
BLISS: Balancing Performance, Fairness
and Complexity in Memory Access Scheduling

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu

Abstract—In a multicore system, applications running on different cores interfere at main memory. This inter-application interference

degrades overall system performance and unfairly slows down applications. Prior works have developed application-aware memory

request schedulers to tackle this problem. State-of-the-art application-aware memory request schedulers prioritize memory requests of

applications that are vulnerable to interference, by ranking individual applications based on their memory access characteristics and

enforcing a total rank order. In this paper, we observe that state-of-the-art application-aware memory schedulers have two major

shortcomings. First, such schedulers trade off hardware complexity in order to achieve high performance or fairness, since ranking

applications individually with a total order based on memory access characteristics leads to high hardware cost and complexity. Such

complexity could prevent the scheduler from meeting the stringent timing requirements of state-of-the-art DDR protocols. Second,

ranking can unfairly slow down applications that are at the bottom of the ranking stack, thereby sometimes leading to high slowdowns

and low overall system performance. To overcome these shortcomings, we propose the Blacklisting Memory Scheduler (BLISS), which

achieves high system performance and fairness while incurring low hardware cost and complexity. BLISS design is based on two new

observations. First, we find that, to mitigate interference, it is sufficient to separate applications into only two groups, one containing

applications that are vulnerable to interference and another containing applications that cause interference, instead of ranking

individual applications with a total order. Vulnerable-to-interference group is prioritized over the interference-causing group. Second, we

show that this grouping can be efficiently performed by simply counting the number of consecutive requests served from each

application. We evaluate BLISS across a wide variety of workloads and system configurations and compare its performance and

hardware complexity (via RTL implementations), with five state-of-the-art memory schedulers. Our evaluations show that BLISS

achieves 5 percent better system performance and 25 percent better fairness than the best-performing previous memory scheduler

while greatly reducing critical path latency and hardware area cost of the memory scheduler (by 79 and 43 percent, respectively),

thereby achieving a good trade-off between performance, fairness and hardware complexity.

Ç

1 INTRODUCTION

IN modern systems, the high latency of accessing large-
capacity off-chipmemory and limitedmemory bandwidth

have made main memory a critical performance bottleneck.
In a multicore system, main memory is typically shared by
applications running on different cores (or, hardware con-
texts). Requests from such applications contend for the off-
chip memory bandwidth, resulting in interference. Several
prior works [1], [2], [3], [4] demonstrated that this inter-
application interference can severely degrade overall system
performance and fairness. This problemwill likely get worse
as the number of cores on amulticore chip increases [2].

Prior works proposed different solution approaches to
mitigate inter-application interference, with the goal of
improving system performance and fairness (e.g., [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]). A
prevalent solution direction is application-aware memory
request scheduling (e.g., [3], [4], [5], [6], [7], [12]). The basic
idea of application-aware memory scheduling is to

prioritize requests of different applications differently,
based on the applications’ memory access characteristics.
State-of-the-art application-aware memory schedulers typi-
cally i) monitor applications’ memory access characteristics,
ii) rank applications individually based on these characteristics
such that applications that are vulnerable to interference are
ranked higher and iii) prioritize requests based on the com-
puted ranking.

We observe that there are two major problems with past
ranking-based schedulers. First, such schedulers trade off
hardware complexity in order to improve performance or
fairness. They incur high hardware complexity (logic and
storage overhead as well as critical path latency) to schedule
requests based on a scheme that ranks individual applica-
tions with a total order. As a result, the critical path latency
and chip area cost of such schedulers are significantly higher
compared to application-unaware schedulers. For example,
as we demonstrate in Section 7.2, based on our RTL designs,
TCM [7], a state-of-the-art application-aware scheduler is 8�
slower and 1.8� larger than a commonly-employed applica-
tion-unaware scheduler, FRFCFS [17]. Second, such schedu-
lers not only increase hardware complexity, but also cause
unfair slowdowns. When a total order based ranking is
employed, applications that are at the bottom of the ranking
stack get heavily deprioritized and unfairly slowed down.
This greatly degrades system fairness.

Our goal, in this work, is to design a new memory sched-
uler that does not suffer from these two problems: one
that achieves high system performance and fairness while

� L. Subramanian is currently with Intel Labs. She carried out this work
when she was a PhD student with the Department of Electrical and Com-
puter Engineering, Carnegie Mellon University.
E-mail: lavanya.subramanian@intel.com.

� D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu are with the Carnegie
Mellon University. E-mail: {donghyu1, visesh, harshar, onur}@cmu.edu.

Manuscript received 26 Mar. 2015; revised 30 Aug. 2015; accepted 14 Dec.
2015. Date of publication 4 Feb. 2016; date of current version 14 Sept. 2016.
Recommended for acceptance by A. Gordon-Ross.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2526003

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016 3071

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

incurring low hardware cost and low scheduling latency. To
this end, we propose the Blacklisting memory scheduler (BLISS).
Our BLISS design is based on two new observations.

Observation 1. In contrast to forming a total rank order
of all applications, we find that, to mitigate interference, it is
sufficient to i) separate applications into only two groups,
one group containing applications that are vulnerable to
interference and another containing applications that cause
interference, and ii) prioritize the requests of the vulnerable-
to-interference group over the requests of the interference-
causing group. Our approach overcomes the two major
problems with such schedulers that employ per-application
ranking. First, separating applications into only two groups,
as opposed to employing ranking based on a total order of
applications, significantly reduces hardware complexity
(Section 7.2). Second, since our approach prioritizes only
one dynamically-determined group of applications over
another dynamically-determined group, no single applica-
tion is heavily deprioritized, improving overall system fair-
ness (Section 7).

Observation 2. We observe that applications can be effi-
ciently classified as either vulnerable-to-interference or interfer-
ence-causing by simply counting the number of consecutive
requests served from an application in a short time interval.
Applications with a large number of consecutively-served
requests are classified as interference-causing. The rationale
behind this approach is that when a large number of conse-
cutive requests are served from the same application,
requests of other applications are more likely to be delayed,
causing those applications to stall. On the other hand, appli-
cations with very few consecutive requests will likely not
delay other applications and are, in fact, vulnerable to inter-
ference from other applications that have a large number of
requests generated and served. Our approach to classifying
applications is simpler to implement than prior approaches
(e.g., [4], [6], [7]) that use more complicated metrics such as
memory intensity, row-buffer locality, bank-level parallel-
ism or long-term memory service as proxies for vulnerabil-
ity to interference (Section 7.2).

Mechanism overview. Based on these two observations,
our mechanism, the Blacklisting Memory Scheduler, counts
the number of consecutive requests served from the same
application within a short time interval. When this count
exceeds a threshold, BLISS places the application in the
interference-causing group, which we also call the blacklisted
group. In other words, BLISS blacklists the application such
that it is deprioritized. During scheduling, non-blacklisted
(vulnerable-to-interference) applications’ requests are given
higher priority over requests of blacklisted (interference-
causing) applications. No per-application ranking is
employed. Prioritization is based solely on two groups as
opposed to a total order of applications.

This paper makes the following contributions:

� We present two new observations on how a simple
grouping scheme that avoids per-application rank-
ing can mitigate interference, based on our analyses
and studies of previous memory schedulers. These
observations can enable simple and effective mem-
ory interference mitigation techniques including and
beyond the ones we propose in this work.

� We propose the Blacklisting memory scheduler,
which achieves high system performance and fair-
ness while incurring low hardware cost and
complexity.

� We provide a comprehensive complexity analysis of
five previously proposed memory schedulers, com-
paring their critical path latency and area via RTL
implementations (Section 7.2). Our results show that
BLISS reduces critical path latency/area of the mem-
ory scheduler by 79%/43% respectively, compared
to the best-performing ranking-based scheduler,
TCM [7].

� We evaluate BLISS against five previously-proposed
memory schedulers in terms of system performance
and fairness across a wide range of workloads
(Section 7). Our results show that BLISS achieves
5 percent better system performance and 25 percent
better fairness than the best-performing previous
scheduler, TCM [7].

� We evaluate the trade-off space between performance,
fairness and hardware complexity for five previously-
proposed memory schedulers and BLISS (Section 7.3).
We demonstrate that BLISS achieves the best trade-off
between performance, fairness and complexity, com-
pared to previousmemory schedulers.

2 BACKGROUND AND MOTIVATION

In this section, we first provide a brief background on the
organization of a DRAM main memory system. We then
describe previous memory scheduling proposals and their
shortcomings that motivate the need for a new memory
scheduler - our blacklisting memory scheduler.

2.1 DRAM Background

The DRAM main memory system is organized hierar-
chically as channels, ranks and banks. Channels are inde-
pendent and can operate in parallel. Each channel consists
of ranks (typically 1 - 4) that share the command, address
and data buses of the channel. A rank consists of multiple
banks that can operate in parallel. However, all banks
within a channel share the command, address and data
buses of the channel. Each bank is organized as a two-
dimensional array of rows and columns. On a data access,
the entire row containing the data is brought into an internal
structure called the row buffer. Therefore, a subsequent
access to the same row can be served from the row buffer
itself and need not access the array. Such an access is called
a row hit. On an access to a different row, however, the
array itself needs to be accessed. Such an access is called a
row miss/conflict. A row hit is served �2-3x faster than a
rowmiss/conflict [18]. For more detail on DRAM operation,
we refer the reader to [19], [20], [21], [22].

2.2 Memory Scheduling

Commonly employed memory controllers employ a mem-
ory scheduling policy called First Ready First Come First
Served (FRFCFS) [17], [23] that leverages the row buffer by
prioritizing row hits over row misses/conflicts. Older
requests are then prioritized over newer requests. FRFCFS
aims to maximize DRAM throughput by prioritizing row

3072 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

hits. However, it unfairly prioritizes requests of applications
that generate a large number of requests to the same row
(high-row-buffer-locality) and access memory frequently
(high-memory-intensity) [2], [3]. Previous work (e.g., [3],
[4], [5], [6], [7]) proposed application-aware memory sched-
uling techniques that take into account the memory access
characteristics of applications and schedule requests appro-
priately in order to mitigate inter-application interference
and improve system performance and fairness. We will
focus on four state-of-the-art schedulers, which we evaluate
quantitatively in Section 7.

