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Why Multi-Core Processors?
Processor development trend
Increasing overall performance by integrating multiple cores

Embedded systems: Actively adopting multi-core CPUs








Automotive: 
Freescale i.MX6 4-core CPU
NVIDIA Tegra K1 platform

Avionics and defense:
Rugged Intel i7 single board computers
Freescale P4080 8-core CPU
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Memory 
interference
An upper bound on the memory interference delay is needed 
to check task schedulability
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Many multi-core systems use DRAM as main memory to meet high performance and capacity demands. 
The main memory is shared among all processing cores. 
When multiple cores access memory at the same time, they will experience memory interference delays due to the contention.
In order to provide system predictability and check the schedulability, we need to have an upper bound on the interference delay.
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Impact of Memory Interference (1/2)
Task execution times with memory attacker tasks
Intel i7 4-core processor   +  DDR3-1333 SDRAM 8GB
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Memory
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* S/W cache partitioning is used
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We had a measurement to see the impact of memory interference delay in a real platform.
We measured the execution time increase due to the interfering memory requests. Intel i7 quad core machine is used in this case and DDR3 DRAM is used. For the workload, we chose the PARSEC benchmarks. 
Each of the benchmarks is assigned to Core 1, and measure its execution time when other cores are idle. Then, we run memory attacker tasks on other cores, which generate severe memory interference to Core 1.
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1 attacker   Max 5.5x increase
2 attackers  Max 8.4x increase
3 attackers  Max 12x increase

Impact of Memory Interference (2/2)

Norm. execution time (%)
black-
scholes
body-
track
canneal
ferret
fluid-
animate
freq-
mine
ray-
trace
stream-
cluster
swap-
tions
vips
x264
We should predict, bound and reduce the memory interference delay!


12x increase 
observed
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In this graph, the x-axis shows the name of benchmarks and the y-axis shows the execution time normalized to when it runs without any memory interference. When only one attacker tasks was running, we observed at most 5.5 times of execution time increase. When two were running, 8.4times of increase. And three were running, maximum 12 times of execution time increase was observed. Of course, this is an extreme case, but this result shows that the amount of memory interference is non-negligible and we should be able to predict and bound the amount of memory interference delay.
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2 attackers	blackscholes	bodytrack	canneal	ferret	fluidanimate	freqmine	raytrace	streamcluster	swaptions	vips	x264	101.0677941	106.9260709	326.84790240000001	173.20030249999999	156.4657235	147.29897879999999	110.65479379999999	550.02144680000004	100.2533059	106.3547827	149.63345200000001	3 attackers	blackscholes	bodytrack	canneal	ferret	fluidanimate	freqmine	raytrace	streamcluster	swaptions	vips	x264	102.11013509999999	108.61725	468.76661050000001	269.048045	215.0162516	191.8841855	121.9776021	839.58024590000002	101.353285	112.9829414	204.00701760000001	4 attackers	blackscholes	bodytrack	canneal	ferret	fluidanimate	freqmine	raytrace	streamcluster	swaptions	vips	x264	107.1050762	126.4632228	725.50633749999997	353.54875500000003	276.01025570000002	241.58693439999999	173.86922609999999	1198.291686	100.8900361	131.4235554	273.50340180000001	
Issues with Memory Models
Q1. Can we assume that each memory request takes 
a constant service time?
The memory access time varies considerably depending on the requested address and the rank/bank/bus states

Q2. Can we assume memory requests are serviced in either Round-Robin or FIFO order?
Memory requests arriving early may be serviced later than ones arriving later in today’s COTS memory systems

No.
No.
An over-simplified memory model may produce pessimistic or optimistic estimates on the memory interference delay
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In order to analyze memory interference, we need to have a memory model. There are two issues in modeling a COTS main memory system. 
Two questions.
For the first question, the answer is no, because memory access time significantly varies depending on the rank, bank and bus states. 
The answer for the second question is also no. Because the memory scheduling policy of memory controller is different from these policies and memory requests arriving early may be serviced later than others arriving later. 
Previous work typically made this assumptions and used a simplified memory model. But it may produce pessimistic or optimistic estimates.
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Our Approach
Explicitly considers the timing characteristics of major DRAM resources
Rank/bank/bus timing constraints (JEDEC standard)
Request re-ordering effect

Bounding memory interference delay for a task
Combines request-driven and job-driven approaches



Software DRAM bank partitioning awareness
Analyzes the effect of dedicated and shared DRAM banks

