A Scalable Priority-Aware Approach to Managing Data Center Server Power

Yang Li, Charles R. Lefurgy, Karthick Rajamani, Malcolm S. Allen-Ware, Guillermo J. Silva, Daniel D. Heimsoth, Saugata Ghose, Onur Mutlu
Importance of Data Center Power Infrastructure

- Critical impact on availability: Numerous service down due to power outage

Data center power efficiency increases, but so do power outages

An Uptime Institute survey finds the power usage effectiveness of data centers is better than ever. However, power outages have increased significantly.

By Andy Patrizio, Network World, 2018

- Significant capital cost: Tens of millions of US dollars
Underutilized Data Center Power Infrastructure

- Considering *peak* demand, not *typical* demand for capacity sizing
- Employing redundant power infrastructures
- Power capacity is sized for 2X peak demand!

Reproduced from Barroso et al., The Data Center as a Computer, 2013.
Boosting Data Center Performance

- Why not add more servers to boost data center performance?

- During normal operation, let these servers utilize the spare capacity.

- During the *rare* worst cases, let a power management system kick in:
 - Throttle the servers with less important workloads (within seconds)
 - Protect the circuit breakers from tripping

- **Problem:**
 Build a data center power management system using real-time control.
Outline

- Problem
- Background
 - Current Practice & Design Challenges
 - Key Solutions
 - Implementations
 - Evaluations
- Open Challenges
- Conclusions
Layout for Data Center Power Infrastructure

We need to protect:
- DC Contractual budget
- Circuit breakers of UPS, RPP, CDU
Outline

- Problem
- Background
- **Current Practice & Design Challenges**
 - Key Solutions
 - Implementations
 - Evaluations
- Open Challenges
- Conclusions
Hierarchical Control Framework

- **Design Challenge #1:**
 Consider the redundant connections

- **Design Challenge #2:**
 Enforce priority-aware power capping *globally*
Design Challenges #1: Consider Redundant Connections

- Servers do not split power *equally*
- Need to enforce different power caps for different supplies
Servers do not split power equally
Need to enforce different power caps for different supplies
Prior works can only enforce a single combined power cap
It is desirable to utilize the stranded power
Design Challenges #1: Consider Redundant Connections

- Servers do not split power \textit{equally}
- Need to enforce different power caps for different supplies
- Prior works can only enforce a single \textit{combined} power cap
- It is desirable to utilize the \textit{stranded} power

Design a capping controller to enforce caps \textit{for each} power supply; Design a shifting controller to utilize stranded power
Design Challenges #2: Enforce Priority Globally

- Global Priority-Aware: Always cap low-priority servers before high-priority servers across the entire data center
- Prior works can only enforce priority locally within rack

Minimum server power cap $ServerP_{cap_{min}} = 270 W$

<table>
<thead>
<tr>
<th>Demand</th>
<th>430 W</th>
<th>430 W</th>
<th>430 W</th>
<th>430 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget with Local Priority</td>
<td>350 W</td>
<td>270 W</td>
<td>310 W</td>
<td>310 W</td>
</tr>
<tr>
<td>Budget with Global Priority</td>
<td>430 W</td>
<td>270 W</td>
<td>270 W</td>
<td>270 W</td>
</tr>
</tbody>
</table>
Design Challenges #2: Enforce Priority Globally

- Global Priority-Aware: Always cap low-priority servers before high-priority servers across the entire data center
- Prior works can only enforce priority *locally* within rack

Minimum server power cap $\text{Server}_\text{P}_{\text{cap}_{\text{min}}} = 270W$

Design a shifting controller to perform *global* priority-aware power capping

| Budget with Global Priority | 430 W | 270 W | 270 W | 270 W | 270 W |
Outline

- Problem
- Background
- Current Practice & Design Challenges
- Key Solutions
 - Implementations
 - Evaluations
- Open Challenges
- Conclusions
Overview of CapMaestro

For A-side Feed
- UPS
- RPP
- CDU
- Circuit Breaker
- Shifting Controller
- Shifting Controller
- Contractual Budget
- ATS

For B-side Feed
- UPS
- RPP
- CDU
- Circuit Breaker
- Shifting Controller
- Shifting Controller
- Enforce global priority
- aware power capping

- Power Supply
- Server
- Capping Controller

Enforce cap for individual supplies
Capping Controller for Servers with Multiple Power Supplies

- **Goal:** Ensure all individual power supply caps are respected, while allowing as much power consumption as possible

- **Key Idea:**
 - Monitor the minimum error between power caps and power consumption
 - Employ a Proportional-Integral (PI) controller

Diagram

1. Budget\(_1\)(\(t\)) → \�{minimum} → error(\(t\)) → DC cap max → bound
2. Budget\(_M\)(\(t\)) → \�{minimum} → PS_power_in\(_1\)(\(t\)) (AC W) → \(×M×k\) → \(\sum\) → bound
3. PS_power_in\(_M\)(\(t\)) (AC W) → \(\sum\) → bound
4. bound → DC capper → DC load → Throttle(\(t\)) → PS\(_1\) → PS\(_M\)
Global Priority-Aware Power Capping