Mutlu and Moscibroda propose PARBS [4], an applica-
tion-aware memory scheduler that batches the oldest
requests from applications and prioritizes the batched
requests, with the goals of preventing starvation and
improving fairness. Within each batch, PARBS ranks indi-
vidual applications based on the number of outstanding
requests of each application and, using this total rank order,
prioritizes requests of applications that have low-memory-
intensity to improve system throughput.

Kim et al. [6] observe that applications that receive low
memory service tend to experience interference from applica-
tions that receive highmemory service. Based on this observa-
tion, they propose ATLAS, an application-aware memory
scheduling policy that ranks individual applications based on
the amount of long-term memory service each receives and
prioritizes applications that receive lowmemory service, with
the goal of improving overall system throughput.

Thread cluster memory scheduling (TCM) [7] ranks
individual applications by memory intensity such that
low-memory-intensity applications are prioritized over
high-memory-intensity applications (to improve system
throughput). Kim et al. [7] also observed that ranking all
applications based on memory intensity and prioritizing
low-memory-intensity applications could slow down the
deprioritized high-memory-intensity applications signifi-
cantly and unfairly. With the goal of mitigating this unfair-
ness, TCM clusters applications into low and high
memory-intensity clusters and employs a different ranking
scheme in each cluster. In the low-memory-intensity clus-
ter, applications are ranked by memory intensity, whereas,
in the high-memory-intensity cluster, applications’ ranks
are shuffled to provide fairness. Both clusters employ a
total rank order among applications at any given time.

More recently, Ghose et al. [8] propose a memory sched-
uler that aims to prioritize criticalmemory requests that stall
the instruction window for long lengths of time. The sched-
uler predicts the criticality of a load instruction based on
how long it has stalled the instruction window in the past
(using the instruction address (PC)) and prioritizes requests
from load instructions that have large total and maximum
stall times measured over a period of time. Although this
scheduler is not application-aware, we compare to it as it is
the most recent scheduler that aims to maximize perfor-
mance by mitigating memory interference.

2.3 Shortcomings of Previous Schedulers

These state-of-the-art schedulers attempt to achieve two
main goals - high system performance and high fairness.
However, previous schedulers have two major shortcom-
ings. First, these schedulers increase hardware complexity in

order to achieve high system performance and fairness. Spe-
cifically, most of these schedulers rank individual applica-
tions with a total order, based on their memory access
characteristics (e.g., [4], [5], [6], [7]). Scheduling requests
based on a total rank order incurs high hardware complexity,
as we demonstrate in Section 7.2, slowing down the memory
scheduler significantly (by 8� for TCM compared to
FRFCFS), while also increasing its area (by 1.8�). Such high
critical path delays in the scheduler directly increase the
time it takes to schedule a request, potentially making the
memory controller latency a bottleneck. Second, a total-order
ranking is unfair to applications at the bottom of the ranking
stack. Even shuffling the ranks periodically (like TCM does)
does not fully mitigate the unfairness and slowdowns expe-
rienced by an applicationwhen it is at the bottom of the rank-
ing stack, as we show in Section 3.

Fig. 1 compares four major previous schedulers using a
three-dimensional plot with performance, fairness and sim-
plicity on three different axes.1 On the fairness axis, we plot
the negative of maximum slowdown, and on the simplicity
axis, we plot the negative of critical path latency. Hence, the
ideal scheduler would have high performance, fairness and
simplicity, as indicated by the black triangle. As can be
seen, previous ranking-based schedulers, PARBS, ATLAS
and TCM, increase complexity significantly, compared to
the currently employed FRFCFS scheduler, in order to
achieve high performance and/or fairness.

Our goal, in this work, is to design a new memory sched-
uler that does not suffer from these shortcomings: one that
achieves high system performance and fairness while incur-
ring low hardware cost and complexity. To this end, we
propose the Blacklisting memory scheduler based on two new
observations described in the next section.

3 KEY OBSERVATIONS

As we described in the previous section, several major state-
of-the-art memory schedulers rank individual applications
with a total order, to mitigate inter-application interference.
While such ranking is one way to mitigate interference, it has
shortcomings, as described in Section 2.3. We seek to

Fig. 1. Performance versus fairness versus simplicity.

1. Results across 80 simulated workloads on a 24-core, 4-channel
system. Section 6 describes our methodology and metrics.

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3073

overcome these shortcomings by exploring an alternative
means to protecting vulnerable applications from interfer-
ence. We make two key observations on which we build our
newmemory schedulingmechanism.

Observation 1. Separating applications into only two
groups (interference-causing and vulnerable-to-interfer-
ence), without ranking individual applications using a
total order, is sufficient to mitigate inter-application
interference. This leads to higher performance, fairness
and lower complexity, all at the same time.

We observe that applications that are vulnerable to inter-
ference can be protected from interference-causing applica-
tions by simply separating them into two groups, one
containing interference-causing applications and another
containing vulnerable-to-interference applications, rather
than ranking individual applications with a total order as
many state-of-the-art schedulers do. To motivate this, we
contrast TCM [7], which clusters applications into two
groups and employs a total rank order within each cluster,
with a simple scheduling mechanism (Grouping) that simply
groups applications only into two groups, based on mem-
ory intensity (as TCM does), and prioritizes the low-inten-
sity group without employing ranking in each group.
Grouping uses the FRFCFS policy within each group. Fig. 2
shows the number of requests served during a 100,000 cycle
period at intervals of 1,000 cycles, for three representative
applications, astar, hmmer and lbm from the SPEC
CPU2006 benchmark suite [24], using these two schedulers.
All these three applications are in the high-memory-inten-
sity group.2 These three applications are executed with
other applications in a simulated 24-core 4-channel system.3

Fig. 2 shows that TCM has high variance in the number
of requests served across time, with very few requests being
served during several intervals and many requests being
served during a few intervals. This behavior is seen in most
applications in the high-memory-intensity cluster since
TCM ranks individual applications with a total order. This
ranking causes some high-memory-intensity applications’
requests to be prioritized over other high-memory-intensity
applications’ requests, at any point in time, resulting in high
interference. Although TCM periodically shuffles this total-
order ranking, we observe that an application benefits from
ranking only during those periods when it is ranked very
high. These very highly ranked periods correspond to the
spikes in the number of requests served (for TCM) in Fig. 2

for that application. During the other periods of time when
an application is ranked lower (i.e., most of the shuffling
intervals), only a small number of its requests are served,
resulting in very slow progress. Therefore, most high-mem-
ory-intensity applications experience high slowdowns due
to the total-order ranking employed by TCM.

On the other hand, when applications are separated into
only two groups based on memory intensity and no per-
application ranking is employed within a group, some inter-
ference exists among applications within each group (due to
the application-unaware FRFCFS scheduling in each group).
In the high-memory-intensity group, this interference con-
tributes to the few low-request-service periods seen for
Grouping in Fig. 2. However, the request service behavior of
Grouping is less spiky than that of TCM, resulting in lower
memory stall times and a more steady and overall higher
progress rate for high-memory-intensity applications, as
compared to when applications are ranked in a total order.
In the low-memory-intensity group, there is not much of a
difference between TCM and Grouping, since applications
anyway have low memory intensities and hence, do not
cause significant interference to each other. Therefore,
Grouping results in higher system performance and signifi-
cantly higher fairness than TCM, as shown in Fig. 3 (across
80 24-core workloads on a simulated 4-channel system).

Solely grouping applications into two also requires much
lower hardware overhead than ranking-based schedulers
that incur high overhead for computing and enforcing a
total rank order for all applications. Therefore, grouping
can not only achieve better system performance and fairness
than ranking, but it also can do so while incurring lower
hardware cost. However, classifying applications into two
groups at coarse time granularities, on the order of a few
million cycles, like TCM’s clustering mechanism does (and
like what we have evaluated in Fig. 3), can still cause unfair
application slowdowns. This is because applications in one
group would be deprioritized for a long time interval,
which is especially dangerous if application behavior
changes during the interval. Our second observation, which
we describe next, minimizes such unfairness and at the
same time reduces the complexity of grouping even further.

Fig. 2. Request service distribution over time with TCM and Grouping schedulers.

Fig. 3. Performance and fairness of Grouping versus TCM.

2. We found very similar behavior in all other such applications we
examined.

3. See Section 6 for our methodology.

3074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Observation 2. Applications can be classified into
interference-causing and vulnerable-to-interference groups
by monitoring the number of consecutive requests served
from each application at the memory controller. This
leads to higher fairness and lower complexity than
grouping schemes that rely on coarse-grained memory
intensity measurement.

Previous work actually attempted to perform group-
ing, along with ranking, to mitigate interference. As
described in Section 2, TCM [7] ranks applications by
memory intensity and classifies applications that make
up a certain fraction of the total memory bandwidth
usage into a group called the low-memory-intensity cluster
and the remaining applications into a second group called
the high-memory-intensity cluster. While employing such a
grouping scheme, without ranking individual applica-
tions, reduces hardware complexity and unfairness com-
pared to a total order based ranking scheme (as we show
in Fig. 3), it i) can still cause unfair slowdowns due to classify-
ing applications into groups at coarse time granularities, and
ii) incurs additional hardware overhead and scheduling latency
to compute and rank applications by long-term memory inten-
sity and memory bandwidth usage.

