
Accelerating B-spline Interpolation on GPUs: Application to Medical Image Registration

Orestis Zachariadisa,∗, Andrea Teatinib,c, Nitin Satputea, Juan Gómez-Lunad, Onur Mutlud, Ole Jakob Elleb,c, Joaquı́n Olivaresa

aDepartment of Electronics and Computer Engineering, Universidad de Cordoba, Córdoba, Spain
bThe Intervention Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway

cDepartment of Informatics, University of Oslo, Oslo, Norway
dDepartment of Computer Science, ETH Zurich, Zurich, Switzerland

Abstract

Background and Objective. B-spline interpolation (BSI) is a popular technique in the context of medical imaging due to its adapt-
ability and robustness in 3D object modeling. A field that utilizes BSI is Image Guided Surgery (IGS). IGS provides navigation
using medical images, which can be segmented and reconstructed into 3D models, often through BSI. Image registration tasks also
use BSI to transform medical imaging data collected before the surgery and intra-operative data collected during the surgery into
a common coordinate space. However, such IGS tasks are computationally demanding, especially when applied to 3D medical
images, due to the complexity and amount of data involved. Therefore, optimization of IGS algorithms is greatly desirable, for
example, to perform image registration tasks intra-operatively and to enable real-time applications. A traditional CPU does not
have sufficient computing power to achieve these goals and, thus, it is preferable to rely on GPUs. In this paper, we introduce a
novel GPU implementation of BSI to accelerate the calculation of the deformation field in non-rigid image registration algorithms.

Methods. Our BSI implementation on GPUs minimizes the data that needs to be moved between memory and processing cores
during loading of the input grid, and leverages the large on-chip GPU register file for reuse of input values. Moreover, we re-
formulate our method as trilinear interpolations to reduce computational complexity and increase accuracy. To provide pre-clinical
validation of our method and demonstrate its benefits in medical applications, we integrate our improved BSI into a registration
workflow for compensation of liver deformation (caused by pneumoperitoneum, i.e., inflation of the abdomen) and evaluate its
performance.

Results. Our approach improves the performance of BSI by an average of 6.5× and interpolation accuracy by 2× compared to three
state-of-the-art GPU implementations. Through pre-clinical validation, we demonstrate that our optimized interpolation accelerates
a non-rigid image registration algorithm, which is based on the Free Form Deformation (FFD) method, by up to 34%.

Conclusion. Our study shows that we can achieve significant performance and accuracy gains with our novel parallelization scheme
that makes effective use of the GPU resources. We show that our method improves the performance of real medical imaging
registration applications used in practice today.

Keywords:
Medical Image Registration, Medical Image Processing, Parallel Computing, GPU, B-splines

1. Introduction

Image Guided Surgery (IGS) aims to provide surgeons with
navigation capabilities to perform safer surgeries through better
visualization [1]. IGS is created by combining medical images,
such as Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI) [2], with surgical instrument tracking technolo-
gies [3]. However, the accuracy of image guided surgery is of-
ten undermined by organ deformations, especially in soft tissue
surgeries. These deformations are difficult to account for due to
their non-linear behaviour. Non-rigid registration is a technique

∗Corresponding author
Email addresses: orestis.zachariadis@uco.es

(Orestis Zachariadis), andre_tea@outlook.com (Andrea Teatini)

that has been developed to reproduce and model such non-linear
deformations [4].

Non-rigid registration through Free Form Deformation
(FFD) [5], based on cubic B-spline interpolation (BSI) [5, 6],
is a state-of-the-art technique for non-rigid registration. FFD
works by manipulating a grid of control points. The shape of a
3D object (e.g., an organ) underlying the control points can be
changed by using a smooth and C2 continuous transform (i.e.,
continuous up to second order derivatives). FFD uses BSI in
the calculation of the deformation field.

BSI is one of the most computationally demanding parts
of FFD [7]. Graphics Processing Units (GPUs) can help
achieve the real-time requirements of IGS, namely FFD, as
they offer massive computational performance in comparison

c© 2020. This work is licensed under a CC BY-NC-ND 4.0 International License:http://creativecommons.org/licenses/by-nc-nd/4.0/

to Central Processing Units (CPUs). GPUs deploy thousands
of execution threads, which operate on large batches of data.
GPUs provide higher throughput and power-efficiency than
CPUs on multithreaded workloads [8]. The performance of
medical imaging applications benefits significantly from GPUs
[9, 10, 11, 12, 13, 14, 15].

For these reasons, several authors have used GPUs for
BSI [6, 16, 17, 18, 19]. Sigg et al. [16] and Ruijters et al. [17]
achieve a substantial reduction in the number of input samples
by representing the weighted sums as trilinear interpolations.
More recently, Ellingwood et al. [6] and Du et al. [18] use GPU
implementations of BSI to improve the performance of image
registration. They improve input sample loading by aligning
the control grid with the voxel grid of the volume [6, 18, 19].
However, all these works suffer from the intensive data move-
ment of a large number of input samples between the memory
and the GPU, which is the main performance bottleneck of BSI
implementations on a GPU [16].

Our goal in this work is to accelerate BSI on GPUs by alle-
viating the data movement bottleneck with optimization tech-
niques that enable a more efficient use of the on-chip memory
resources. To this end, we propose a GPU implementation of
BSI with three key optimizations: a) a new workload partition-
ing scheme for GPU execution threads that reduces the number
of memory accesses, b) a register-tiling approach that keeps in-
put data close to the execution units, and c) the replacement of
weighted summation with linear interpolations, which reduces
the computational load and increases the accuracy.

In order to show how our approach affects the performance
and accuracy of image registration in a realistic scenario, we in-
tegrate our technique (publicly available1) to the FFD registra-
tion of NiftyReg [7]. NiftyReg is a lightweight medical image
registration library. Recent works [20, 21] use NiftyReg as a
reference for registration.

We complete our study with a pre-clinical evaluation of our
method. We use FFD with our GPU-accelerated BSI on 1) CT
scans of patient-specific liver phantom, and 2) MRI scans of
a porcine liver model to compensate for a non-rigid soft tis-
sue deformation caused by pneumoperitoneum. Pneumoperi-
toneum is a surgical procedure to inflate the patient’s abdomen,
which is necessary for any abdominal laparoscopic surgery.
Pneumoperitoneum, however, deforms the shape of the or-
gans [22, 23]. To account for this deformation, we capture new
images during the surgery (intra-operative) and use non-rigid
image registration to match them with images before pneu-
moperitoneum (pre-operative images). We compute non-rigid
image registration for pneumoperitoneum with state-of-art im-
plementations and with our BSI implementation. Using our im-
plementation results in a performance increase with the same
accuracy as using the state-of-the-art implementations.

2. Background

In this section, we first introduce the foundations of B-spline
interpolation. Since our GPU implementation of BSI is specific

1https://github.com/oresths/niftyreg_bsi

to 3D medical images (CT, MRI, or US volumes), formulations
and analysis focus on the 3D case. Second, we review two state-
of-the-art implementations of BSI on GPUs.

