in-Memory Ar-

chitecture for Neural Network Computation in ReRAM-Based

Main Memory. In ISCA (2016).

[18] Chou, C., et al. CAMEO: A Two-Level Memory Organization

with Capacity of Main Memory and Flexibility of Hardware-

Managed Cache. In MICRO (2014).

[19] Chou, C., et al. BATMAN:Maximizing Bandwidth Utilization

of HybridMemory Systems. Tech report, ECE, Georgia Institute

of Technology, 2015.

[20] Chou, C., et al. BEAR: Techniques for Mitigating Bandwidth

Bloat in Gigascale DRAM Caches. In ISCA (2015).

[21] Chou, C., et al. CANDY: Enabling Coherent DRAM Caches

for Multi-Node Systems. In MICRO (2016).

13

http://www.hybridmemorycube.org
http://www.hybridmemorycube.org
https://goo.gl/y6oYqD
https://goo.gl/ci9BvG
https://goo.gl/WKkFiw

[22] Dhiman, G., et al. PDRAM: a Hybrid PRAM and DRAMMain

Memory System. In DAC (2009).

[23] Franey, S., and Lipasti, M. Tag Tables. In HPCA (2015).

[24] Gulur, N., et al. Bi-Modal DRAM Cache: Improving Hit Rate,

Hit Latency and Bandwidth. In MICRO (2014).

[25] Henning, J. L. SPEC CPU2006 Benchmark Descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006).

[26] Huang, C.-C., et al. C
3
D: Mitigating the NUMA Bottleneck

via Coherent DRAM Caches. In MICRO (2016).

[27] Huang, C.-C., and Nagarajan, V. ATCache: Reducing DRAM

Cache Latency via a Small SRAM Tag Cache. In PACT (2014).

[28] Jang, H., et al. Efficient Footprint Caching for Tagless DRAM

Caches. In HPCA (2016).

[29] JEDEC. JESD235 High Bandwidth Memory (HBM) DRAM,

2013.

[30] Jeffers, J., et al. Intel Xeon Phi Processor High Performance
Programming: Knights Landing Edition. Morgan Kaufmann,

2016.

[31] Jevdjic, D., et al. Die-Stacked DRAM Caches for Servers:

Hit Ratio, Latency, or Bandwidth? Have It All with Footprint

Cache. In ISCA (2013).

[32] Jevdjic, D., et al. Unison Cache: A Scalable and Effective

Die-Stacked DRAM Cache. In MICRO (2014).

[33] Jiang, X., et al. CHOP: Adaptive Filter-Based DRAMCaching

for CMP Server Platforms. In HPCA (2010).

[34] Kim, Y., et al. Ramulator: A Fast and Extensible DRAM Simu-

lator. CAL (2016).

[35] Kumar, S., and Wilkerson, C. Exploiting Spatial Locality in

Data Caches using Spatial Footprints. In ISCA (1998).

[36] Lee, D., et al. LRFU: A Spectrum of Policies that Subsumes

the Least Recently Used and Least Frequently Used Policies.

IEEE transactions on Computers (2001).
[37] Lee, D., et al. Tiered-Latency DRAM: A Low Latency and

Low Cost DRAM Architecture. In HPCA (2013).

[38] Lee, Y., et al. A Fully Associative, Tagless DRAM Cache. In

ISCA (2015).

[39] Li, Y., et al. Utility-Based Hybrid Memory Management. In

CLUSTER (2017).

[40] Liptay, J. Structural Aspects of the System/360 Model 85, II:

The cache. IBM Systems Journal (1968).
[41] Loh, G. H., and Hill, M. D. Efficiently Enabling Conventional

Block Sizes for Very Large Die-Stacked DRAM Caches. In

MICRO (2011).

[42] Lu, S.-L., et al. Improving DRAM Latency with Dynamic

Asymmetric Subarray. In MICRO (2015).

[43] Luo, Y., et al. Characterizing Application Memory Error

Vulnerability to Optimize Datacenter Cost via Heterogeneous-

Reliability Memory. In DSN (2014).

[44] Meswani, M., et al. Heterogeneous Memory Architectures:

A HW/SW Approach for Mixing Die-stacked and Off-package

Memories. In HPCA (2015).

[45] Meza, J., et al. Enabling Efficient and Scalable Hybrid Mem-

ories Using Fine-Granularity DRAM Cache Management. CAL
(2012).

[46] O’Connor, M. Highlights of the High-Bandwidth Memory

(HBM) Standard.

[47] Phadke, S., and Narayanasamy, S. MLP Aware Heteroge-

neous Memory System. In DATE (2011).

[48] Qureshi, M., et al. A Case for MLP-Aware Cache Replace-

ment. ISCA (2006).

[49] Qureshi, M., et al. Adaptive Insertion Policies for High

Performance Caching. In ISCA (2007).

[50] Qureshi, M., and Loh, G. Fundamental Latency Trade-off

in Architecting DRAM Caches: Outperforming Impractical

DRAM-Tags with a Simple and Practical Design. In MICRO
(2012).

[51] Robinson, J., and Devarakonda, M. Data cache management

using frequency-based replacement. In SIGMETRICS (1990).
[52] Rothman, J., and Smith, A. Sector Cache Design and Perfor-

mance. In MASCOTS (2000).
[53] Sanchez, D., and Kozyrakis, C. ZSim: Fast and Accurate

Microarchitectural Simulation of Thousand-Core Systems. In

ISCA (2013).

[54] Sim, J., et al. Transparent Hardware Management of Stacked

DRAM as Part of Memory. In MICRO (2014).

[55] Sodani, A. Intel®Xeon Phi
TM

Processor “Knights Landing”

Architectural Overview. https://goo.gl/dp1dVm, 2015.

[56] Sodani, A., et al. Knights Landing: Second-Generation Intel

Xeon Phi Product. IEEE Micro 36, 2 (2016), 34–46.
[57] Stallings, W., et al. Operating Systems: Internals and Design

Principles, vol. 148. Prentice Hall Upper Saddle River, NJ, 1998.
[58] Villavieja, C., et al. DiDi: Mitigating The Performance

Impact of TLB. Shootdowns Using A Shared TLB Directory. In

PACT (2011).

[59] Yoon, H., et al. Row Buffer Locality Aware Caching Policies

for Hybrid Memories. In ICCD (2012).

[60] Yu, X., et al. IMP: Indirect Memory Prefetcher. In MICRO
(2015).

[61] Yu, X., et al. Banshee: Bandwidth-Efficient DRAM Caching

Via Software/Hardware Cooperation. arXiv:1704.02677 (2017).

14

https://goo.gl/dp1dVm

	Abstract
	1 Introduction
	2 Background
	2.1 Tracking DRAM Cache Contents
	2.2 DRAM Cache Replacement

	3 Banshee DRAM Cache Design
	3.1 Banshee Architecture
	3.2 Page Table and TLB Extension
	3.3 Tag Buffer
	3.4 Page Table and TLB Coherence

	4 Bandwidth-Efficient Cache Replacement
	4.1 DRAM Cache Layout
	4.2 Bandwidth-Aware Replacement Policy

	5 Banshee Extensions
	5.1 Supporting Large Pages
	5.2 Multi-Socket Support

	6 Evaluation
	6.1 Methodology
	6.2 Performance
	6.3 DRAM Traffic
	6.4 Banshee Extensions
	6.5 Sensitivity Studies

	7 Related Work
	8 Conclusion
	References