We propose to perform application grouping using a sig-
nificantly simpler, novel scheme: simply by counting the
number of requests served from each application in a short
time interval. Applications that have a large number (i.e.,
above a threshold value) of consecutive requests served are
classified as interference-causing (this classification is peri-
odically reset). The rationale behind this scheme is that
when an application has a large number of consecutive
requests served within a short time period, which is typical
of applications with high memory intensity or high row-
buffer locality, it delays other applications’ requests,
thereby stalling their progress. Hence, identifying and
essentially blacklisting such interference-causing applica-
tions by placing them in a separate group and deprioritizing
requests of this blacklisted group can prevent such applica-
tions from hogging the memory bandwidth. As a result, the
interference experienced by vulnerable applications is miti-
gated. The blacklisting classification is cleared periodically,
at short time intervals (on the order of 1,000 s of cycles) in
order not to deprioritize an application for too long of a
time period to cause unfairness or starvation. Such clearing
and re-evaluation of application classification at short time
intervals significantly reduces unfair application slow-
downs (as we quantitatively show in Section 7.7), while
reducing complexity compared to tracking per-application
metrics such as memory intensity.

4 MECHANISM

In this section, we present the details of our Blacklisting
memory scheduler that employs a simple grouping scheme
motivated by our key observations from Section 3. The two
main components of BLISS are i) the blacklisting mechanism
that separates applications into the blacklisted (interference-
causing) and non-blacklisted (vulnerable-to-interference)
groups and ii) the memory scheduling mechanism that
schedules requests based on the blacklisting mechanism.
We describe each in turn.

4.1 The Blacklisting Mechanism

The blacklisting mechanism needs to keep track of three
quantities: 1) the application (i.e., hardware context) ID of
the last scheduled request (Application ID),4 2) the number
of requests served from an application (#Requests Served),
and 3) the blacklist status of each application.

When the memory controller is about to issue a request,
it compares the application ID of the request with the Appli-
cation ID of the last scheduled request.

� If the application IDs of the two requests are the
same, the #Requests Served counter is incremented.

� If the application IDs of the two requests are not the
same, the #Requests Served counter is reset to zero
and the Application ID register is updated with the
application ID of the request that is being issued.

If the #Requests Served exceeds a Blacklisting Threshold (set
to 4 in most of our evaluations):

� The application with ID Application ID is blacklisted
(classified as interference-causing).

� The #Requests Served counter is reset to zero.
The blacklist information is cleared periodically after every

Clearing Interval (10,000 cycles in ourmajor evaluations).

4.2 Blacklist-Based Memory Scheduling

Once the blacklist information is computed, it is used to
determine the scheduling priority of a request. Memory
requests are prioritized in the following order:

1) Non-blacklisted applications’ requests
2) Row-buffer hit requests
3) Older requests
Prioritizing requests of non-blacklisted applications over

requests of blacklisted applications mitigates interference.
Row-buffer hits are then prioritized to optimize DRAM
bandwidth utilization. Finally, older requests are prioritized
over younger requests for forward progress.

5 IMPLEMENTATION

The Blacklisting memory scheduler requires additional
storage (flip flops) and logic over an FRFCFS scheduler
to 1) perform blacklisting and 2) prioritize non-black-
listed applications’ requests. We analyze the storage and
logic cost of it.

5.1 Storage Cost

In order to perform blacklisting, the memory scheduler
needs the following storage components:

� one register to store Application ID
� one counter for #Requests Served
� one register to store the Blacklisting Threshold that

determines when an application should be
blacklisted

� a blacklist bit vector to indicate the blacklist status of
each application (one bit for each hardware context)

4. An application here denotes a hardware context. There can be as
many applications executing actively as there are hardware contexts.
Multiple hardware contexts belonging to the same application are con-
sidered separate applications by our mechanism, but our mechanism
can be extended to deal with such multithreaded applications.

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3075

In order to prioritize non-blacklisted applications’
requests, the memory controller needs to store the applica-
tion (hardware context) ID of each request so it can determine
the blacklist status of the application and appropriately
schedule the request.

5.2 Logic Cost

The memory scheduler requires comparison logic to

� determine when an application’s #Requests Served
exceeds the Blacklisting Threshold and set the bit corre-
sponding to the application in the Blacklist bit vector.

� prioritize non-blacklisted applications’ requests.
We provide a detailed quantitative evaluation of the

hardware area cost and logic latency of implementing BLISS
and previously proposed memory schedulers, in Section 7.2.

6 METHODOLOGY

6.1 System Configuration

Wemodel the DRAMmemory system using a cycle-level in-
house DDR3-SDRAM simulator. The DRAM model we use
is similar to Ramulator’s DDR3model [25], which is publicly
available [26]. This DDR3 simulator is integrated with a
cycle-level in-house simulator that models out-of-order exe-
cution cores, driven by a Pin [27] tool at the frontend. We
have made the simulator publicly available at [28]. The core
model includes an instruction window that keeps track of
ordering and retiring instructions in the right order. The exe-
cution of Load/Store instructions (through the caches/main
memory) is modeled in detail, while single cycle execution is
assumed for other non-memory instructions. Each core has a
private cache of 512 KB size, which connects directly to the
memory controller. We present most of our results on a sys-
tem with the DRAM main memory as the only shared
resource in order to isolate the effects of memory bandwidth
interference on application performance. We also present
results with shared caches in Section 7.11. We model conten-
tion between cores at the cache and main memory. Table 1
provides more details of our simulated system. We perform
most of our studies on a systemwith 24 cores and four chan-
nels. We provide a sensitivity analysis for a wide range of
core and channel counts, in Section 7.11. Each channel has
one rank and each rank has eight banks. We stripe data
across channels and banks at the granularity of a row.

6.2 Workloads

We perform our main studies using 24-core multiprog-
rammed workloads made of applications from the SPEC

CPU2006 suite [24], TPC-C, Matlab and the NAS parallel
benchmark suite [30].5 We classify a benchmark as memory-
intensive if it has a Misses Per Kilo Instruction (MPKI)
greater than 5 and memory-non-intensive otherwise. We
construct four categories of workloads (with 20 workloads in
each category), with 25, 50, 75 and 100 percent of memory-
intensive applications. This makes up a total of 80 workloads
with a range of memory intensities, constructed using ran-
dom combinations of benchmarks, modeling a cloud com-
puting like scenario where workloads of various types are
consolidated on the same node to improve efficiency. We
also evaluate 16-, 32- and 64- core workloads, with different
memory intensities, created using a similar methodology as
described above for the 24-core workloads. We simulate
each workload for 100 million representative cycles, as done
by previous studies inmemory scheduling [4], [6], [7].

6.3 Metrics

We quantitatively compare BLISS with previous memory
schedulers in terms of system performance, fairness and
complexity. We use the weighted speedup [31], [32], [33]
metric to measure system performance. We use the maxi-
mum slowdown metric [6], [7], [31], [34] to measure unfair-
ness. We report the harmonic speedupmetric [35] as another
measure of system performance. The harmonic speedup
metric also serves as a measure of balance between system
performance and fairness [35]. We report area in

micrometer2 (um2) and scheduler critical path latency in
nanoseconds (ns) asmeasures of complexity.

6.4 RTL Synthesis Methodology

In order to obtain timing/area results for BLISS and previ-
ous schedulers, we implement them in Register Transfer
Level (RTL), using Verilog. We synthesize the RTL imple-
mentations with a commercial 32 nm standard cell library,
using the Design Compiler tool from Synopsys.

6.5 Mechanism Parameters

For BLISS, we use a value of four for Blacklisting Threshold,
and a value of 10,000 cycles for Clearing Interval. These
values provide a good balance between performance and
fairness, as we observe from our sensitivity studies in Sec-
tion 7.12. For the other schedulers, we tuned their parame-
ters to achieve high performance and fairness on our
system configurations and workloads. We use a Marking-
Cap of 5 for PARBS, cap of 4 for FRFCFS-Cap, HistoryWeight
of 0.875 for ATLAS, ClusterThresh of 0.2 and ShuffleInterval
of 1,000 cycles for TCM.

7 EVALUATION

We compare BLISS with five previously proposed memory
schedulers, FRFCFS, FRFCFS with a cap (FRFCFS-Cap) [3],
PARBS, ATLAS andTCM. FRFCFS-Cap is amodified version
of FRFCFS that caps the number of consecutive row-buffer
hitting requests that can be served from an application [3].
Fig. 4 shows the average system performance (weighted
speedup and harmonic speedup) and unfairness (maximum
slowdown) across all our workloads. Fig. 5 shows a Pareto

TABLE 1
Configuration of the Simulated System

Processor 16-64 cores, 5.3 GHz, 3-wide issue,
128-entry instruction window

Last-level cache 64B cache-line, 16-way associative,
512 KB private cache-slice per core

Memory controller 128-entry read/write request queue per controller

Memory Timing: DDR3-1066 (8-8-8) [29]
Organization: 1-8 channels, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

5. Each benchmark is single threaded.

3076 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

plot of weighted speedup and maximum slowdown. We
make three major observations. First, BLISS achieves 5 per-
cent better weighted speedup, 25 percent lower maximum
slowdown and 19 percent better harmonic speedup than the
best performing previous scheduler (in terms of weighted
speedup), TCM, while reducing the critical path and area by
79 and 43 percent respectively (as we will show in Sec-
tion 7.2). Therefore, we conclude that BLISS achieves both
high system performance and fairness, at low hardware cost
and complexity.

Second, BLISS significantly outperforms all these five pre-
vious schedulers in terms of system performance, however, it
has 10 percent higher unfairness than PARBS, the previous
scheduler with the least unfairness. PARBS creates request
batches containing the oldest requests from each application.
Older batches are prioritized over newer batches. However,
within each batch, individual applications’ requests are
ranked and prioritized based on memory intensity. PARBS
aims to preserve fairness by batching older requests, while
still employing ranking within a batch to prioritize low-mem-
ory-intensity applications. We observe that the batching
aspect of PARBS is quite effective in mitigating unfairness,
although it increases complexity. This unfairness reduction
also contributes to the high harmonic speedup of PARBS.
However, batching restricts the amount of request reordering
that can be achieved through ranking. Hence, low-memory-
intensity applications that would benefit from prioritization
via aggressive request reordering have lower performance.
As a result, PARBS has 8 percent lower weighted speedup
than BLISS. Furthermore, PARBS has a 6.5� longer critical
path and � 2� greater area than BLISS, as we will show in
Section 7.2. Therefore, we conclude that BLISS achieves better
system performance than PARBS, at much lower hardware
cost, while slightly trading off fairness.