2.1. B-spline interpolation theory
We introduce B-spline interpolation for 3D images, i.e., the

domain of the image volume is in the x, y, z coordinate space.
As Equation 1 shows [5, 6], the BSI transformation of FFD for
each voxel (i.e., each interpolated point of FFD) with coordi-
nates x, y, z is T (x, y, z). The BSI transformation is a function
of control points φi, j,k, which are arranged into a grid of dimen-
sions nx × ny × nz. The control point grid is uniformly spaced,
with δx, δy, and δz being the spacing (in voxels) in the three
dimensions.

T (x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l, j+m,k+n (1)

where i = bx/δxc − 1, j = by/δyc − 1, k = bz/δzc − 1, u =
x/δx − bx/δxc, v = y/δy − by/δyc,w = z/δz − bz/δzc, B are the
scalar B-spline coefficients [17] and φ are the control points.
Each voxel is affected by four control points in each dimension.
Thus, in a 3D space, 4 × 4 × 4 control points, forming a cube
(see Figure 1), affect the inner tile of voxels. In general, in
N-dimensional images, 4N control points affect each voxel.

Control point
Trilinear interpolation
of 8 control points

The 4x4x4 neighboring control-points each thread requires.
The 2x2x2 sub-cubes delineate trilinear interpolations.

Figure 1: The cube of 4 × 4 × 4 control points that affect a voxel/tile in a 3D
control point grid. Smaller cubes depict the grouping in trilinear interpolations.

2.1.1. Tiles
Tiles are logical groups of voxels that share common prop-

erties. Based on Equation 1, we define tiles of δx × δy × δz di-
mensions. Figure 2 illustrates a tile in a 2D example. We make

2

two observations: 1) the same control points, i.e., the ones sur-
rounding the tile, affect all voxels inside the tile, and 2) control
points of neighboring tiles overlap.

Pixel

Control point

Tile of pixels

Pixel affected by black
control points

Pixels that are affected
by black control points

Control point that affects
pixels in gray area

x
y

Figure 2: A 2D space divided into tiles.

From the implementation perspective, partitioning a volume
into tiles is a way of exploiting data reuse (i.e., reuse of control
points) in on-chip memories, when calculating the interpolated
voxels. Thus, tiling saves memory traffic between off-chip and
on-chip memories.

2.2. State-of-the-art GPU implementations of BSI

This section introduces the two state-of-the-art BSI methods
and their respective GPU implementations, which we use as
comparison points for our work.

Texture Hardware (TH). Ruijters et al. [17, 24] provide a tex-
ture hardware method for BSI. They base their method on the
observation that the weighted additions of Equation 1 can be
replaced by a linear interpolation [16, 17]. Linear interpola-
tions are well-suited for the GPU texture unit, that features a
hardware interpolation unit. The hardware interpolation unit
calculates the interpolation directly and it does not require sep-
arate accesses to off-chip global memory of the GPU to load
the input control points. Hardware interpolation is fast but it
has two main drawbacks. First, it has only 8 bits of accuracy
[8], which limits the resolution of the interpolation. Second,
the values that the hardware interpolation unit fetches from the
off-chip memory are a function of the absolute position of each
voxel. Therefore, TH cannot utilize custom caching schemes to
aggregate data transfers for neighboring voxels (Appendix A).
Texture Hardware BSI is included in an easy-to-use library by
Ruijters et al. [24] and is used in recent works [25, 26].

Thread per Voxel (TV). This method assigns one thread per im-
age element, e.g., per voxel in the case of 3D images.

Ellingwood et al. [6] present a GPU implementation of this
method that applies tiling (Section 2.1.1). They assign one or
more thread blocks to each tile, with one thread for each voxel
of the tile. Tiling enables the reuse of control points, which are
the same for the whole tile, by keeping them in the fast on-chip
shared memory.

NiftyReg [7], a lightweight open-source medical image
registration library, also uses the thread per voxel method.
NiftyReg contains optimized implementations of BSI for both
CPUs and GPUs. It is open-source and well-maintained, with
competitive performance against other state-of-the-art imple-
mentations [20, 21]. The GPU implementation uses a simple,
straightforward TV method, which does not take advantage of
tiling. The CPU implementation, however, exploits tiling by
applying multi-core and vectorization optimizations.

3. Optimizing B-spline interpolation

This section presents our GPU implementation of BSI, which
follows a different approach to the state-of-the-art implementa-
tions (i.e., TH and TV). In our approach, we assign one thread
per tile of voxels, as we explain in Sections 3.1 to 3.3. In Sec-
tion 3.5, we introduce our implementations for CPU, which fol-
low the GPU approach partially.

3.1. Overview of our GPU implementation of BSI

Our GPU implementation of BSI is based on two key ideas.
First, an entire tile of voxels is assigned to a single GPU

thread (Thread per Tile, TT), in contrast to the one-thread, one-
voxel approach. This TT assignment takes advantage of tiling
in both on-chip cache memory and registers: 1) tiling in cache
memory minimizes the reads from off-chip memory, by maxi-
mizing the overlap of input control points, and 2) tiling in reg-
isters minimizes the accesses to cache memory, by reusing the
input control points for many voxels.

Second, we replace the weighted sum of the basic formula
of BSI with trilinear interpolations, in a similar way as TH
does. We calculate these trilinear interpolations using Fused
Multiply-Add (FMA) instructions, which the GPU instruction
set contains [8]. FMA increases both accuracy and speed in
regard to regular multiplication and addition instructions.

We give an in-depth description of our optimizations in the
next sections.

3.2. Thread per Tile (TT)

In this section, we describe the optimization techniques that
we deploy in our TT approach to BSI. We show how the input
loading and register optimizations reduce memory accesses.

3.2.1. Input loading optimization
The main idea is to reduce loads from global memory by

taking advantage of the overlap of tiles assigned to neighboring
threads. Figure 3 compares the TV approach with tiling (left),
explained in Section 2.2, to our TT approach (right).

3

Global memory

C00 C01 C02 C03 C04

C10 C11 C12 C13 C14

C20 C21 C22 C23 C24

C30 C31 C32 C33 C34

Shared memory - Tile 1 Shared memory - Tile 2

C00 C01 C02 C03 C01 C02 C03 C04

C10 C11 C12 C13 C11 C12 C13 C14

C20 C21 C22 C23 C21 C22 C23 C24

C30 C31 C32 C33 C31 C32 C33 C34

Global memory

C00 C01 C02 C03 C04

C10 C11 C12 C13 C14

C20 C21 C22 C23 C24

C30 C31 C32 C33 C34

Cache memory - Tiles 1 and 2

C00 C01 C02 C03 C04

C10 C11 C12 C13 C14

C20 C21 C22 C23 C24

C30 C31 C32 C33 C34

Thread per Voxel Thread per Tile (Our approach)

Tile 1

Tiles 1 & 2

Tile 2

Cyx

Four output pixels

Control point yx

Block 1 Block 1Block 2

Step
1

Step
2

Step
3

Thread 2

Registers

Thread 1

Registers

Thread 1

Registers

Thread 4

Registers

Thread 3

Registers

Thread 2

Registers

Thread 4

Registers

Thread 3

Registers

Thread 2

Registers

Thread 1

Registers

Register Optimization

Input Loading Optimization

Figure 3: Comparison of input loading and register optimization for Thread per Voxel with tiling (left) and Thread per Tile (right) for two neighboring tiles.