Task’s own memory requests
Interfering memory requests 
during the job execution
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Therefore we explicitly consider the timing characteristics of major DRAM resources. We take into account rank, bank and bus timing constraints based on JEDEC DRAM standard. And also we analyze the request reordering effect of the modern memory controller.
By using this realistic model, we bound memory interference delay of a task. We combine two approaches to reduce pessimism in analysis.
Request-driven considers task’s own memory requests and job-driven approach considers the interfering memory requests during the task’s job execution.
We also consider the use of DRAM bank partitioning that is known to reduce memory interference. But as the number of bank partitions is limited, we consider both dedicated and shared bank cases.
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Outline
Introduction

Details on DRAM Systems
DRAM organization
Memory controller and scheduling policy
DRAM bank partitioning

Bounding Memory Interference Delay

Evaluation

Conclusion
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DRAM Organization



DRAM Rank
CHIP
1
CHIP
2
CHIP
3
CHIP
4
CHIP
5
CHIP
6
CHIP
7
CHIP
8
Data bus
8-bit
Address bus
Command bus
64-bit




DRAM Chip
Bank 1
Command decoder
Data bus
Address bus
Command bus
8-bit
Bank ...
Bank 8
Columns
Rows
Row buffer
Row decoder 
Column decoder
Row address
Column 
address


DRAM access latency varies depending on which row is stored in the row buffer
Row hit
Row conflict
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The DRAM system consists of a set of ranks and each rank consists of multiple chips. Each chip has a narrow data width, but by combining the chips in the same rank, the rank provides a wide data width. 
Each chip consists of multiple banks. Each bank has a two-dimensional array where memory contents are stored. In order to access a cell in the array, the entire row containing the cell needs to be fetched into the row-buffer first. So when a next request accesses a cell in a row which is already in the row-buffer, it takes short time and it is called row-hit. If a requested cell is not in the row-buffer, the row currently in the buffer needs to be stored and the requested row should be fetched into the row buffer. This takes additional steps and takes long time. And this is called row-conflicts. Therefore, DRAM access latency varies depending on which row is currently in the row buffer.
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Memory Controller
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This is a logical structure of a modern memory controller. Memory requests from processing cores are first stored in the request buffer. The bank index of each request is classified by its physical address and the request is stored in its corresponding bank queue.
The memory scheduler has a two-level hierarchal structure. Each bank has a bank-level scheduler and it selects the highest priority request in its queue. When the highest priority request does not violate any bank-level constraints, it is sent to the channel scheduler. Then channel scheduler selects the highest priority request and services it. 
11

FR-FCFS: First-Ready, First-Come First-Serve
Goal: maximize DRAM throughput  Maximize row buffer hit rate
Memory Scheduling Policy

Bank 1
Scheduler
Bank 2
Scheduler
Bank n
Scheduler
...
Channel Scheduler
Memory access interference occurs at both bank and channel schedulers
Intra-bank interference at bank scheduler
Inter-bank interference at channel scheduler
Bank scheduler
Considers bank timing constraints
Prioritizes row-hit requests
In case of tie, prioritizes older requests
Channel scheduler
Considers channel timing constraints
Prioritizes older requests
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Modern COTS memory controllers use the FR-FCFS policy as their base policy. The goal of this is to maximize DRAM throughput and to do so, it tries to maximize row buffer hit rate.
The bank scheduler considers bank timing constraints and priorities row-hit requests over row conflicts. And in case of tie, it prioritized older requests. The channel scheduler considers channel timing constraints and prioritizes older requests. 
Under this policy, memory interference happens at both bank and channel schedulers. Specifically, intra-bank interference happens at the bank scheduler and inter-bank interference happens at the channel scheduler.
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DRAM Bank Partitioning
Prevents intra-bank interference by dedicating different DRAM banks to each core
Can be supported in the OS kernel
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DRAM bank partitioning is a recently actively studied technique to reduce memory interference. By dedicating different banks to each core, it prevents intra-bank interference. It can be implemented as software in the OS kernel by modifying the memory management subsystem. 
Here is an example. Without bank partitioning, each bank can access all the DRAM banks, so memory interference happens at bank and channel scheduler. But with bank partitioning, each core is assigned its own dedicated bank. So no interference happens at the bank scheduler. Therefore only inter-bank interference happens.
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So far we have looked at the details on the modern DRAM systems. Now I will introduce our approach to bound memory interference.
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System Model
Task 
: Worst-case execution time (WCET) of any job of task , 
     when it executes in isolation
: Period
: Relative deadline
: Maximum DRAM requests generated by any job of 
No assumptions on the memory access pattern (i.e., access rate)
Partitioned fixed-priority preemptive task scheduling
DDR SDRAM main memory system
Software DRAM bank partitioning is used
No cache interference 
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For a task model, we consider periodic tasks, and each task is represented by C, T, D, H parameters. C is the worst-case execution time of any job of task when it executes in isolation. In other words, it is the WCET without any external memory interference. T is the period and D is the deadline of task. H is the maximum DRAM requests generated by task itself during its job execution. We do not make any assumptions on the memory access pattern such as memory access rate. 
We consider partitioned fixed priority preemptive scheduling. 
And we assume the DDR SDRAM main memory system that I explained earlier. We also consider the use of bank partitioning.
We assume that there is no cache interference, which is easily accomplished by cache partitioning. Also it is worth noting that our analysis can be easily combined with cache-related preemption delay analysis because we don’t make any assumptions on the memory access pattern. The additional memory interference due to cache reloads from preemption can be bounded by the number of cache reloads, which is provided by cache-related preemption delay analysis.
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Bounding Memory Interference Delay