Third, BLISS has 4 percent higher unfairness than
FRFCFS-Cap, but it also 8 percent higher performance than

FRFCFS-Cap. FRFCFS-Cap has higher fairness than BLISS
since it restricts the length of only the ongoing row hit streak,
whereas blacklisting an application can deprioritize the
application for a longer time, until the next clearing interval.
As a result, FRFCFS-Cap slows down high-row-buffer-local-
ity applications to a lower degree than BLISS. However,
restricting only the on-going streak rather than blacklisting
an interfering application for a longer time causes more
interference to other applications, degrading system perfor-
mance compared to BLISS. Furthermore, FRFCFS-Cap is
unable to mitigate interference due to applications with
high memory intensity yet low-row-buffer-locality, whereas
BLISS is effective in mitigating interference due to such
applications as well. Hence, we conclude that BLISS
achieves higher performance (weighted speedup) than
FRFCFS-Cap, while slightly trading off fairness.

7.1 Analysis of Individual Workloads

In this section, we analyze the performance and fairness for
individual workloads, when employing different schedu-
lers. Fig. 6 shows the performance and fairness normalized

Fig. 4. System performance and fairness of BLISS compared to previous schedulers.

Fig. 5. Pareto plot of system performance and fairness. Fig. 6. System performance and fairness for all workloads.

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3077

to the baseline FRFCFS scheduler for all our 80 workloads,
for BLISS and previous schedulers, in the form of S-
curves [36]. The workloads are sorted based on the perfor-
mance improvement of BLISS.We draw threemajor observa-
tions. First, BLISS achieves the best performance among all
previous schedulers for most of our workloads. For a few
workloads, ATLAS achieves higher performance, by virtue
of always prioritizing applications that receive low memory
service. However, always prioritizing applications that
receive lowmemory service can unfairly slow down applica-
tions with high memory intensities, thereby degrading fair-
ness significantly (as shown in the maximum slowdown
plot, Fig. 6 bottom). Second, BLISS achieves significantly
higher fairness than ATLAS and TCM, the best-performing
previous schedulers, while also achieving higher perfor-
mance than them and approaches the fairness of the fairest
previous schedulers, PARBS and FRFCFS-Cap. As described
in the analysis of average performance and fairness results
above, PARBS, by virtue of request batching and FRFCFS-
Cap, by virtue of restricting only the current row hit streak
achieve higher fairness (lower maximum slowdown) than
BLISS for a number of workloads. However, these schedu-
lers achieve higher fairness at the cost of lower system per-
formance, as shown in Fig. 6. Third, for some workloads
with very high memory intensities, the default FRFCFS
scheduler achieves the best fairness. This is because memory
bandwidth becomes a very scarce resource when the mem-
ory intensity of a workload is very high. Hence, prioritizing
row hits utilizes memory bandwidth efficiently for such
workloads, thereby resulting in higher fairness. Based on
these observations, we conclude that BLISS achieves the best
performance and a good trade-off between fairness and per-
formance formost of the workloadswe examine.

7.2 Hardware Complexity

Figs. 8 and 9 show the critical path latency and area of five
previous schedulers and BLISS for a 24-core system for every
memory channel. We draw twomajor conclusions. First, pre-
viously proposed ranking-based schedulers, PARBS/
ATLAS/TCM, greatly increase the critical path latency and
area of the memory scheduler: by 11�/5.3�/8.1� and 2.4�/
1.7�/1.8� respectively, compared to FRFCFS and FRFCFS-
Cap, whereas BLISS increases latency and area by only 1.7�
and 3.2 percent over FRFCFS/FRFCFS-Cap.6 Fig. 7 shows a
high-level block diagram for FRFCFS and the changes

required for BLISS over the FRFCFS scheduler (in red and
italics). Second, PARBS, ATLAS and TCM cannot meet the
stringent worst-case timing requirements posed by the
DDR3 andDDR4 standards [18], [37]. In the case where every
request is a row-buffer hit, the memory controller would
have to schedule a request every read-to-read cycle time
(tCCD), the minimum value of which is 4 cycles for both
DDR3 and DDR4. TCM and ATLAS can meet this worst-case
timing only until DDR3-800 (read-to-read cycle time of 10 ns)
andDDR3-1333 (read-to-read cycle time of 6 ns) respectively,
whereas BLISS can meet the worst-case timing all the way
down to DDR4-3200 (read-to-read time of 2.5 ns). Hence, the
high critical path latency of PARBS, ATLAS and TCM is a
serious impediment to their adoption in today’s and future
memory interfaces. Techniques like pipelining could poten-
tially be employed to reduce the critical path latency of these
previous schedulers. However, the additional flops required
for pipelining would increase area, power and design effort
significantly. Therefore, we conclude that BLISS, with its
greatly lower complexity and cost as well as higher system
performance and competitive or better fairness, is a more
effective alternative to state-of-the-art application-aware
memory schedulers.

7.3 Analysis of Trade-offs Between Performance,
Fairness and Complexity

In the previous sections, we studied the performance, fairness
and complexity of different schedulers individually. In this
section, we will analyze the trade-offs between these metrics
for different schedulers. Fig. 10 shows a three-dimensional
radar plot with performance, fairness and simplicity on three
different axes. On the fairness axis, we plot the negative of the
maximum slowdown numbers, and on the simplicity axis, we

Fig. 7. Block diagram for FRFCFS with extensions for BLISS.

Fig. 8. Critical path: BLISS versus previous schedulers.

Fig. 9. Area: BLISS versus previous schedulers.

6. The area numbers are for the lowest value of critical path latency
that the scheduler is able to meet.

3078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

plot the negative of the critical path latency numbers. Hence,
the ideal scheduler would have high performance, fairness
and simplicity, as indicated by the encompassing, dashed
black triangle.Wedraw threemajor conclusions about the dif-
ferent schedulers we study. First, application-unaware sched-
ulers, such as FRFCFS and FRFCFS-Cap, are simple.
However, they have low performance and/or fairness. Sec-
ond, application-aware schedulers, such as PARBS, ATLAS
and TCM, improve performance or fairness by ranking based
on applications’ memory access characteristics. However,
they do so at the cost of increasing complexity (reducing sim-
plicity) significantly. Third, BLISS, achieves high performance
and fairness, while keeping the design simple, thereby
approaching the ideal scheduler design (i.e., leading to a trian-
gle that is closer to the ideal triangle). This is because BLISS
requires only simple hardware changes to the memory con-
troller to blacklist applications that have long streaks of
requests served, which effectively mitigates interference.
Therefore, we conclude that BLISS achieves the best trade-off
between performance, fairness and simplicity.

7.4 Understanding the Benefits of BLISS

We present the distribution of the number of consecutive
requests served (streaks) from individual applications to
better understand why BLISS effectively mitigates interfer-
ence. Fig. 11 shows the distribution of requests served
across different streak lengths ranging from 1 to 16 for
FRFCFS, PARBS, TCM and BLISS for six representative appli-
cations from the same 24-core workload.7 The figure captions
indicate the memory intensity, in misses per kilo instruction
(MPKI) and row-buffer hit rate (RBH) of each application
when it is run alone. Figs. 11a, 11b and 11c show the streak
length distributions of applications that have a tendency to
cause interference (libquantum, mcf and lbm). All these appli-
cations have high memory intensity and/or high row-buffer
locality. Figs. 11d, 11e and 11f show applications that are
vulnerable to interference (calculix, cactusADM and sphinx3).
These applications have lower memory intensities and row-
buffer localities, compared to the interference-causing appli-
cations. We observe that BLISS shifts the distribution of
streak lengths towards the left for the interference-causing
applications, while it shifts the streak length distribution to
the right for the interference-prone applications. Hence,
BLISS breaks long streaks of consecutive requests for

interference-causing applications, while enabling longer
streaks for vulnerable applications. This enables such vul-
nerable applications to make faster progress, thereby result-
ing in better system performance and fairness. We have
observed similar results for most of our workloads.

7.5 Average Request Latency

In this section, we evaluate the average memory request
latency (from when a request is generated until when it is
served) metric and seek to understand its correlation with
performance and fairness. Fig. 12 presents the average mem-
ory request latency (fromwhen the request is generated until
when it is served) for the five previously proposed memory
schedulers and BLISS. Two major observations are in order.
First, FRFCFS has the lowest average request latency among
all the schedulers. This is expected since FRFCFS maximizes
DRAM throughput by prioritizing row-buffer hits. Hence,
the number of requests served is maximized overall (across
all applications). However, maximizing throughput (i.e.,
minimizing overall average request latency) degrades the
performance of low-memory-intensity applications, since
these applications’ requests are often delayed behind row-
buffer hits and older requests. This results in degradation in
system performance and fairness, as shown in Fig. 4.

Second, ATLAS and TCM, memory schedulers that priori-
tize requests of low-memory-intensity applications by
employing a full ordered ranking achieve relatively low aver-
age latency. This is because these schedulers reduce the
latency of serving requests from latency-critical, low-mem-
ory-intensity applications significantly. Furthermore, priori-
tizing low-memory-intensity applications’ requests does not
increase the latency of high-memory-intensity applications
significantly. This is because high-memory-intensity applica-
tions already have high memory access latencies (even when
run alone) due to queueing delays. Hence, average request
latency does not increase much from deprioritizing requests
of such applications. However, always prioritizing such
latency-critical applications results in lowermemory through-
put for high-memory-intensity applications, resulting in
unfair slowdowns (as we show in Fig. 4). Third, memory
schedulers that provide the best fairness, PARBS, FRFCFS-
Cap and BLISS have high average memory latencies. This is
because these schedulers, while employing techniques to pre-
vent requests of vulnerable applications with low memory
intensity and low row-buffer locality from being delayed, also
avoid unfairly delaying requests of high-memory-intensity
applications. As a result, they do not reduce the request ser-
vice latency of low-memory-intensity applications signifi-
cantly, at the cost of denying memory throughput to high-
memory-intensity applications, unlikeATLAS or TCM. Based
on these observations, we conclude that while some applica-
tions benefit from lowmemory access latencies, other applica-
tions benefit more from higher memory throughput than
lower latency. Hence, average memory latency is not a suit-
ablemetric to estimate system performance or fairness.