In TV, each block of threads works on a unique tile of vox-
els. Thus, each block requires 4N input control points (Section
2.1.1). Therefore, for each tile, we need to move 4N control
points from global memory to shared memory. Step 1 in Fig-
ure 3 (left) illustrates the required data movement from global
memory to shared memory for a 2D example. In this example,
we have two tiles and each tile is assigned to one block. The
two tiles imply the movement of 4 × 4 + 4 × 4 control points
from global memory to shared memory.

In TT, we assign one thread per tile to take advantage of over-
lapping neighboring tiles. Step 1 of Figure 3 (right) illustrates
the reduction in data movement to cache memory, with the over-
lap in the x-direction. Two tiles require only 4×5 control points.
In 3D medical images, the reduction in data movement is more
noticeable, because there is overlap in the three directions. As
a result, our approach reduces the data movement from global
memory dramatically. TT requires about 12× and about 187×
(for 5 × 5 × 5 tiles) fewer memory transfers in comparison to
TV and TH (Appendix A).

3.2.2. Register optimization
The second optimization technique that we apply to TT is

based on two main ideas: 1) we load the control points for all
voxels of the tile from cache memory only once, and 2) we keep

the loaded control points in registers, which are the fastest on-
chip memory, until thread execution finishes.

In TV, threads belonging to the same block work on individ-
ual voxels of the same tile. For every voxel belonging to the
tile, the corresponding threads need to access exactly the same
control points as all other threads of the block. Step 2 of Fig-
ure 3 (left) illustrates the required data movement from shared
memory to registers for a 2D example. In this example, each
pixel is assigned to one thread, and for every four pixels the
corresponding four threads need to read (from shared memory
to registers) sixteen control points each (i.e., 4 × 16 reads for
every four pixels).

In TT, the one-thread, one-tile assignment minimizes the data
movement between cache memory and registers. For all voxels
belonging to the tile, the corresponding thread needs to access
from cache memory a unique set of control points that is differ-
ent from the set accessed by any other thread of the block (there
is overlap, though). By utilizing register tiling, the thread keeps
the control points in registers, which are faster than cache mem-
ory [27], to process every voxel in the tile. Step 2 of Figure 3
(right) illustrates the reduction in data movement. For every
four pixels, the corresponding thread needs to read only sixteen
control points (i.e., 1 × 16 reads for every four pixels).

4

3.3. Thread per Tile with Linear Interpolations (TTLI)

We extend TT by reformulating the triple sum of Equation (1)
to trilinear interpolations. The basic idea is that a linear inter-
polation can replace an addition of two weighted addends. We
can extend this to three dimensions, where we combine eight
addends into a trilinear interpolation [16].

We calculate a trilinear interpolation as a combination of
seven linear interpolations (in our implementation, we do not
use the hardware interpolation unit as this would prevent us
from increasing input data locality and output data accuracy
(Section 2.2)). The linear interpolations are beneficial to the
performance of our approach because the compiler maps lin-
ear interpolations to FMA instructions. FMA instructions are
preferable for two reasons. First, FMA is more accurate be-
cause it executes multiplication and addition in the same step,
with a single rounding. Second, FMA is faster because it exe-
cutes both multiplication and addition with a single instruction
[28].

Figure 1 illustrates the 4 × 4 × 4 neighborhood of control
points that affect a tile of voxels. Each one of the 2 × 2 × 2
colored sub-cubes of control points corresponds to one trilinear
interpolation. For each voxel in the tile, the respective thread
calculates each one of the eight trilinear interpolations. The
arithmetic operations that are needed for each trilinear interpo-
lation (i.e., colored sub-cube) are independent, thus enabling
Instruction Level Parallelism (ILP) [27].

3.4. Implementation details of TT and TTLI

Register tiling, which we employ in our approach, requires a
careful management of the registers. We explain some of our
implementation decisions in the following paragraphs.

Register allocation. The deformation field of a 3D image re-
quires 64 control points and each control point comprises three
values, one for each of the three coordinates (x, y, z). There-
fore, we need 3 · 64 = 192 registers for the control points
only. The control point grid is aligned to the voxel grid and
uniformly spaced, therefore we store the scalar B-spline coeffi-
cients in Look-Up-Tables (LUTs). TT requires 235 registers in
total, whereas TTLI requires 255 registers.

Thread block configuration. The amount of required registers
limits the maximum active threads per Symmetric Multiproces-
sor (SM) to 256 [8]. We arrange threads to blocks of 4 × 4 × 4
threads. We select this arrangement because a cube is the ge-
ometrical structure that maximizes overlap and consequently
minimizes memory transfers (i.e., minimizes Equation A.4 in
Appendix A).

Performance at low occupancy. Shared and cache memories
are slower than registers, therefore TT keeps the control points
in registers permanently. We arrange input data in such a way
that there are no spills (although in TTLI we have to store a few
control points into shared memory). Due to the large amount
of registers our approach requires, the occupancy of the GPU
falls to 12.5% for CUDA Compute Capabilities (CC) before 7.x

and to 25% for newer CC [8]. Despite the low occupancy, we
can maximize resource utilization by using ILP and avoiding
the use of cache memories. Our approach uses a register-only
approach to increase the performance substantially [27].

3.5. Application of our approach to CPUs

We can apply our TTLI approach to the CPU implementa-
tion of BSI. Table 1 summarizes the main differences with the
GPU implementations. Some optimizations are not fully appli-
cable to the CPU implementation, because they are tailored to
the GPU architecture. GPUs allow for more fine-grained par-
allelism in comparison to CPU, which makes GPUs more ef-
ficient with small 3D groups of tiles with regards to cache and
register management. We develop two parallel implementations
of BSI on CPUs, which take advantage of the several cores and
the SIMD units (SSE/AVX) that CPUs have [29, 30]. SIMD
units pack many single values, which we call elements, in a
special register, called a vector, thus applying a form of register
tiling.

Table 1: Differences between GPU and CPU implementations (Xmeans that an
optimization technique is used in the CPU implementation).

Optimization VT VV

Input overlap Only in x-direction Only in x-direction
Register tiling Partially X

Linear interpolation X X

Vector per Tile (VT). In this method, we parallelize by using
SIMD vectors to simultaneously process many voxels of a tile.
Each thread processes δx voxels simultaneously. We iterate
through the y,z-dimensions of the tile, δx voxels at a time. The
drawback of this method is that a SIMD vector is not fully uti-
lized if δx, a user configurable parameter, is not a multiple of
the SIMD vector length.

Vector per Voxel (VV). In this method, we parallelize by using
SIMD vectors to simultaneously process each of the trilinear
interpolations a single voxel requires. This means that, using
the SIMD unit, each thread processes simultaneously all col-
ored sub-cubes a voxel requires (Figure 1). Conveniently, the
SIMD vector length is equal to the number of sub-cubes.