1. Request-Driven Bounding
2. Job-Driven Bounding
Response-Time Based Schedulability Analysis 
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In order to bound memory interference we use two approaches, request driven and job-driven. Then they are combined by our response-time based schedulability analysis to reduce pessimism in analysis.
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Request-Driven (RD) Approach
Focuses on          # of memory requests generated by task itself ()
                                 Maximum delay imposed on each request 










Total interference delay 


Bounded by using DRAM and CPU core params
Not by using task params of other tasks 
Per-request interference delay
Intra-bank interference delay
Bank-level timing constraints 
Re-ordering effect (consecutive row-hits)
Zero, if  does not share bank partitions 
with tasks on other cores
Inter-bank interference delay
Channel-level timing constraints 
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The request driven approach focuses on the number of memory requests generated by task itself. And it uses the maximum delay imposed on each request. Here this per-request delay is calculated by using DRAM and CPU parameters and it does not use task parameters of other tasks. 
Per-request interference delay is the sum of intra-bank and inter-bank interference delay. Intra-bank interference considers bank-level timing constraints defined in the JEDEC standard. And it bounds the request reordering effect by bounding the maximum consecutive row-hit requests. Intra-bank interference is zero, if task does not share any banks with other tasks possibly running in parallel on other cores.
Inter bank interference delay considers channel-level timing constraints including rank and data bus. The total memory interference delay for task tau i is easily obtained by Hi multiplied by per request delay.
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Job-Driven (JD) Approach
Focuses on the  # of interfering memory requests generated by other tasks running in parallel
Does not use the # of own memory requests from a task

Total interference delay for task 
Captures # of interfering memory requests during a time interval 
Assumes that all these interfering memory requests are processed ahead of any request of task 
Combines intra-bank and inter-bank interference
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Job-driven approach focuses on the number of interfering memory requests generated by other tasks running in parallel. Unlike request-driven approach, it does not use the number of task’s own memory requests. This approach provides a lower bound than request driven, when task itself generates a lot of memory accesses but other tasks generate less memory requests.
To get total memory interference, it captures the number of interfering requests during a time interval t, and assumes that all these requests are processed ahead of any request of task tau i. So it assumes that task tau i is delayed by all other interfering requests and bounds the delay.
18

Memory interference delay cannot exceed any results from the RD and JD approaches
We take the smaller result from the two approaches 

Extended response-time test


Response-Time Test




Classical iterative response-time test
Request-Driven (RD)
Approach
Job-Driven (JD)
Approach
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The memory interference delay cannot exceed any results from the request driven and job driven approaches. So when we check the task schedulability, we take the smaller among the two approaches.
This is our extended response-time test to check schedulability in the presence of memory interference. This is the classical iterative response time test, and we extend by adding this. The first part is the request driven approach and the second part is the job-driven approach. By using this we can take into account the memory interference delay imposed on each task into schedulability test.
19
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Experimental Setup
Target system
Linux/RK

Intel i7-2600 quad-core processor
DDR3-1333 SDRAM (single channel configuration)
Workload: PARSEC benchmarks
Methodology
Compare the observed and predicted response times in the presence of memory interference
Core 1: Each PARSEC benchmark
Core 2, 3 and 4: Tasks generating interfering memory requests


Severe and non-severe memory interference
(modified versions of the stream benchmark)
Cache partitioning: to avoid cache interference
Bank partitioning: to test both private and shared banks 
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Here is the experimental setup. The target system runs Linux/RK as its OS. Linux/RK provides cache and bank partitioning and cache partitioning is used to avoid cache interference in accordance with out assumption. And bank partitioning is used to test both private and shared DRAM bank cases. The target system is equipped with intel i7 quad core processor and DDR3 SDRAM is used as main memory.
We used PARSEC benchmarks as the workloads.
And here is the evaluation methodology. In order to see how effectively our analysis can bound memory interference, we compared the observed and predicted response times in the present of memory interference. We assigned each PARSEC benchmark task on Core 1. And assigned tasks generating interfering memory requests on Core 2, 3 and 4. These interfering tasks have two types, one generates severe and the other one generates non-severe memory interference.
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Shared DRAM Bank
Severe Memory Interference (1 of 2)

