Carpool: A Bufferless On-Chip Network

Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang

Wentao Shi, Saugata Ghose, Peng Lu,

Onur Mutlu, Nian-Feng Tzeng

Carnegie Mellon

Executive Summary

- <u>Problem</u>: bufferless NoCs lack of efficient support for multicast (MC) and hotspot (HS) traffic
- <u>Our Goal</u>: reduce the contention caused by MC and HS traffic in a bufferless NoC with low cost
- <u>Observation</u>: MC flits increase serialization latency and HS flits waste network bandwidth
- <u>Key Idea</u>: fork MC flits adaptively when NoC is not congested and merge HS flits opportunistically
 - Carpool is the <u>first</u> bufferless NoC providing support for multicast and hotspot traffic
- <u>Results</u>
 - 43% lower latency and 8% lower power than conventional bufferless NoC
 - 26% lower latency, 50% lower power, and 64% less area than the buffered NoC with MC/HS support

1. Network-on-Chips Basics

2. Key Observations

3. Our Approach

4. Hardware Implementation

5. Evaluation

Network-on-Chips

- NoCs carry the communication among nodes on the same die
- Router is the pivots of NoCs, moving traffic from node to node

Buffered vs. Bufferless Router

Bufferless NoCs is a compelling design option for future

multicore processor due to its simplicity and power-efficiency

Bufferless NoCs Basics

Bufferless NoCs rely on deflection to resolve flits contention, but

avoid deflection as much as possible

Current bufferless NoCs lack of efficient support for multicast and hotspot traffic

1. Network-on-Chips Basics

2. Key Observations

3. Our Approach

4. Hardware Implementation

5. Evaluation

Multicast and Hotspot in NoCs

Multicast

- Originate from one node destined to multiple nodes
- Occur: invalidation
- Issue: long serialization latency

Hotspot

- Originate from **multiple** nodes with the **same** destination and payload
- Occur: acknowledgement, shared lock variables access
- Issue: waste network bandwidth

Providing support for MC and HS is very important for a bufferless NoC to deliver high performance

Impact of MC and HS Traffic In Bufferless NoCs

Multicast and Hotspot Traffic Impact: Increase network latency & saturate NoCs prematurely

Our Goal: reduce the contention caused by multicast and hotspot traffic in bufferless NoCs with low complexity

1. Network-on-Chips Basics

2. Key Observations

3. Our Approach

4. Hardware Implementation

5. Evaluation

Our Approach – Carpool

- Multicast Flit Forking
 - Source NI injects single multicast request
 - Adaptively fork multicast flits when NoCs is not congested
 - Congestion measure: starvation rate
- Hotspot Flit Merging
 - Tagged at the originating nodes
 - Intermediate routers detect hotspot flits
 - Some *hotspot flits* are quietly **dropped**

Multicast Flit Forking

Naïve bufferless 15 transfers, 10 cycles

Carpool 6 transfers, 5 cycles

Forking multicast flits reduces the serialization latency at the source network interface

Hotspot Flit Merging

A AB D dst B B B Carpool

3 transfers, 2 cycles

Merging hotspot flits reduces network load and improves network bandwidth utilization

Design Features

Deadlock-free

 $incoming - removed + replicas \le outPorts$

- Efficient & scalable encoding
 - Two-level hierarchical representation {clusterID, nodeList}
 - No wire overhead
 - nodeList shares half of payload channels (64-bit)
 - Tradeoff: sending more flits
- Low-cost hotspot flit merging (11.5% of router area)
 Only compare flits on higher-numbered ports

1. Network-on-Chips Basics

2. Key Observations

3. Our Approach

4. Hardware Implementation

5. Evaluation

Router Microarchitecture

- RC: Find out desired port vector (DPV)
- **PS**: Find flit with the highest rank
- MEI: Merge *HS* flits, eject a localdestined flit, and inject new flit

- **4 PA**: Compute allocated port vector (APV) based on sorted *DPV*
- **ST**: Mux the flit to output ports
- **6 DM**: Update *nodeList* of *MC* flit

Carpool router is very simple and efficient

Route Computation

- Partition the network into NE/SE/SW/NW quadrant, mapping to N/E/S/W port
 - Each port has a bit-vector (i.e., MASK) to indicate nodes assigned to the mapped quadrant
- For *MC* flits, outputs are assigned based on which quadrant contains its destinations.
- For UC/HS flits, use X-Y routing