7.6 Impact of Clearing the Blacklist Asynchronously

The Blacklisting scheduler we have presented and evalu-
ated so far clears the blacklisting information periodically
(every 10,000 cycles in our evaluations so far), such that all
applications are removed from the blacklist at the end of a

Fig. 10. Performance, fairness and simplicity trade-offs.

7. A value of 16 captures streak lengths 16 and above.

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3079

Clearing Interval. In this section, we evaluate an alternative
design where an individual application is removed from
the blacklist Clearing Interval cycles after it has been black-
listed (independent of the other applications). In order to
implement this alternative design, each application would
need an additional counter to keep track of the number of
remaining cycles until the application would be removed
from the blacklist. This counter is set (to the Clearing Inter-
val) when an application is blacklisted and is decremented
every cycle until it becomes zero. When it becomes zero, the
corresponding application is removed from the blacklist.
We use a Clearing Interval of 10,000 cycles for this alternative
design as well.

Table 2 shows the system performance and fairness of
the original BLISS design (BLISS) and the alternative design
in which individual applications are removed from the
blacklist asynchronously (BLISS-Individual-Clearing). As
can be seen, the performance and fairness of the two designs
are similar. Furthermore, the first design (BLISS) is simpler
since it does not need to maintain an additional counter for
each application. We conclude that the original BLISS
design is more efficient, in terms of performance, fairness
and complexity.

7.7 Comparison with TCM’s Clustering Mechanism

Fig. 13 shows the system performance and fairness of BLISS,
TCM and TCM’s clustering mechanism (TCM-Cluster).
TCM-Cluster is a modified version of TCM that performs

clustering, but does not rank applications within each clus-
ter. We draw two major conclusions. First, TCM-Cluster
has similar system performance as BLISS, since both BLISS
and TCM-Cluster prioritize vulnerable applications by
separating them into a group and prioritizing that group
rather than ranking individual applications. Second, TCM-
Cluster has significantly higher unfairness compared to
BLISS. This is because TCM-Cluster always deprioritizes
high-memory-intensity applications, regardless of whether
or not they are causing interference (as described in Obser-
vation 2 in Section 3). BLISS, on the other hand, observes
an application at fine time granularities, independently at
every memory channel and blacklists an application at a
channel only when it is generating a number of consecutive
requests (i.e., potentially causing interference to other
applications).

7.8 Evaluation of Row Hit Based Blacklisting

BLISS, by virtue of restricting the number of consecutive
requests that are served from an application, attempts to
mitigate the interference caused by both high-memory-
intensity and high-row-buffer-locality applications. In this
section, we attempt to isolate the benefits from restricting
consecutive row-buffer hitting requests versus non-row-
buffer hitting requests. To this end, we evaluate the per-
formance and fairness benefits of a mechanism that places
an application in the blacklist when a certain number of
row-buffer hitting requests (N) to the same row have
been served for an application (we call this FRFCFS-Cap-
Blacklisting as the scheduler essentially is FRFCFS-Cap
with blacklisting). We use an N value of 4 in our
evaluations.

Fig. 14 compares the system performance and fairness of
BLISS with FRFCFS-Cap-Blacklisting. We make three major

Fig. 12. The average request latency metric.

TABLE 2
Clearing the Blacklist Asynchronously

Metric BLISS BLISS-Individual-Clearing

Weighted Speedup 9.18 9.12
Maximum Slowdown 6.54 6.60

Fig. 11. Distribution of streak lengths.

3080 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

observations. First, FRFCFS-Cap-Blacklisting has similar
system performance as BLISS. On further analysis of indi-
vidual workloads, we find that FRFCFS-Cap-Blacklisting
blacklists only applications with high row-buffer locality,
causing requests of non-blacklisted high-memory-intensity
applications to interfere with requests of low-memory-inten-
sity applications. However, the performance impact of this
interference is offset by the performance improvement
of high-memory-intensity applications that are not black-
listed. Second, FRFCFS-Cap-Blacklisting has higher unfair-
ness (higher maximum slowdown and lower harmonic
speedup) than BLISS. This is because the high-memory-
intensity applications that are not blacklisted are prioritized
over the blacklisted high-row-buffer-locality applications,
thereby interfering with and slowing down the high-row-
buffer-locality applications significantly. Third, FRFCFS-
Cap-Blacklisting requires a per-bank counter to count and
cap the number of row-buffer hits, whereas BLISS needs
only one counter per-channel to count the number of conse-
cutive requests from the same application. Therefore, we
conclude that BLISS is more effective in mitigating unfair-
ness while incurring lower hardware cost, than the FRFCFS-
Cap-Blacklisting scheduler that we build combining princi-
ples from FRFCFS-Cap and BLISS.

7.9 Comparison with Criticality-Aware Scheduling

We compare the system performance and fairness of BLISS
with those of criticality-aware memory schedulers [8]. The
basic idea behind criticality-aware memory scheduling is to
prioritize memory requests from load instructions that have
stalled the instruction window for long periods of time in
the past. Ghose et al. [8] evaluate prioritizing load requests
based on both maximum stall time (Crit-MaxStall) and total
stall time (Crit-TotalStall) caused by load instructions in the

past. Fig. 15 shows the system performance and fairness of
BLISS and the criticality-aware scheduling mechanisms,
normalized to FRFCFS, across 40 workloads. Two observa-
tions are in order. First, BLISS significantly outperforms
criticality-aware scheduling mechanisms in terms of both
system performance and fairness. This is because the
criticality-aware scheduling mechanisms unfairly depriori-
tize and slow down low-memory-intensity applications that
inherently generate fewer requests, since stall times tend to
be low for such applications. Second, criticality-aware
scheduling incurs hardware cost to prioritize requests with
higher stall times. Specifically, the number of bits to repre-
sent stall times is on the order of 12-14, as described in [8].
Hence, the logic for comparing stall times and prioritizing
requests with higher stall times would incur even higher
cost than per-application ranking mechanisms where the
number of bits to represent a core’s rank grows only as
log2NumberOfCores (e.g., 5 bits for a 32-core system).
Therefore, we conclude that BLISS achieves significantly
better system performance and fairness, while incurring
lower hardware cost.

7.10 Effect of Workload Memory Intensity
and Row-Buffer Locality

In this section, we study the impact of workload memory
intensity and row-buffer locality on performance and fair-
ness of BLISS and five previous schedulers.

Workload memory intensity. Fig. 16 shows system perfor-
mance and fairness for workloads with different memory
intensities, classified into different categories based on the
fraction of high-memory-intensity applications in a work-
load.8 We draw three major conclusions. First, BLISS out-
performs previous memory schedulers in terms of system
performance across all intensity categories. Second, the sys-
tem performance benefits of BLISS increase with workload
memory intensity. This is because as the number of high-
memory-intensity applications in a workload increases,
ranking individual applications, as done by previous sched-
ulers, causes more unfairness and degrades system perfor-
mance. Third, BLISS achieves significantly lower unfairness

Fig. 13. Comparison with TCM’s clustering mechanism.

Fig. 14. Comparison with FRFCFS-Cap combined with blacklisting.

Fig. 15. Comparison with criticality-aware scheduling.
8. We classify applications with MPKI less than 5 as low-memory-

intensity and the rest as high-memory-intensity.

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3081

than previous memory schedulers, except FRFCFS-Cap and
PARBS, across all intensity categories. Therefore, we con-
clude that BLISS is effective in mitigating interference and
improving system performance and fairness across work-
loads with different compositions of high- and low-mem-
ory-intensity applications.

Workload Row-Buffer Locality. Fig. 17 shows the system
performance and fairness of five previous schedulers and
BLISS when the number of high row-buffer locality applica-
tions in a workload is varied.9 We draw three observations.
First, BLISS achieves the best performance and close to the
best fairness in most row-buffer locality categories. Second,
BLISS’ performance and fairness benefits over baseline
FRFCFS increase as the number of high-row-buffer-locality
applications in a workload increases. As the number
of high-row-buffer-locality applications in a workload
increases, there is more interference to the low-row-buffer-
locality applications that are vulnerable. Hence, there is
more opportunity for BLISS to mitigate this interference
and improve performance and fairness. Third, when all
applications in a workload have high row-buffer locality
(100 percent), the performance and fairness improvements
of BLISS over baseline FRFCFS are a bit lower than the other
categories. This is because, when all applications have high
row-buffer locality, they each hog the row-buffer in turn
and are not as susceptible to interference as the other cate-
gories in which there are vulnerable low-row-buffer-locality
applications. However, the performance/fairness benefits
of BLISS are still significant since BLISS is effective in

regulating how the row-buffer is shared among different
applications. Overall, we conclude that BLISS is effective in
achieving high performance and fairness across workloads
with different compositions of high- and low-row-buffer-
locality applications.

7.11 Sensitivity to System Parameters

Core and channel count. Figs. 18 and 19 show the system per-
formance and fairness of FRFCFS, PARBS, TCM and BLISS
for different core counts (when the channel count is 4) and
different channel counts (when the core count is 24), across
40 workloads for each core/channel count. The numbers
over the bars indicate percentage increase or decrease com-
pared to FRFCFS. We did not optimize the parameters of
different schedulers for each configuration as this requires
months of simulation time. We draw three major conclu-
sions. First, the absolute values of weighted speedup
increases with increasing core/channel count, whereas the
absolute values of maximum slowdown increase/decrease
with increasing core/channel count respectively, as
expected. Second, BLISS achieves higher system perfor-
mance and lower unfairness than all the other scheduling
policies (except PARBS and FRFCFS-Cap, in terms of fair-
ness) similar to our results on the 24-core, 4-channel system,
by virtue of its effective interference mitigation. The only
anomaly is that TCM has marginally higher weighted
speedup than BLISS for the 64-core system. However, this
increase comes at the cost of significant increase in unfair-
ness. Third, BLISS’ system performance benefit (as indi-
cated by the percentages on top of the bars) increases when
the system becomes more bandwidth constrained, i.e., high
core counts and low channel counts. As contention
increases in the system, BLISS has greater opportunity to
mitigate it.10

Cache size. Fig. 20 shows the system performance and
fairness for five previous schedulers and BLISS with differ-
ent last level cache sizes (private to each core).