4. Pre-clinical dataset acquisition

In order to test our implementations of BSI in a pre-clinical
application scenario, we perform a pre-clinical study where we
use FFD. We create a dataset (publicly available) [31] which
consists of two sets of subjects and imaging modalities: 1) a
patient-specific liver phantom [32] with DynaCT scanning, and
2) a porcine model with MRI scanning, to validate the regis-
tration process in-vivo. Table 2 lists the characteristics of the
collected dataset.

In this section, we describe the dataset in detail. We present
evaluation results in Sections 6 and 7.

5

Table 2: Image characteristics.

Registration
pair Resolution

Voxel count
(millions) Voxel Spacing

Phantom1 512×228×385 44.94 0.49×0.49×0.49
Phantom2 294×130×208 7.95 0.90×0.90×0.90
Phantom3 294×130×208 7.95 0.90×0.90×0.90
Porcine1 303×167×212 10.73 0.94×0.94×1.00
Porcine2 267×169×237 10.70 0.94×0.94×1.00

Patient-specific phantom of liver. The patient-specific liver
phantom presents a total of five tumors and a blood vessel tree.
The liver phantom used in our experiments was produced by the
ARTORG centre and Cascinationr [32] and has been used by
Teatini et al. for registration studies [33]. We performed three
intra-operative CT scans (Artis Zeego, Siemensr) (DynaCT) of
the liver phantom in the OR. For each scan, we apply non-rigid
deformations to the phantom, which we try to correct through
FFD (Phantom 1, Phantom 2, Phantom 3). An example of the
liver phantom scans is visible in Figure 4a and Figure 4b.

Porcine model. We performed a porcine study to acquire
pre-operative (without pneumoperitoneum) and intra-operative
(post pneumoperitoneum) MRI scans. These were used to study
the deformation that the liver undergoes due to pneumoperi-
toneum alone. We performed this study at Oslo University
Hospital through the use of a 3T Siemens MRI scanner, model
Ingenia Philips r [34]. We performed pneumoperitoneum at
14 mmHg. Both MRI scans were performed with injection of
contrast, as done in patients, to improve imaging of the liver
parenchyma and blood vessels (Flow rate 5.0 and Volume 11.0,
based on the weight of the animal at 55kg). The MRI scans
are thin sliced (1.5 mm in Porcine 1 and 1 mm in Porcine 2)
enhanced-T1 high-resolution isotropic volume examination (e-
THRIVE) scans. The deformation of the liver due to pneu-
moperitoneum is visible in the differences between images (c)
and (d) in Figure 4 and further explored in [35].

5. B-spline interpolation evaluation

In this section, we evaluate our BSI implementations on
GPUs and CPUs in terms of performance and accuracy, and
compare them to state-of-the-art implementations.

5.1. Evaluation methodology

Configuration. In our evaluation, we use one CPU and two
GPUs. The CPU is a quad-core Intel i7-7700HQ@2.8 GHz
with HyperThreading. We use gcc v5.4 compiler. To show the
performance and stability among different GPU generations, we
use two GPUs of different generations: 1) NVIDIA GeForce
GTX 1050 (with Pascal architecture [8]), and 2) NVIDIA
GeForce RTX 2070 (with Turing architecture [36]). We use
CUDA SDK v9.2 for the first GPU and v10.1 for the second
GPU. We use CUDA event API to acquire the timing results.

(a) (b)

(c) (d)

Figure 4: Medical images used for pre-clinical evaluation of our optimized
image registration through FFD. (a) and (b) show two DynaCT scans of the
liver phantom, and (c) and (d) are MRI scans of the porcine model, respectively
without (c) and with pneumoperitoneum applied (d).

Comparison baseline. We compare our approaches to the state-
of-the-art BSI implementations (Section 2.2). For TH, we use
the library from Ruijters et al. [24]. For TV, we create an imple-
mentation that is based on the recent literature [6, 7, 19]. This
implementation of TV uses tiling and is tuned for the GPUs
we use. We refer to this implementation as TV-tiling. We also
compare to the optimized GPU implementation of the NiftyReg
library [7], which does not use tiling, as GPU reference, and the
optimized CPU implementation of NiftyReg [7] as CPU refer-
ence. We refer to the NiftyReg implementations as NiftyReg
(TV).

Dataset and metrics. We measure the timing information of
BSI while applying registration on our dataset. We use two
metrics to measure the performance: 1) time per voxel is the
execution time necessary to interpolate a single voxel, and 2)
speedup is the performance improvement over NiftyReg (TV).

Parameters. We select five different tile sizes to evaluate the
behavior of the algorithms under different parameters, namely
3×3×3, 4×4×4, 5×5×5, 6×6×6, 7×7×7. We select these
tile sizes because they are centered around 5 × 5 × 5, which is
the default tile size for non-rigid registration in NiftyReg.

5.2. GPU performance

Figures 5a and 5b show the average time per voxel for TH,
NiftyReg (TV), TV-tiling, TT, and TTLI on the GTX 1050 and
the RTX 2070 GPUs, respectively.

We make three main observations. First, TTLI is the fastest
implementation in all cases. Second, the time per voxel is al-
most independent of the tile size for all implementations except
TV-tiling, for which the thread block size changes with the tile
size. The reasons are three. 1) Bigger tiles leave more threads
inactive at the borders of the image. 2) Bigger tiles decrease the
coalescence of GPU memory accesses. In our approach, a sin-
gle thread stores an entire tile in the output (Figure 3, Step 3). 3)

6

(a) (b)

Figure 5: Average time per voxel of the five registration pairs for various tile sizes on GTX 1050 GPU (a) and RTX 2070 GPU (b). Error bars depict the standard
deviation of time per voxel.

If the number of SMs does not divide the amount of blocks ex-
actly, some SMs may remain idle (tail effect). In conclusion, the
performance of our approach in regards to different tile sizes, is
a balance between the acceleration that the reduction of data
movement offers and the deceleration that border effects and
memory uncoalescence cause. Third, for all implementations
the coefficient of variation (error bars show the standard devi-
ation across the images of our dataset) is less than 3% which
reflects that the image contents do not affect the performance.
The reason is that BSI is regular, i.e., it operates on all voxels
uniformly.

Figures 6a and 6b show the average speedup over
NiftyReg(TV) for TH, TV-tiling, TT, and TTLI on the GTX
1050 and the RTX 2070 GPUs, respectively.

We make two observations. First, our TTLI approach is 6.5×
(up to 7×) faster than NiftyReg(TV), on average. TTLI out-
performs the second fastest (TT) by an average of 1.77× on
GTX 1050 and 1.5× on RTX 2070. Second, TTLI shows sim-
ilar speedups over NiftyReg(TV) on both Pascal architecture
(GTX 1050) and Turing architecture (RTX 2070) GPUs, which
demonstrates that our optimizations are widely applicable and
performance-portable.

5.2.1. Analysis of performance limitations
This section describes the limitations that define the perfor-

mance of our approach.
TT does not provide significant speedup over TV-tiling. The

reason is that our TT approach reduces data movement signifi-
cantly, which makes TT compute-bound. We observe with the
NVIDIA’s Visual Profiler [37] that the compute utilization of
TT is at about 90% of the peak. Since the amount of computa-
tion in TT is not reduced with respect to TV-tiling, the potential
improvement is limited.