Observed
Predicted w/o Re-ordering effect
Predicted w/ Re-ordering effect
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12x increase due to 
memory interference
w/o re-ordering effect
 overly optimistic 
Request re-ordering effect should be considered in COTS memory systems
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This is the increased response time of each benchmark under severe memory interference. This is the case where shared bank is used. We observed up to 12 times of increase. When we predict the memory interference without considering the reordering effect. The estimates are very optimistic. But our approach which considers re-ordering effect can bound the memory interference. This shows the importance of modeling request reordering effect.
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Observed	107.1050761902746	126.46322280292203	725.50633749011956	353.54875495209546	276.01025566312302	241.5869343982223	173.86922608071254	1194.2916863125311	100.89003608376275	131.42355539619575	273.50340180365691	Calculated 	106.52	112.23	371.86	227.96	267.73	194.54	150.37	639.19000000000005	100.88	124.22	188.91	Calculated	115.15	128.43	732.02	397.49	489.93	319.77999999999997	217.09	1353.5	102.05	156.31	306.69	Norm. Response Time (%)

Private DRAM Bank
Severe Memory Interference (2 of 2)
black-
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body-
track
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Observed
Predicted


4.1x increase  DRAM bank partitioning 
helps reducing the memory interference
Our analysis enables the quantification of the benefit of DRAM bank partitioning
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This is the case where private DRAM bank is used. We observed up to 4.1 times increase which is much less than the shared bank case. This result shows that bank partitioning helps reducing the amount of memory interference. Our analysis is aware of private bank and bound the  memory interference with only 8% of over estimates on average. Also by comparing the shared and the private bank cases, our analysis enables quantifying how much memory interference can be reduced by bank partitioning.
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Observed	blackscholes	bodytrack	canneal	ferret	fluidanimate	freqmine	raytrace	streamcluster	swaptions	vips	x264	103.79033883600211	107.11295735632309	270.57297448606289	175.65524449876523	149.77631900289791	153.21935354312234	123.81034035861553	412.83172786366219	100.49044074649348	115.2766563941386	151.15665093340561	Calculated	blackscholes	bodytrack	canneal	ferret	fluidanimate	freqmine	raytrace	streamcluster	swaptions	vips	x264	104.18	107.84	274.27	182.03	207.52	160.6	132.29	445.63	100.57	115.53	156.99	Norm. Response Time (%)

Private DRAM Bank
Non-severe Memory Interference
Average over-estimates are 8% (13% for a shared bank)

Observed
Predicted
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Our analysis bounds memory interference delay with low pessimism 
under both high and low memory contentions
24/25



RTAS 2014
These are the results under non-severe memory interference. The amount of memory interference is much less than the server interference cases. On average, the over estimates from our analysis was 8% for a private bank and 13% for a shared bank. The evaluation results show that our analysis bounds memory interference delay with low pessimism under both high and low memory contentions.s
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Observed	100.2569443410289	100.2673646718041	106.60846287767924	101.15763159464129	101.24854021337701	100.78920567205836	101.53657561933025	107.63953495176102	100.09745672824533	100.15655043692084	100.69621513005596	Calculated	104.18	107.84	112.68	112.68	112.68	112.68	112.68	112.68	100.57	112.68	112.68	Norm. Response Time (%)

Conclusions
Analysis for bounding memory interference
Based on a realistic memory model
JEDEC DDR3 SDRAM standard
FR-FCFS policy of the memory controller
Shared and private DRAM banks 
Combination of the request-driven and job-driven approaches
Reduces pessimism in analysis (8% under severe interference)
Advantages
Does not require any modifications to hardware components or application software
Readily applicable to COTS-based multicore real-time systems
Future work
Pre-fetcher, multi-channel memory systems
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We propose an analysis for bounding memory interference delay in a multi-core system with DRAM main memory. Our analysis is based on a realistic memory model which considers JEDEC standard, FR-FCFS memory scheduling policy of modern memory controllers, and shared and private DRAM banks. We used the combination of two approaches, request-driven and job-driven, and this combination reduces the pessimism in analysis. 
The advantage of our work is that it does not require any modifications to hardware or application software to provide predictability in memory accesses. So it can be readily applicable to COTS-based multi-core systems. 
For future work, we consider the effects of prefetcher units and multi-channel memory systems, because those are very important issues to be solved to provide high performance while providing predictabilityu.
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