We make two observations. First, the absolute values of
weighted speedup increase and maximum slowdown

Fig. 16. Sensitivity to workload memory intensity.

Fig. 17. Sensitivity to row-buffer locality.

Fig. 18. Sensitivity to number of cores.

Fig. 19. Sensitivity to number of channels.

Fig. 20. Sensitivity to cache size.

9. We classify an application as having high row-buffer locality if its
row-buffer hit rate is greater than 90 percent.

10. Fairness benefits reduce at very high core counts and very low
channel counts, since memory bandwidth becomes highly saturated.

3082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

decrease, as the cache size becomes larger for all schedulers,
as expected. This is because contention for memory band-
width reduces with increasing cache capacity, improving
performance and fairness. Second, across all the cache
capacity points we evaluate, BLISS achieves significant per-
formance and fairness benefits over the best-performing
previous schedulers, while approaching close to the fairness
of the fairest previous schedulers.

Core frequency. Fig. 21 shows the system performance and
fairness for five previous schedulers and BLISS with differ-
ent CPU core frequencies.

We draw two conclusions. First, as the core frequency
increases, the absolute value of weighted speedup decreases.
This is because, at lower core frequencies, memory is less of
a bottleneck. Hence, applications slow down less due to
memory contention from sharing the system with other
applications, resulting in higher weighted speedup at lower
core frequencies. Second, BLISS achieves significant perfor-
mance and fairness benefits over the best-performing previ-
ous schedulers, while approaching the fairness of the fairest
previous schedulers.

Shared caches. Fig. 22 shows system performance and fair-
nesswith a 32MB shared cache (instead of the 512 KBper core
private caches used in our other experiments). BLISS achieves
5%/24% better performance/fairness compared to TCM,
demonstrating that BLISS is effective in mitigating memory
interference in the presence of large shared caches aswell.

Prefetching. Prefetching can enable requests to be brought
into the last level cache from main memory, potentially mit-
igating the impact of memory contention. We implemented
a stride prefetcher that learns strided access patterns gener-
ated from each core and prefetches data from the main
memory into the last level cache. We observe that imple-
menting such a prefetcher on top of the baseline FRFCFS
policy results in a performance/fairness degradation of
10%/16%. This is because prefetching that is unaware of the
current workload access patterns and memory bandwidth
utilization in a multicore workload, can cause interference
to other applications’ requests. However, BLISS still
improves performance/fairness by 22%/27% over FRFCFS,
on a system with a stride prefetcher. In the future, we pro-
pose to study BLISS along with feedback-driven prefetch
mechanisms such as feedback directed prefetching [38],

shared-resource-management-aware prefetch policies [39]
and coordinated prefetch policies [40].

7.12 Sensitivity to Algorithm Parameters

Tables 3 and 4 show the system performance and fairness
respectively of BLISS for different values of the Blacklisting
Threshold and Clearing Interval. Two major conclusions are in
order. First, a Clearing Interval of 10,000 cycles provides a
good balance between performance and fairness. If the black-
list is cleared too frequently (1,000 cycles), interference-
causing applications are not deprioritized for long enough,
resulting in low system performance. In contrast, if the black-
list is cleared too infrequently, interference-causing app-
lications are deprioritized for too long, resulting in high
unfairness. Second, a Blacklisting Threshold of 4 provides a
good balance between performance and fairness.When Black-
listing Threshold is very small, applications are blacklisted as
soon as they have very few requests served, resulting in poor
interference mitigation since too many applications are black-
listed. On the other hand, when Blacklisting Threshold is large,
low- and high-memory-intensity applications are not segre-
gated effectively, leading to high unfairness.

7.13 Interleaving and Scheduling Interaction

In this section, we study the impact of the address interleav-
ing policy on the performance and fairness of different
schedulers. Our analysis so far has assumed a row-inter-
leaved policy, where data is distributed across channels,
banks and rows at the granularity of a row. This policy opti-
mizes for row-buffer locality by mapping a consecutive row
of data to the same channel, bank, rank. In this section, we
will consider two other interleaving policies, cache block
interleaving and sub-row interleaving.

Interaction with cache block interleaving. In a cache-block-
interleaved system, data is striped across channels, banks
and ranks at the granularity of a cache block. Such a policy
optimizes for bank level parallelism, by distributing data at
a small (cache block) granularity across channels, banks and
ranks.

Fig. 23 shows the system performance and fairness of
FRFCFS with row interleaving (FRFCFS-Row), as a compari-
son point, five previous schedulers and BLISS with cache
block interleaving.We draw three observations. First, system
performance and fairness of the baseline FRFCFS sched-
uler improve significantly with cache block interleaving,

Fig. 21. Sensitivity to core frequency.

Fig. 22. Performance and fairness with a shared cache.

TABLE 3
Perf. Sensitivity to Threshold and Interval

Thresholdn Interval 1,000 10,000 100,000

2 8.76 8.66 7.95
4 8.61 9.18 8.60
8 8.42 9.05 9.24

TABLE 4
Unfairness Sensitivity to Threshold and Interval

Thresholdn Interval 1,000 10,000 100,000

2 6.07 6.24 7.78
4 6.03 6.54 7.01
8 6.02 7.39 7.29

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3083

compared to performance/fairness with row interleaving.
This is because cache block interleaving enables more
requests to be served in parallel at the different channels and
banks, by distributing data across channels and banks at the
small granularity of a cache block. Hence, most applications,
and particularly, applications that do not have very high
row-buffer locality benefit from cache block interleaving.

Second, as expected, application-aware schedulers such
as ATLAS and TCM achieve the best performance among
previous schedulers, by means of prioritizing requests of
applications with low memory intensities. However, PARBS
and FRFCFS-Cap do not improve fairness over the baseline,
in contrast to our results with row interleaving. This is
because cache block interleaving already attempts to pro-
vide fairness by increasing the parallelism in the system
and enabling more requests from across different applica-
tions to be served in parallel, thereby reducing unfair appli-
cations slowdowns. More specifically, requests that would
be row-buffer hits to the same bank, with row interleaving,
are now distributed across multiple channels and banks,
with cache block interleaving. Hence, applications’ propen-
sity to cause interference reduces, providing lower scope
for request capping based schedulers such as FRFCFS-Cap
and PARBS to mitigate interference. Third, BLISS achieves
within 1.3 percent of the performance of the best performing
previous scheduler (ATLAS), while achieving 6.2 percent
better fairness than the fairest previous scheduler (PARBS).
BLISS effectively mitigates interference by regulating the
number of consecutive requests served from high-memory-
intensity applications that generate a large number of
requests, thereby achieving high performance and fairness.

Interaction with sub-row interleaving. While memory
scheduling has been a prevalent approach to mitigate mem-
ory interference, previous work has also proposed other sol-
utions, as we describe in Section 8. One such previous work
by Kaseridis et al. [10] proposes minimalist open page, an
interleaving policy that distributes data across channels,
ranks and banks at the granularity of a sub-row (partial
row), rather than an entire row, exploiting both row-buffer
locality and bank-level parallelism. We examine BLISS’
interaction with such a sub-row interleaving policy.

Fig. 24 shows the system performance and fairness of
FRFCFS with row interleaving (FRFCFS-Row), FRFCFS with
cache block interleaving (FRFCFS-Block) and five previously
proposed schedulers and BLISS, with sub-row interleaving
(when data is striped across channels, ranks and banks at the
granularity of four cache blocks). Three observations are in
order. First, sub-row interleaving provides significant bene-
fits over row interleaving, as can be observed for FRFCFS
(and other scheduling policies by comparing with Fig. 4).
This is because sub-row interleaving enables applications to

exploit both row-buffer locality and bank-level parallelism,
unlike row interleaving that is mainly focused on exploiting
row-buffer locality. Second, sub-row interleaving achieves
similar performance and fairness as cache block interleaving.
We observe that this is because cache block interleaving ena-
bles applications to exploit parallelism effectively, which
makes up for the lost row-buffer locality from distributing
data at the granularity of a cache block across all channels
and banks. Third, BLISS achieves close to the performance
(within 1.5 percent) of the best performing previous sched-
uler (TCM), while reducing unfairness significantly and
approaching the fairness of the fairest previous schedulers.
One thing to note is that BLISS has higher unfairness than
FRFCFS, when a sub-row-interleaved policy is employed.
This is because the capping decisions from sub-row interleav-
ing and BLISS could collectively restrict high-row-buffer
locality applications to a large degree, thereby slowing them
down and causing higher unfairness. Co-design of the sched-
uling and interleaving policies to achieve different goals such
as performance/fairness is an important area of future
research. We conclude that a BLISS-like scheduler, with its
high performance and low complexity is a significantly better
alternative to schedulers such as ATLAS/TCM in the pursuit
of such scheduling-interleaving policy co-design.

8 RELATED WORK

Toour knowledge, BLISS is the firstmemory scheduler design
that attempts to optimize, at the same time, for high perfor-
mance, fairness and low complexity, which are three compet-
ing yet important goals. The closest previous works to BLISS
are other memory schedulers. We have already compared
BLISS both qualitatively and quantitatively to previously pro-
posed memory schedulers, FRFCFS [17], [23], PARBS [4], [5],
ATLAS [6], TCM [7] and criticality-aware memory schedul-
ing [8], which have been designed tomitigate interference in a
multicore system. Other previous schedulers [1], [2], [3] have
been proposed earlier that PARBS, ATLAS and TCM have
been shown to outperform [4], [6], [7].