Reformulating the summation of TT to trilinear interpola-
tions (Section 3.3) reduces the computational complexity of
Equation (1) to half (Appendix B) and increases the usage of
FMA instructions. TTLI is 50% - 80% faster than TT. After re-
moving the computational intensity problem, TTLI is no longer
compute-bound. The main bottleneck is the uncoalescence of
the output (Figure 3, Step 3). In our experiments, fixing the un-
coalescence proved more computationally costly than the unco-
alescence itself.

Thread divergence, caused by the inactive threads at the bor-
ders of the image, reduces the computation throughput for both
TT and TTLI.

With 5×5×5 tile, TTLI achieves 670 GFLOP/s and 62 GB/s
on the GTX 1050 2. The empirical limits [38] of the GTX 1050
are 2091 GFLOP/s and 95 GB/s. We observe that TTLI is close
to the bandwidth limit, but not so close to the computation limit.

5.3. CPU performance

We apply our approach to BSI to our CPU implementations
(Section 3.5). Figures 7a and 7b show respectively time per
voxel and speedup results of our CPU approaches for different
tile sizes.

We make four observations. First, our CPU implementations
(VT and VV) outperform the baseline NiftyReg (TV) by an av-
erage of 4.12× and 3.30×, respectively. Second, for all imple-
mentations, larger tiles result in lower time per voxel, as they
can take more advantage of the CPU cache hierarchy. This ef-
fect is more pronounced in VT, which achieves a speedup of
almost 5× for the largest tiles. Third, the speedup of VT in-
creases as the tile size increases because bigger tiles fill more
slots of the SIMD vectors. VT is the fastest option when more

2NVIDIA profiler (version 2019.4.0) does not provide metrics for counting
FLOPs on the RTX 2070.

7

(a) (b)

Figure 6: Average speedup over NiftyReg(TV) for the five registration pairs with different tile sizes on the GTX 1050 GPU (a) and the RTX 2070 GPU (b). Error
bars depict the standard deviation of the speedup.

(a) (b)

Figure 7: Average time per voxel (a) and speedup (b) of BSI for various tile sizes using our implementation of BSI on CPUs. Error bars depict the standard deviation.

than 3 slots are filled. Fourth, the speedup of VV does not in-
crease, as the time per voxel of NiftyReg decreases with faster
rate than the time per voxel of VV. VV is the recommended
option only for 3 × 3 × 3 tiles.

5.4. Accuracy

Our implementations employ FMA instructions, which are
more accurate than regular multiplications [8], in the calcula-
tion of linear interpolations. In this section, we show the accu-
racy improvements that stem from FMA instructions. We create
a high precision CPU implementation by using double preci-
sion arithmetic (64-bits floating point numbers) and we use this
implementation as reference.

Tables 3 and 4 show respectively the average absolute error
of all GPU implementations and all CPU implementations with
respect to the high precision CPU implementation.

We draw three conclusions. First, our implementations that
employ FMA instructions (i.e., TTLI on GPUs, VT and VV on

Table 3: Average absolute error of BSI approaches on GPUs with respect to a
high precision CPU implementation.

Implementation Error (e−6)

Texture Hardware 9245
Thread per Voxel (Tiling) 5.5
NiftyReg (TV) GPU 5.3
Thread per Tile 5.6
Thread per Tile (Interp.) 2.8

CPUs) are almost two times more accurate than the rest. Sec-
ond, TH is significantly less accurate than the rest of the imple-
mentations, as expected from the low accuracy of interpolation
hardware [8]. TH is 3300× less accurate than TTLI. Third, most
GPU implementations show accuracy values in the same order
of magnitude as CPU implementations.

8

Table 4: Average absolute difference of BSI approaches on CPUs with respect
to a high precision CPU implementation.

Implementation Error (e−6)

NiftyReg (TV) CPU 6.0
Vector per Tile 3.0
Vector per Voxel 3.0

6. Registration evaluation

In this section, we evaluate the performance impact of our
BSI implementations on the overall registration process.

6.1. Evaluation methodology

To test the contribution of our BSI implementations to the
total time required for the registration of medical images, we
integrate our TTLI approach into NiftyReg3 [7]. The control
points in NiftyReg correspond to a coarse deformation field.
We calculate the fine deformation field (i.e., the displacement
of all voxels) by interpolating the coarse deformation field us-
ing BSI. We compare the total registration time with our BSI
to the original NiftyReg registration, on our dataset presented
in Section 4. We evaluate the performance of non-rigid regis-
tration on two platforms: a) a quad-core Intel i7-7700HQ@2.8
GHz CPU (with HyperThreading) and a GTX 1050 GPU, and
b) a six-core Intel i7-8700@3.2 GHz CPU (with HyperThread-
ing) and an RTX 2070 GPU. We set the tile size to 5 × 5 × 5,
which is the default setting in NiftyReg.

6.2. Performance evaluation

Figures 8 and 9 show the total registration time and the
speedup of our approach on the two platforms.

Figure 8: Time and speedup of registration with our improved BSI GPU ap-
proach on GTX 1050.

We draw two major conclusions. First, registration with our
BSI approach is faster in all images on both platforms. The
speedup of registration is 1.30×, on average, on the platform

3https://github.com/oresths/niftyreg_bsi

Figure 9: Time and speedup of registration with our improved BSI GPU ap-
proach on GTX 1050.

with a GTX 1050 GPU, and 1.14× on the platform with an RTX
2070 GPU. Second, although the performance improvement of
our BSI approach is almost the same for both GPUs, we do
not observe the same results for the entire image registration.
The reason resides in Amdahl’s law [39]: while BSI represents
27% of the total registration time on the platform with a GTX
1050 GPU, it takes only 15% on the platform with an RTX 2070
GPU.As a result, the overall performance impact on the regis-
tration workflow depends on the characteristics of the compute
platform.

7. Clinical validation of image registration

In this section, we present the validation of our implementa-
tion of accelerated FFD on our pre-clinical dataset described in
Section 4.

Qualitative assessment. We perform qualitative assessment of
the registration using a checkerboard validation procedure [40].
Our method provides accurate registration for the parenchyma
(the outer shape of the liver is preserved correctly) for both the
liver phantom and porcine model. Tumors and vessel structures
of the phantom are consistent between images (Figure 10) and
approximately also vessel structures for the porcine model are
correctly registered (Figure 11).

Quantitative assessment. We create normalized difference im-
ages between the output of the registration and the target intra-
operative image for three registration approaches: 1) affine, 2)
proposed, and 3) original NiftyReg (Figures 12 and 13). Table
5 shows the mean absolute error (MAE) for all images of our
dataset. As expected, the mismatch to the target intra-operative
image is greater with affine than with non-rigid registration ap-
proaches. The two non-rigid registration approaches perform
almost equally (the average MAE across the five image pairs is
0.216 for affine, 0.1240 for our approach and 0.1249 for origi-
nal NiftyReg.

In order to quantify how the different registration approaches
affect the accuracy of the registration as output images, we
apply Structured Similarity Index Metric (SSIM) [41] to our
dataset. With the SSIM, we measure the similarity between the

9

Figure 10: Comparison of registration through qualitative checkerboard assessment on liver phantom scans. (Left) shows the registration results using an affine
registration. (Right) shows the results of non-rigid FFD using our BSI implementation.