- **Key Idea: Power Metric Summary**
 - Summarize metrics for servers by priority under each shifting controller
 - Use metrics to budget from high priority to low priority

- **Power metrics (at each shifting controller):**
 For each priority j,
 - $P_{\text{cap_min}}(j)$: The minimum total power budget
 - $P_{\text{demand}}(j)$: The total power demand → May not be fulfillable
 - $P_{\text{request}}(j)$: The requested power budget → Fulfillable power with respect to other priorities
 - $P_{\text{constraint}}$: The maximum power budget for all the servers (regardless of priority)
Global Priority-Aware Power Capping

- **Top CB** (Limit: 1400W)
 - \(P_{cap, \text{min}} = 270\) W
 - \(P_{\text{demand}} = 430\) W
 - \(P_{\text{request}} = 430\) W
 - \(P_{\text{constraint}} = 1400\) W
 - 1240W Budget

- **Left CB** (Limit: 750W)
 - \(P_{cap, \text{min}} = 430\) W
 - \(P_{\text{demand}} = 430\) W
 - \(P_{\text{request}} = 430\) W
 - \(P_{\text{constraint}} = 980\) W
 - Demand: 430 W

- **Right CB** (Limit: 750W)
 - \(P_{cap, \text{min}} = 0\) W
 - \(P_{\text{demand}} = 0\) W
 - \(P_{\text{request}} = 0\) W
 - \(P_{\text{constraint}} = 980\) W
 - Demand: 430 W

Minimum server power cap
\(ServerP_{\text{cap, \text{min}}} = 270\) W

Maximum server power cap
\(ServerP_{\text{cap, \text{max}}} = 490\) W
Global Priority-Aware Power Capping

- Rigorous theoretical proof:
 - Servers with high priorities are always throttled after servers with lower priorities, as long as the circuit breaker limits allow
 - See our IBM technical report

- Good scalability:
 - Linear algorithm complexity at each controller
 - Fixed ratio of overhead to # servers
Outline

- Problem
- Background
- Current Practice & Design Challenges
- Key Solutions
 - Implementations
 - Evaluations
- Open Challenges
- Conclusions
Implementations

- Implemented as a first-of-a-kind cloud service
- Controllers are packaged into containers
Implementations

![Diagram depicting the implementation of various power management components including UPS, RPP, CDU, Circuit Breaker, Shifting Controller, ATS, Contractual Budget, Capping Controller, and Power Supply. The diagram illustrates the flow of power from the UPS through RPP and CDU to Circuit Breaker and Shifting Controller, with amenities such as ATS and Contractual Budget. The diagram also categorizes these components into Room-Level Worker and Rack-Level Worker.]
Implementations

- Implemented as a first-of-a-kind cloud service
- Controllers are packaged into Worker containers
- Power controller measures and controls power at 8 second intervals
- Employ Intel® Node Manager as the underlining server throttling engine
 - Cap power within 1 second
 - Measure power supplies every 1 second
- Our power control framework supports dynamic server priorities
Outline

- Problem
- Background
- Current Practice & Design Challenges
- Key Solutions
- Implementations
- **Evaluations**
- Open Challenges
- Conclusions
Evaluations

- Performed several **real-system experiments** demonstrating that:
 - Our capping controllers successfully enforce power caps for individual supplies
 - Our shifting controllers ensure servers with high priority are throttled after servers with lower priorities
 - Our shifting controllers reallocate stranded power to the underpowered servers

- Performed a large-scale data center simulation demonstrating that:
 - Compared to the case of no power management system, our system enables the data center to deploy 50% more servers
Key Results

- Simulate a data center of 162 racks; 30% of servers are assigned high priority.
- Cap Ratio for high-priority servers under a power emergency:

<table>
<thead>
<tr>
<th>Cap Ratio</th>
<th>Number of Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Priority</td>
<td>Local Priority</td>
</tr>
</tbody>
</table>

 Throttled performance →

 Full performance →

- Using 1% cap ratio as threshold, our system supports 5832 servers, while Local Priority only supports 4860 servers.
Outline

- Problem
- Background
- Current Practice & Design Challenges
- Key Solutions
- Implementations
- Evaluations
- Open Challenges
- Conclusions
Open Challenges

- Broadening the target of power management:
 - Comprehensive power capping scheme for more system components, such as GPU, FPGA, storage, and networking

- Coordination of job scheduling with power management:
 - Controlling server power by controlling the number of jobs scheduled
 - Fine-grained job-level power control for jobs collocated on the same server

- Crossing provider-user boundaries for energy savings:
 - Cloud providers need to make the benefits of energy savings visible to users
 - Need to overcome the issue of per-user power metering
Outline

- Problem
- Background
- Current Practice & Design Challenges
- Key Solutions
- Implementations
- Evaluations
- Open Challenges
- Conclusions
Conclusions

- Data center power capacity is heavily underutilized
- Utilize this spare capacity by adding additional servers
- Employ a power management system to deal with power emergencies or faults
 - Deal with power feeds
 - Enforce priority-aware power capping globally across the entire data center
 - Utilize the stranded power
- Our power management system boosts data center server capacity by 50%
- Highlight other open challenges in data center power management
Thank you!