Previous works also proposed models, MISE [12],
ASM [13], to estimate the impact of inter-application interfer-
ence in terms of slowdowns in order to enable a substrate for
providing QoS. BLISS, on the other hand, focuses on simplic-
ity, fairness and performance. Hence, these two approaches
target different problems. However, principles from both of
these approaches can be combined as part of futurework.

Parallel Application Memory Scheduling (PAMS) [41]
tackles the problem of mitigating interference between dif-
ferent threads of a multithreaded application. Principles
from BLISS can be employed in this context to identify and
deprioritize interference-causing threads, therebymitigating

Fig. 23. Scheduling and cache block interleaving. Fig. 24. Scheduling and sub-row interleaving.

3084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

interference experienced by vulnerable threads/applica-
tions. For instance, information on how much progress dif-
ferent threads are making towards a synchronization point
can be combined along with vulnerability to interference to
prioritize among threads. The idea of grouping can be
extended to first classify threads into critical versus non-
critical depending on how much progress they have made
towards a synchronization point. Within each of these cate-
gories, threads can then be classified as vulnerable versus
interference-causing depending on the number of consecu-
tive requests served from the different threads. In the case of
homogeneous threads, classifying threads as vulnerable ver-
sus interference-causing based on monitoring the number of
consecutive requests from a thread can effectively serve as a
shuffling mechanism, preventing the same thread’s requests
from being served and hoggingmemory bandwidth.

Staged Memory Scheduling (SMS) [42] attempts to miti-
gate interference between the CPU and GPU in CPU-GPU
systems. The goals of SMS, designed for CPU-GPU systems,
are very different from those of BLISS. SMS seeks to achieve
high GPU performance, while still achieving reasonable
CPU performance. Furthermore, the SMS work also focuses
on providing a knob to trade off CPU and GPU perfor-
mance. The goals of BLISS, on the other hand, are to
improve system performance and fairness in a CPU-only
multicore system. Hence, we do not quantitatively compare
to SMS. In fact, quantitative comparisons in the SMS paper
(Section 6.6, Fig. 12) show that SMS does not perform as
well as ATLAS (and in some cases, TCM), in the context of
CPU-only multicore systems, as it is optimized and built for
different goals. DASH [43], a recently proposed memory
scheduler, tackles the problem of memory scheduling in the
context of systems with CPUs, GPUs and hardware acceler-
ators. Similarly to SMS, the goals and principles of DASH
are different from those of BLISS. Principles from BLISS and
SMS/DASH can potentially be combined to achieve better
interference mitigation in heterogeneous systems with
CPUs, GPUs and hardware accelerators.

FIRM [44] proposes request scheduling mechanisms to
tackle the problem of heavy write traffic in persistent mem-
ory systems. BLISS can be combined with FIRM’s write han-
dling mechanisms to achieve better fairness in persistent
memory systems. Complexity effective memory access
scheduling [45] attempts to achieve the performance of
FRFCFS using a First Come First Served scheduler in GPU
systems, by preventing row-buffer locality from being
destroyed when data is transmitted over the on-chip net-
work. Their proposal is complementary to ours. BLISS could
be combined with such a scheduler design to prevent
threads from hogging the row-buffer and banks.

While memory scheduling is a major solution direction
towards mitigating interference, previous works have also
explored other approaches such as address interleaving [10],
memory bank/channel partitioning [9], [46], [47], [48], source
throttling [11], [49], [50], [51], [52], [53], [54], [55] and thread
scheduling [15], [16], [56], [57] tomitigate interference.

Sub-row interleaving.Kaseridis et al. [10] proposeminimal-
ist open page, a data mapping policy that interleaves data at
the granularity of a sub-row across channels and banks such
that applications with high row-buffer locality are prevented
from hogging the row buffer, while still preserving some

amount of row-buffer-locality. We study the interactions of
BLISS with minimalist open page in Section 7.13 showing
BLISS’ benefits on a sub-row interleavedmemory system.

Memory channel/bank partitioning. Previous works [9], [46],
[47], [48] propose techniques to mitigate inter-application
interference by partitioning channels/banks among applica-
tions such that the data of interfering applications aremapped
to different channels/banks. Our approach is complementary
to these schemes and can be used in conjunction with them to
achievemore effective interferencemitigation.

Source throttling. Source throttling techniques (e.g., [11],
[49], [50], [51], [53], [54], [55]) propose to throttle the mem-
ory request injection rates of interference-causing applica-
tions at the processor core itself rather than regulating an
application’s access behavior at the memory, unlike mem-
ory scheduling, partitioning or interleaving. BLISS is com-
plementary to source throttling and can be combined with it
to achieve better interference mitigation.

OS thread scheduling. Previous works (e.g., [15], [16], [57])
propose to mitigate shared resource contention by co-
scheduling threads that interact well and interfere less at the
shared resources. Such a solution relies on the presence of
enough threads with such symbiotic properties, whereas our
proposal can mitigate memory interference even if interfer-
ing threads are co-scheduled. Furthermore, such thread
scheduling policies and BLISS can be combined in a synergis-
tic manner to further improve system performance and fair-
ness. Other techniques to map applications to cores to
mitigate memory interference, such as [56], can be combined
with BLISS.

9 CONCLUSION

We introduce the Blacklisting memory scheduler, a new and
simple approach to memory scheduling in systems with mul-
tiple threads. We observe that the per-application ranking
mechanisms employed by previously proposed application-
aware memory schedulers incur high hardware cost, cause
high unfairness, and lead to high scheduling latency to the
point that the scheduler cannotmeet the fast command sched-
uling requirements of state-of-the-art DDR protocols. BLISS
overcomes these problems based on the key observation that
it is sufficient to group applications into only two groups,
rather than employing a total rank order among all applica-
tions. Our evaluations across a variety of workloads and sys-
tems demonstrate that BLISS has better system performance
and fairness thanpreviously proposed ranking-based schedu-
lers, while incurring significantly lower hardware cost and
latency in making scheduling decisions. We conclude that
BLISS, with its low complexity, high system performance and
high fairness, can be an efficient and effective memory sched-
uling substrate for current and future multicore and multi-
threaded systems. We released the source code of BLISS
at [28] to aid future research building upon thiswork.

ACKNOWLEDGMENTS

The authors thank reviewers for their valuable suggestions.
They thank Brian Prasky and Viji Srinivasan for their feed-
back. They acknowledge the generous support of our
industrial partners: Google, IBM, Intel, Microsoft, Nvidia,
Qualcomm, Samsung, VMware. This research was partially

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3085

funded by US National Science Foundation (NSF) grants
0953246, 1212962, 1320531, 1409723, ISTC-CC, and SRC. Lava-
nya Subramanian was partially supported by a John and
Claire Bertucci fellowship. This paper is an extended version
of [58]. Lavanya Subramanian was a PhD student at Carnegie
MellonUniversitywhen thisworkwas carried out.

REFERENCES

[1] K. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing
memory systems,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Micro-
archit., 2006, pp. 208–222.

[2] T. Moscibroda and O. Mutlu, “Memory performance attacks:
Denial of memory service in multi-core systems,” in Proc. 16th
USENIX Security Symp. USENIX Security Symp., 2007, pp. 18:1–
18:18

[3] O. Mutlu and T. Moscibroda, “Stall-time fair memory access
scheduling for chip multiprocessors,” in Proc. 40th Annu. IEEE/
ACM Int. Symp. Microarchit., 2007, pp. 146–160.

[4] O. Mutlu and T. Moscibroda, “Parallelism-aware batch schedul-
ing: Enhancing both performance and fairness of shared DRAM
systems,” in Proc. 35th Annu. Int. Symp. Comput. Archit., 2008,
pp. 63–74.

[5] T. Moscibroda and O. Mutlu, “Distributed order scheduling and
its application to multi-core DRAM controllers,” in Proc. 27th
ACM Symp. Principles Distrib. Comput., 2008, pp. 365–374.

[6] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A
scalable and high-performance scheduling algorithm for multiple
memory controllers,” in Proc. IEEE 16th Int. Symp. High Perform.
Comput. Archit., 2010, pp. 1–12.

[7] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter,
“Thread cluster memory scheduling: exploiting differences in
memory access behavior,” in Proc. 43rd Annu. IEEE/ACM Int.
Symp. Microarchit., 2010, pp. 65–76.

[8] S. Ghose, H. Lee, and J. F. Mart�ınez, “Improving memory schedul-
ing via processor-side load criticality information,” in Proc. 40th
Annu. Int. Symp. Comput. Archit., 2013, pp. 84–95.

[9] S. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T.
Moscibroda, “Reducing memory interference in multicore sys-
tems via Application-aware memory channel partitioning,”
in Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchit., 2011,
pp. 374–385.

[10] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page:
A DRAM page-mode scheduling policy for the many-core era,”
in Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchit., 2011,
pp. 24–35.

[11] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via
source throttling: A configurable and high-performance fairness
substrate for multi-core memory systems,” in Proc. 15th Ed.
ASPLOS Archit. Support Program. Lang. Oper. Syst., 2010, pp. 335–
346.

[12] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu,
“MISE: Providing performance predictability and improving fair-
ness in shared main memory systems,” in Proc. IEEE 19th Int.
Symp. High Perform. Comput. Archit., 2013, pp. 639–650.

[13] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu,
“The application slowdown model: Quantifying and controlling
the impact of inter-application interference at shared caches
and main memory,” in Proc. 48th Int. Symp. Microarchit., 2015,
pp. 62–75.

[14] H. Kim, D. D. Niz, B. Andersson, M. Klien, O. Mutlu, and R. Raj-
kumar, “Bounding memory interference delay in COTS-based
multi-core systems,” in Proc. Real-Time Embedded Technol. Appl.
Symp., 2014, pp. 145–154.