Figure 11: Comparison of registration through qualitative checkerboard assessment on porcine liver scans. (Left) shows the registration results using an affine
registration. (Right) shows the results of non-rigid FFD using our BSI implementation.

Figure 12: Comparison of registration through quantitative difference image assessment on liver phantom scans. (Left) shows results using an affine registration;
(Center) shows the results of non-rigid FFD using our BSI implementation; (Right) shows the results of non-rigid FFD using original NiftyReg.

Figure 13: Comparison of registration through quantitative difference image assessment on porcine liver scans. (Left) shows results using an affine registration;
(Center) shows the results of non-rigid FFD using our BSI implementation; (Right) shows the results of non-rigid FFD using original NiftyReg.

output of the registration approach and the target intra-operative
image (Table 5).

We make three observations. First, the non-rigid registra-
tion approaches have much higher similarity than the affine
registration approach. Second, our approach and the original

NiftyReg have almost equal similarities. Third, our approach
gives slightly better similarity than the original NiftyReg ap-
proach. Further evaluation of accuracy of the registration can
be inferred from the original studies performed by Modat et al.
[7].

10

Table 5: Mean absolute error (Left) on normalised outputs of affine registration
and non-rigid registration with our approach and original NiftyReg, using the
intra-operative image as reference. Structured Similarity Index Metric (Right)
of the registration output, using the intra-operative image as reference).

Registration
pair

MAE SSIM

Affine Proposed NiftyReg Affine Proposed NiftyReg

Phantom 1 0.229 0.13 0.131 0.865 0.929 0.934
Phantom 2 0.234 0.172 0.179 0.916 0.952 0.946
Phantom 3 0.256 0.174 0.172 0.889 0.952 0.95
Porcine 1 0.201 0.072 0.072 0.797 0.912 0.911
Porcine 2 0.162 0.072 0.071 0.716 0.737 0.737

Average 0.2164 0.1240 0.1249 0.8368 0.8963 0.8956

8. Discussion

In this work we optimize BSI and integrate it to FFD to accel-
erate the performance of medical image registration. However,
our improved BSI can also be used in generic image interpo-
lation applications, e.g., image zooming [42], by using image
pixels as the control points.

The performance of image registration can be further im-
proved by merging the other steps of FFD with B-spline in-
terpolation. By optimizing the rest of the registration process,
the execution time of the registration further diminishes, en-
abling new possibilities for fast intra-operative updates without
intra-operative CT acquisitions, e.g., through liver models re-
constructed with US [43] or through stereo video reconstruc-
tions [33].

The speedup of image registration through optimized FFD is
important not only for pneumoperitoneum compensation, but
also for compensation of several other deformations that the
liver commonly undergoes during surgery. If real-time regis-
tration is possible, FFD can be used in IGS to compensate for
deformations that result from lifting the liver with a surgical
instrument or resecting liver ligaments (liver mobilization).

A limitation of our current implementations is that they work
only with control point grids that are aligned to the voxel grid
and uniformly spaced. Uniform spacing is usually sufficient
for medical images [6, 19]. Support for non-uniform grids is
possible with minimal changes (e.g., calculating B-spline basis
functions weights on-the-fly). We leave this support for future
work.

9. Conclusion

This paper presents our approach to B-spline interpolation,
which is optimized to reduce data movement. The key idea of
our approach is to assign one worker thread per tile of voxels.
This has two main advantages. First, data movement during in-
put loading is significantly reduced. Second, the input control
points can be kept in registers during the entire computation.
To further enhance the performance of our implementation, we
rearrange the weighted summation of control points into trilin-
ear interpolations. This results in two key advantages. First, the
trilinear interpolations reduce the computational load. Second,
they increase the interpolation accuracy.

Our experimental evaluation on two sets of subjects and
imaging modalities shows that our BSI approach offers im-
proved performance and accuracy with respect to state-of-the-
art implementations. TTLI, our best approach on GPUs, per-
forms up to 7× faster in comparison to the other GPU imple-
mentations. Our implementations that use trilinear interpola-
tions perform approximately 2× better than the other in regard
to interpolation accuracy.

We integrate our BSI approach into the NiftyReg medical im-
age registration library and validate it in a pre-clinical applica-
tion scenario. Our approach improves the performance of non-
rigid image registration by 30% and 14%, on average, on our
two platforms with a GTX 1050 GPU and an RTX 2070 GPU,
respectively. The improved performance reduces the computa-
tion time of image registration. Therefore faster updates of the
organ and its structures are possible during IGS.

As a result, non-rigid registration of medical images can ben-
efit from our BSI approach on GPUs to greatly enhance the
performance and accuracy of registration in time-critical appli-
cations (e.g., image guided surgery).

Acknowledgment

This work is supported by High Performance Soft-
tissue Navigation (HIPERNAV - H2020-MSCA-ITN-2016).
HIPERNAV has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 722068. The authors would also like to thank the
radiology staff at the Intervention Centre, Oslo University Hos-
pital, who collaborated to perform the animal experiment on the
porcine model. Juan Gómez-Luna and professor Onur Mutlu
would like to thank VMware and all other industrial partners
(especially Facebook, Google, Huawei, Intel, Microsoft) of the
SAFARI research group.

Appendix A. Off-chip memory to on-chip memory data
movement

We use the external memory model [44] to describe the data
movement from off-chip memory to on-chip memory. We con-
sider a 3D image. Let us define M as the total number of vox-
els, N = 64 as the number of control points, T as the number of
voxels inside each tile, and L as the size, in words (words are
32-bits long, a common size for storing integer and real num-
bers), of transactions into the cache (i.e., transactions between
off- and on- chip memory). The L sized memory transfers of
the three cases we are interested in are:

a) No tiles: When we do not have tiles, for each of the M vox-
els, we need to transfer N control points from global memory
to shared memory. Transfers happen in L sized chunks. Hence,
the total number of transfers required is

N × M
L

(A.1)

b) Hardware trilinear interpolation: Each voxel is affected
by the 43 control points surrounding it. However, if we use the

11

texture unit to get their trilinear interpolations directly, only 23

loads are required [16]. Therefore, when we utilize the texture
hardware for loading the input, for each of the M voxels, we
need to transfer 23 control points from global memory to cache
memory. Transfers happen in L sized chunks. Hence, the total
number of transfers required is

23 × M
L

(A.2)

c) A block per tile: When we use a block for each tile, for
each tile we need to transfer N control points from global mem-
ory to shared memory. Each tile contains T voxels, thus the to-
tal number of tiles is M/T . Transfers happen in L sized chunks.
Hence, the total number of transfers required is

N × M
T × L

(A.3)

d) Blocks of tiles: When we have 3D blocks of tiles, and each
block contains l×m×n tiles, for each block we need to transfer
(4 + l − 1) × (4 + m − 1) × (4 + n − 1) (Section 3.2.1) control
points from global memory to shared memory (or cache). Each
block contains l × m × n tiles and each tile contains T voxels,
thus the total number of blocks is M/(l ×m × n × T). Transfers
happen in L sized chunks. Hence, the total number of transfers
required is

(4 + l − 1) × (4 + m − 1) × (4 + n − 1) × M
l × m × n × T × L

(A.4)

Observations. We make the following four observations. First,
a hardware trilinear interpolation implementation requires
fewer memory transfers than a no tiles implementation because
23 < N in all cases. Second, a block per tile implementation
requires fewer memory transfers than a hardware trilinear inter-
polation implementation because N/T < 23 when T > 8. T > 8
is a rare case (T is 125 by default in NiftyReg). Third, a blocks
of tiles implementation requires fewer memory transfers than a
block per tile implementation because (4+l−1)×(4+m−1)×(4+n−1)

l×m×n <
N as long as a block contains more than one tile. Fourth, the
CPU implementations are a special case of Equation (A.4), in
which l = m = 1, i.e., each thread processes contiguous tiles in
the x-axis direction.