Naïve Port Allocation

- Reasons for *sequential* allocation
 - Enforce strict priority Not necessary
 - Avoid deadlock due to multicast

Sequential port allocation is over-provisioned and creates long critical path latency

Parallel Port Allocation

IPA, PPD, and FPA occurs in par

Shortens the latency by 54% and improves the clock rate by 25%

PDPV₂

IAPV₂

πο μιι

APV₃

1. Network-on-Chips Basics

2. Key Observations

3. Our Approach

4. Hardware Implementation

5. Evaluation

Methodology

- Emulate the injection rate, multicast, and hotspot behavior of real system
- Generated packets have the probability of mc_rate/hs_rate to be a multicast/hotspot packet

- probability: 0.01(Low), 0.05(Mid), 0.1(High)

 Area and latency are obtained through RTL synthesis based on 35nm standard cell library

Latency

Sweep MC and HS rate for BLESS, FANI/O, Carpool

LowMC-LowHS(0.01)

HighMC-HighHS(0.1)

Carpool resolves network congestion caused by multicast and hotspot traffic, reducing latency

Power

Sweep MC and HS rate for BLESS, FANI/O, Carpool

LowMC-LowHS(0.01)

HighMC-HighHS(0.1)

Critical Path Latency

Area

Carpool requires much smaller area than the buffered counterpart

Summary

- <u>Problem</u>: bufferless NoCs lack of efficient support for multicast (MC) and hotspot (HS) traffic
- <u>Our Goal</u>: reduce the contention caused by MC and HS traffic in a bufferless NoC with low cost
- <u>Observation</u>: MC flits increase serialization latency and HS flits waste network bandwidth
- <u>Key Idea</u>: fork MC flits adaptively when NoC is not congested and merge HS flits opportunistically
 - Carpool is the <u>first</u> bufferless NoC providing support for multicast and hotspot traffic
- <u>Results</u>
 - 43% lower latency and 8% lower power than conventional bufferless NoC
 - 26% lower latency, 50% lower power, and 64% less area than the buffered NoC with MC/HS support

Carpool: A Bufferless On-Chip Network

Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang

Wentao Shi, Saugata Ghose, Peng Lu,

Onur Mutlu, Nian-Feng Tzeng

Carnegie Mellon

Backup Slides

Related Work

- Bufferless NoCs
 - Deflection-based: [Moscibroda+ ISCA'09], [Fallin+ HPCA'11], [Fallin+ NOCS'12], [Kim+ CAL'13], [Rachata+ SBAC-PAD'14], [Kim+ NOCS'14], [Xiang+ IPDPS'16]
 - **Drop-based**: [Hayenga+ MICRO'09]
 - Source-throttling: [Chang+ SBAC-PAD'12], [Nychis+ SIGCOMM'12], [Daya+ DAC'16]
- Buffered NoCs with Multicast Support
 - Path-based: [Goossens+ IEEE D&T'05], [Lu+ ISVLSI'06]
 - Tree-based: [Jin+ HPCA'07], [Jerger+ ISCA'08], [Samman+ DATE'08], [Rodrigo+ MICRO'08], [Wang+ NOCS'09], [Krishna+ MICRO'11]
 - Hybrid: [Abad+ HPCA'09]

Flit Format

Unicast

Size	2	6	6	8	3	3	6	128
Field	pkt type	reqID	mshrID	timestamp	size	seq#	dst	payload

Multicast

Size	2	6	6	8	4	4	4	64	64
Field	pkt type	reqID	mshrID	timestamp	size	seq#	cluster ID	nodeList	payload

Hotspot

Size	2	6	6	8	4	4	4	64	64
Field	pkt type	dst	mshrID	timestamp	size	seq#	cluster ID	nodeList	payload

Throughput

Sweep MC and HS rate for BLESS, FANI/O, Carpool

LowMC-LowHS(0.01)

HighMC-HighHS(0.1)

network saturation than both BLESS and FANI/O

Effect of Parallel Port Allocation

Carpool forks flits only when desired outputs are not contended, therefore reducing both deflection rate and latency

Performance Breakdown

Forking and merging in Carpool significantly reduce the deflection and improve performance

Effect of Adaptive Forking

Injection Rate (packets/cycle/node)

Adaptive forking prevents NoCs being saturated prematurely by replicated multicast flits

Carpool: A Bufferless On-Chip Network

Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang

Wentao Shi, Saugata Ghose, Peng Lu,

Onur Mutlu, Nian-Feng Tzeng

Carnegie Mellon