[15] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The
impact of memory subsystem resource sharing on datacenter
applications,” in Proc. 38th Annu. Int. Symp. Comput. Archit., 2011,
pp. 283–294.

[16] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via sched-
uling,” in Proc. 15th Ed. ASPLOS Archit. Support Program. Lang.
Oper. Syst., 2010, pp. 129–142.

[17] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proc. 27th Annu. Int. Symp. Com-
put. Archit., 2000, pp. 128–138.

[18] JEDEC, Standard No. 79-3. DDR3 SDRAM STANDARD, 2010.
[19] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for

exploiting subarray-level parallelism (SALP) in DRAM,” in Proc.
39th Annu. Int. Symp. Comput. Archit., 2012, pp. 368–379.

[20] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-latency DRAM: A low latency and low cost DRAM
architecture,” in Proc. IEEE 19th Int. Symp. High Perform. Comput.
Archit., 2013, pp. 615–626.

[21] D. Lee, K. Yoongu, G. Pekhimenko, S. Khan, V. Seshadri,
K. Chang, and O. Mutlu, “Adaptive-latency DRAM: Opti-
mizing DRAM timing for the common-case,” in Proc.
IEEE 21st Int. Symp. High Perform. Comput. Archit., 2015,
pp. 489–501.

[22] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G.
Pekhimenko, Y. Luo, O. Mutlu, P. Gibbons, M. Kozuch, and T.
Mowry, “RowClone: Fast and efficient In-DRAM copy and ini-
tialization of bulk data,” in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchit., 2013, pp. 185–197.

[23] W. Zuravleff and T. Robinson, “Controller for a synchronous
DRAM that maximizes throughput by allowing memory
requests and commands to be issued out of order,” Patent
5 630 096, 1997.

[24] SPEC. (2006). SPEC CPU2006 [Online]. Available: http://www.
spec.org/spec2006

[25] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., vol. PP, no. 99,
pp. 1–1, 2015.

[26] CMU SAFARI Research Group. (2015). Ramulator [Online]. Avail-
able: https://github.com/CMU-SAFARI/ramulator

[27] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proc.
ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2005,
pp. 190–200.

[28] CMU SAFARI Research Group. (2015). MemSchedSim [Online].
Available: https://github.com/CMU-SAFARI/MemSchedSim

[29] Micron, “2Gb: x4, x8, x16, DDR3 SDRAM,” 2012.
[30] NASA advanced supercomputing division, NAS Parallel Bench-

mark Suite [Online]. Available: https://www.nas.nasa.gov/publi-
cations/npb.html.

[31] R. Das, O. Mutlu, T. Moscibroda, and C. Das, “Application-
aware prioritization mechanisms for on-chip networks,” in
Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchit., 2009,
pp. 280–291.

[32] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–
53, May/Jun. 2008.

[33] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
simultaneous multithreaded processor,” in Proc. 9th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., 2000, pp. 234–244.

[34] H. Vandierendonck and A. Seznec, “Fairness metrics for multi-
threaded processors,” IEEE Comput. Archit. Lett., vol. 10, no. 1,
pp. 4–7, Jan. 2011.

[35] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput
and fairness in SMT processors,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., 2001, pp. 164–171.

[36] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The
evicted-address filter: A unified mechanism to address both cache
pollution and thrashing,” in Proc. 21st Int. Conf. Parallel Archit.
Compilation Techn., 2012, pp. 355–366.

[37] JEDEC, Standard No. 79-4. DDR4 SDRAM STANDARD, 2012.
[38] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed

prefetching: Improving the performance and bandwidth-effi-
ciency of hardware prefetchers,” in Proc. IEEE 13th Int. Symp. High
Perform. Comput. Archit., 2007, pp. 63–74.

[39] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-
aware shared resource management for multi-core systems,”
in Proc. 38th Annu. Int. Symp. Comput. Archit., 2011, pp. 141–
152.

[40] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated
control of multiple prefetchers in multi-core systems,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarchit., 2009, pp. 316–
326.

[41] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O.
Mutlu, and Y. N. Patt, “Parallel application memory scheduling,”
in Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchit., 2011,
pp. 362–373.

3086 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

[42] R. Ausavarungnirun, K. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged memory scheduling: Achieving high perfor-
mance and scalability in heterogeneous systems,” in Proc. 39th
Annu. Int. Symp. Comput. Archit., 2012, pp. 416–427.

[43] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “DASH:
Deadline-aware high-performance memory scheduler for het-
erogeneous systems with hardware accelerators,” ACM Trans.
Archit. Code. Optim., vol. 12, no. 3, pp. 65:1–65:28, Jan. 2016.

[44] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and high-performance
memory control for persistent memory systems,” in Proc. 47th
Annu. IEEE/ACM Int. Symp. Microarchit., 2014, pp. 153–165.

[45] G. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity effective
memory access scheduling for many-core accelerator
architectures,” in Proc. 42nd Annu. IEEE/ACM Int. Symp. Micro-
archit., 2009, pp. 34–44.

[46] M. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez,
“Balancing DRAM locality and parallelism in shared memory
CMP systems,” in Proc. IEEE 18th Int. Symp. High Perform. Comput.
Archit., 2012, pp. 1–12.

[47] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interfer-
ence in multicore systems,” in Proc. 21st Int. Conf. Parallel Archit.
Compilation Techn., 2012, pp. 367–376.

[48] M. Xie, D. Tong, K. Huang, and X. Cheng, “Improving system
throughput and fairness simultaneously in shared memory
CMP systems via dynamic bank partitioning,” in Proc. IEEE
20th Int. Symp. High Perform. Comput. Archit., 2014, pp. 344–
355.

[49] M. Thottethodi, A. Lebeck, and S. Mukherjee, “Self-tuned conges-
tion control for multiprocessor networks,” in Proc. 7th Int. Symp.
High-Perform. Comput. Archit., 2001, p. 107.

[50] E. Baydal, P. Lopez, and J. Duato, “A family of mechanisms for
congestion control in wormhole networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 16, no. 9, pp. 772–784, Sep. 2005.

[51] K. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu, “HAT:
Heterogeneous adaptive throttling for on-chip networks,” in
Proc. IEEE Int. Symp. Comput. Archit. High Perform. Comput., 2012,
pp. 9–18.

[52] R. Ausavarungnirun, C. Fallin, X. Yu, K. Chang, G. Nazario, R. Das,
G. Loh, and O. Mutlu, “Design and evaluation of hierarchical rings
with deflection routing,” in Proc. IEEE 26th Int. Symp. Comput.
Archit. High Perform. Comput., 2014, pp. 230–237.

[53] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, “On-chip
networks from a networking perspective: Congestion and scal-
ability in many-core interconnects,” in Proc. ACM SIGCOMM
Conf. Appl., Technol., Archit. Protocols Comput. Commun., 2012,
pp. 407–418.

[54] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, “Next genera-
tion on-chip networks: What kind of congestion control do we
need?” in Proc. 9th ACM SIGCOMM Workshop Hot Topics Netw.,
2010, pp. 12:1–12:6.

[55] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das,
“Managing GPU concurrency in heterogeneous architectures,”
in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchit., 2014,
pp. 114–126.

[56] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core mapping policies to reduce memory system
interference in multi-core systems,” in Proc. IEEE 19th Int. Symp.
High Perform. Comput. Archit., 2013, pp. 107–118.

[57] H. Wang, C. Isci, L. Subramanian, J. Choi, D. Qian, and O. Mutlu,
“A-DRM: Architecture-aware distributed resource management
of virtualized clusters,” in Proc. 11th ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environ., 2015, pp. 93–106.

[58] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu,
“The blacklisting memory scheduler: Achieving high performance
and fairness at low cost,” in Proc. 32nd IEEE Int. Conf. Comput.
Des., 2014, pp. 8–15.

Lavanya Subramanian received the master’s
and PhD degrees in electrical and computer engi-
neering from Carnegie Mellon University. She is a
research scientist at Intel Labs. She is interested
in the general area of computer architecture, with
specific focus on providing predictable perfor-
mance and Quality of Service in the presence of
shared resource interference.

Donghyuk Lee is currently working toward the
PhD degree at Carnegie Mellon University. He is
interested in high-performance DRAM-based
memory systems, especially from the perspective
of achieving low latency and high bandwidth. He
was a DRAM circuit designer at Samsung before
he started his PhD.

Vivek Seshadri received the bachelor of technol-
ogy in computer science from the Indian Institute
of Technology, Madras in 2009. He is currently
working toward the PhD degree at Carnegie Mel-
lon University. He is advised by Prof. Todd
C. Mowry and Prof. Onur Mutlu. His research
interests include DRAM microarchitecture, cache
management, and computer architecture/sys-
tems in general.

Harsha Rastogi received the bachelors in electri-
cal and electronics engineering from BITS, Pilani,
India. She is currently working toward the mas-
ters degree in the ECE Department of Carnegie
Mellon University. Her interests lie in computer
architecture, storage and distributed systems.
Before she started at Carnegie Mellon, she was
a design engineer at Broadcom.

Onur Mutlu received the BS degrees in com-
puter engineering and psychology from the Uni-
versity of Michigan, Ann Arbor, and the MS and
PhD degrees from the University of Texas at-
Austin. He is the Strecker early career professor
at Carnegie Mellon University. His research inter-
ests are in computer architecture and systems,
especially in the interactions between languages,
operating systems, compilers, and microarchitec-
ture, with a current major focus on memory
systems. He previously worked at Microsoft

Research from 2006 to 2009, Intel Corporation, and Advanced Micro
Devices. He received the IEEE Computer Society Young Computer
Architect Award, Intel Early Career Faculty Award, faculty partnership
awards from various companies, and a number of best paper and top
pick paper recognitions. For more information, please see his webpage
at http://www.ece.cmu.edu/~omutlu.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SUBRAMANIAN ETAL.: BLISS: BALANCING PERFORMANCE, FAIRNESS AND COMPLEXITY IN MEMORYACCESS SCHEDULING 3087

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