Appendix B. Computational complexity

In order to evaluate the arithmetic performance of TTLI and
TT, we perform the computational analysis of both implemen-
tations in this section.

TT. For every voxel of the output image, we need to calculate
the triple sum in Equation (1). Each operand of the summa-
tion requires the multiplication of one control point (φ) with
three weights (B). Thus, each voxel requires (64 summands) ∗
(3 multiplications + 1 accumulation) − 1 = 255 vector (φ is
a 3D vector in deformation fields) arithmetic operations. The
calculation of Equation 1 requires 4 + 4 + 4 = 12 scalar loads
for the weights and 64 vector loads for the control points. If

we use one weight for the Bl(u) · Bm(v) · Bn(w) product, instead
of three individual weights, the required operations decrease to
(64 summands)∗(1 multiplications+1 accumulation)−1 = 127
(same as a parallel reduction) and the weights to be loaded in-
crease to 4∗4∗4 = 64. This is not suitable for our register-only
implementations, because there are not enough registers to store
the 64 weights and the use of one of the caches would impact
the performance substantially (Section 3.4).

TTLI. For every voxel of the output image, we reformulate the
summation of the 4 × 4 × 4 weighted control points to trilinear
interpolations. We divide the 4 × 4 × 4 cubic neighborhood
to eight 2 × 2 × 2 sub-cubes, as in Figure 1. Each sub-cube
corresponds to a trilinear interpolation. A trilinear interpolation
requires seven linear interpolations for its calculation. A linear
interpolation has the form a + w ∗ (b − a), which equals to a
subtraction and a fused multiply-accumulate (FMA) operation.
Thus, for the eight sub-cubes and the ninth final sub-cube that is
formed by the eight results of the eight trilinear interpolations,
we have (9 cubes)×(7 linear interpolations.)×(2 operations) =
126 operations for each voxel.

Observations. Without taking into consideration instruction
dual-issue, Θ(n) equals to 255*(number of voxels) and
126*(number of voxels) respectively.

References

[1] A. Bartoli, T. Collins, N. Bourdel, M. Canis, Computer assisted Min-
imally Invasive Surgery: Is medical Computer Vision the answer to
improving laparosurgery?, Medical Hypotheses 79 (6) (2012) 858–863.
doi:10.1016/j.mehy.2012.09.007.
URL http://dx.doi.org/10.1016/j.mehy.2012.09.007

[2] S. Bernhardt, S. A. Nicolau, L. Soler, C. Doignon, The status of aug-
mented reality in laparoscopic surgery as of 2016, Medical Image Analy-
sis 37 (2017) 66–90. doi:10.1016/j.media.2017.01.007.

[3] A. Teatini, T. Langø, B. Edwin, O. Elle, et al., Assessment and compar-
ison of target registration accuracy in surgical instrument tracking tech-
nologies, in: 2018 40th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp.
1845–1848.

[4] A. Sotiras, C. Davatzikos, N. Paragios, Deformable medical image reg-
istration: A survey, IEEE transactions on medical imaging 32 (7) (2013)
1153.

[5] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, D. J.
Hawkes, Nonrigid registration using free-form deformations: applica-
tion to breast MR images., IEEE Transactions on Medical Imaging 18 (8)
(1999) 712–21. doi:10.1109/42.796284.

[6] N. D. Ellingwood, Y. Yin, M. Smith, C. L. Lin, Efficient methods for im-
plementation of multi-level nonrigid mass-preserving image registration
on GPUs and multi-threaded CPUs, Computer Methods and Programs in
Biomedicine 127 (2016) 290–300. doi:10.1016/J.CMPB.2015.12.018.

[7] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J.
Hawkes, N. C. Fox, S. Ourselin, Fast free-form deformation using graph-
ics processing units, Computer Methods and Programs in Biomedicine
98 (3) (2010) 278–284. doi:10.1016/j.cmpb.2009.09.002.

[8] NVIDIA, CUDA C Programming Guide 9.0 (2017).
[9] E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster, F. Lindseth, Medi-

cal image segmentation on gpus–a comprehensive review, Medical image
analysis 20 (1) (2015) 1–18.

[10] J. Gai, N. Obeid, J. L. Holtrop, X.-L. Wu, F. Lam, M. Fu, J. P. Haldar,
W. H. Wen-mei, Z.-P. Liang, B. P. Sutton, More impatient: A gridding-
accelerated toeplitz-based strategy for non-cartesian high-resolution 3d
mri on gpus, Journal of parallel and distributed computing 73 (5) (2013)
686–697.

12

[11] S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. W. Hwu, B. P. Sutton, Z.-P.
Liang, Accelerating advanced MRI reconstructions on GPUs, Journal
of Parallel and Distributed Computing 68 (10) (2008) 1307–1318.
doi:10.1016/j.jpdc.2008.05.013.
URL http://www.sciencedirect.com/science/article/pii/

S0743731508000919

[12] H. Wang, H. Peng, Y. Chang, D. Liang, A survey of gpu-based accelera-
tion techniques in mri reconstructions, Quantitative imaging in medicine
and surgery 8 (2) (2018) 196.

[13] T. Kalaiselvi, P. Sriramakrishnan, K. Somasundaram, Survey of using
gpu cuda programming model in medical image analysis, Informatics in
Medicine Unlocked 9 (2017) 133–144.

[14] R. Palomar, J. Gómez-Luna, F. A. Cheikh, J. Olivares, O. J. Elle, High-
performance computation of bézier surfaces on parallel and heteroge-
neous platforms, International Journal of Parallel Programming 46 (6)
(2018) 1035–1062.

[15] N. Satpute, R. Naseem, E. Pelanis, J. Gomez-Luna, F. Alaya Cheikh,
O. J. Elle, J. Olivares, Gpu acceleration of liver enhancement for tumor
segmentation, Computer Methods and Programs in Biomedicine 184
(2020) 105285. doi:https://doi.org/10.1016/j.cmpb.2019.105285.
URL http://www.sciencedirect.com/science/article/pii/

S016926071931733X

[16] C. Sigg, M. Hadwiger, Fast third-order texture filtering, GPU gems 2
(2005) 313–329.

[17] D. Ruijters, B. M. ter Haar Romeny, P. Suetens, Efficient GPU-
Based Texture Interpolation using Uniform B-Splines, Jour-
nal of Graphics, GPU, and Game Tools 13 (4) (2008) 61–69.
doi:10.1080/2151237X.2008.10129269.
URL http://dx.doi.org/10.1080/2151237X.2008.10129269

[18] X. Du, J. Dang, Y. Wang, S. Wang, T. Lei, A Parallel Non-
rigid Registration Algorithm Based on B-Spline for Medical Im-
ages, Computational and Mathematical Methods in Medicine (2016).
doi:10.1155/2016/7419307.

[19] J. A. Shackleford, N. Kandasamy, G. C. Sharp, On developing B-spline
registration algorithms for multi-core processors, Physics in Medicine and
Biology 55 (21) (2010) 6329–6351. doi:10.1088/0031-9155/55/21/001.

[20] I. Peterlı́k, H. Courtecuisse, R. Rohling, P. Abolmaesumi, C. Nguan,
S. Cotin, S. Salcudean, Fast elastic registration of soft tissues under large
deformations, Medical image analysis 45 (2018) 24–40.

[21] C. P. Lee, Z. Xu, R. P. Burke, R. Baucom, B. K. Poulose, R. G. Abramson,
B. A. Landman, Evaluation of five image registration tools for abdominal
CT: Pitfalls and opportunities with soft anatomy, in: Medical Imaging
2015: Image Processing, Vol. 9413, International Society for Optics and
Photonics, 2015, p. 94131N.

[22] J. S. Heiselman, L. W. Clements, J. A. Collins, J. A. Weis, A. L. Simpson,
S. K. Geevarghese, T. P. Kingham, W. R. Jarnagin, M. I. Miga, Character-
ization and correction of soft tissue deformation in laparoscopic image-
guided liver surgery, Journal of Medical Imaging In Press (2) (2018).
doi:10.1117/1.JMI.5.2.021203.

[23] S. F. Johnsen, S. Thompson, M. J. Clarkson, M. Modat, Y. Song, J. Totz,
K. Gurusamy, B. Davidson, Z. A. Taylor, D. J. Hawkes, S. Ourselin,
Database-Based Estimation of Liver Deformation under Pneumoperi-
toneum for Surgical Image-Guidance and Simulation, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 9350 (2015) 450–458.
URL https://doi.org/10.1007/978-3-319-24571-3_54

[24] D. Ruijters, P. Thévenaz, GPU prefilter for accurate cubic B-
spline interpolation, Computer Journal 55 (1) (2010) 15–20.
doi:10.1093/comjnl/bxq086.

[25] F. Andersson, M. Carlsson, V. V. Nikitin, Fast algorithms and efficient gpu
implementations for the radon transform and the back-projection operator
represented as convolution operators, SIAM Journal on Imaging Sciences
9 (2) (2016) 637–664.

[26] J. Carron, A. Lewis, Maximum a posteriori cmb lensing reconstruction,
Physical Review D 96 (6) (2017) 063510.

[27] V. Volkov, Better performance at lower occupancy, Proceedings of the
GPU Technology Conference (2010) 1–75.

[28] N. Whitehead, A. Fit-Florea, Precision & Performance : Floating Point
and IEEE 754 Compliance for NVIDIA GPUs, NVIDIA white paper
21 (10) (2011) 767–75. doi:10.1111/j.1468-2982.2005.00972.x.

[29] A. Fog, The microarchitecture of Intel, AMD and VIA CPUs: An opti-

mization guide for assembly programmers and compiler makers, Techni-
cal University of Denmark, 2018th Edition (September 2018).

[30] Intel, Intel intrinsics guide, software.intel.com, retrieved January 17, 2019
(2019).

[31] O. Jakob Elle, A. Teatini, O. Zachariadis, Data for: Accelerating B-
spline Interpolation on GPUs: Application to Medical Image Registra-
tion, Mendeley Data (2019). doi:10.17632/kj3xcd776k.1.
URL http://dx.doi.org/10.17632/kj3xcd776k.1

[32] A. Pacioni, M. Carbone, C. Freschi, R. Viglialoro, V. Ferrari, M. Fer-
rari, Patient-specific ultrasound liver phantom: materials and fabrica-
tion method, International Journal of Computer Assisted Radiology and
Surgery 10 (7) (2015) 1065–1075. doi:10.1007/s11548-014-1120-y.
URL http://dx.doi.org/10.1007/s11548-014-1120-y

[33] A. Teatini, W. Congcong, P. Rafael, A. C. Faouzi, B. Azeddine, E. Bjørn,
E. O. Jakob, Validation of stereo vision based liver surface reconstruction
for image guided surgery, in: Colour and Visual Computing Symposium
(CVCS), IEEE, 2018, pp. 1–6.

[34] PHILIPS, Ingenia: Instructions for use (2014).
URL https://www.theonlinelearningcenter.com/assets/

smiles/el_lp_r517/AW9661_UserDoc_HelpTopics_Ingenia_

SA/R517_Documentation/en-US/ifu1_p7i_us_pnl.pdf

[35] A. Teatini, E. Pelanis, D. L. Aghayan, R. P. Kumar, R. Palomar, Å. A.
Fretland, B. Edwin, O. J. Elle, The effect of intraoperative imaging on
surgical navigation for laparoscopic liver resection surgery, Scientific Re-
ports 9 (1) (2019) 1–11.

[36] NVIDIA, Nvidia Turing Gpu Architecture Whitepaper (2018).
[37] NVIDIA, Profiler User’s Guide (September) (2017).

URL http://docs.nvidia.com/cuda/profiler-users-guide/

index.html

[38] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo,
B. Friesen, B. Cook, D. Doerfler, L. Oliker, et al., An empirical roofline
methodology for quantitatively assessing performance portability, in:
2018 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), IEEE, 2018, pp. 14–23.

[39] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in: Proceedings of the April 18-20,
1967, spring joint computer conference, ACM, 1967, pp. 483–485.

[40] J. P. Pluim, S. E. Muenzing, K. A. Eppenhof, K. Murphy, The truth is
hard to make: Validation of medical image registration, in: International
Conference on Pattern Recognition (ICPR), IEEE, 2016, pp. 2294–2300.

[41] A. Hore, D. Ziou, Image quality metrics: Psnr vs. ssim, in: 2010
20th International Conference on Pattern Recognition, IEEE, 2010, pp.
2366–2369.

[42] M. Unser, Splines: A perfect fit for signal and image processing, IEEE
Signal processing magazine 16 (6) (1999) 22–38.

[43] L. W. Clements, J. A. Collins, Y. Wu, A. L. Simpson, W. R. Jarnagin,
M. I. Miga, Validation of model-based deformation correction in image-
guided liver surgery via tracked intraoperative ultrasound: preliminary
method and results, in: Medical Imaging 2015: Image-Guided Proce-
dures, Robotic Interventions, and Modeling, Vol. 9415, International So-
ciety for Optics and Photonics, 2015, p. 94150T.

[44] H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, W.-m. Hwu, Performance
Analysis and Tuning for General Purpose Graphics Processing Units
(GPGPU), Synthesis Lectures on Computer Architecture 7 (2012) 1–96.
doi:10.2200/S00451ED1V01Y201209CAC020.

13

