
Comparative Evaluation of FPGA and ASIC Implementations of

Bufferless and Buffered Routing Algorithms for On-Chip Networks

Yu Cai, Ken Mai and Onur Mutlu

Dept. of Electrical and Computer Engineering, Carnegie Mellon University

yucaicai@gmail.com, kenmai@ece.cmu.edu, onur@cmu.edu

Abstract— Most existing packet-based on-chip networks assume

routers have buffers to buffer packets at times of contention.

Recently, deflection-based bufferless routing algorithms have

been proposed as an alternative design to reduce the area,

power, and complexity disadvantages associated with buffering

in routers. While bufferless routing shows significant promise at

an algorithmic level, these algorithms have not been shown to

be efficiently implementable in practice. Neither were they

extensively compared to existing buffered routing algorithms in

realistic designs. This paper presents our comparative

evaluation of and experiences with realistic FPGA and ASIC

designs of state-of-the-art (1) virtual-channel buffered, (2)

deflection-based bufferless, and (3) deflection-based buffered

routing algorithms using two different network topologies and

network sizes. We show that bufferless routing algorithms are

implementable without significant complexity, and compare

their performance, area, frequency, and power consumption to

their buffered counterparts. Our results indicate that bufferless

routing can lead to significant area (38%), power consumption

(30%), and router cycle time (8%) reductions over the best

buffered router implementation on 65nm ASIC design, while

operating at higher frequency.

I. INTRODUCTION

On-chip interconnection networks are envisioned to be the
communication backbone between cores, caches, and memory
controllers in a multi-core chip [9]. These networks consist of
packet-switched routers that connect each node within the network
where a node can consist of a core, a cache slice, a memory
controller or a combination of them. As the number of cores on chip
increases, the number of routers connecting the nodes increases
proportionally. As such, designing efficient routers in terms of power,
area, and performance becomes increasingly more desirable to keep
the communication backbone efficient. Existing on-chip network
designs and implementations [39, 23, 20, 42] were based on the
assumption that routers need to buffer incoming packets before
making a packet switching (also called routing or scheduling)
decision. The purpose of buffering is to improve bandwidth-
efficiency in the network at times of congestion: if two incoming
packets need to go out of the same output port of the router, only one
of them can proceed and the other is buffered to be transmitted at a
future time. However, buffers also have several disadvantages: 1)
they consume additional energy/power, 2) occupy significant on-
chip network area, which was shown to be 75% in the TRIPS
prototype chip [20], and 3) increase design complexity due to the
management needed for their allocation and deallocation.

Recently, bufferless routing algorithms have been proposed to
overcome these disadvantages [30, 27, 19, 18, 11, 12, 13, 14, 15, 2, 5,
28, 32, 33] of buffered routing. The basic idea of bufferless routing
algorithms is to eliminate the input and output buffers in routers.
When two incoming packets need to go out of the same output port,
one of them is intentionally either (1) “misrouted” or “deflected” to
an “undesirable” output port or (2) dropped and retransmitted,
instead of being buffered. If contention is not common in the
network, which was observed for most real applications run on on-
chip networks [6, 24, 25, 30], then the performance of bufferless
routing can be close to that of buffered routing [30, 11, 12, 13, 5].
Recent simulation-based research [30] has shown that bufferless

routing provides significant energy consumption reduction over
buffered routing while having similar performance using real
applications. Hence, bufferless routing holds significant promise to
simplify on-chip network design.

Unfortunately, previous research did not investigate in detail the
efficient implementation (challenges and benefits) of bufferless
routing in a real design. While bufferless routing eliminates buffers,
it requires extra provisions to ensure that the network does not live-
lock. In particular, the router needs to prioritize the oldest packet to
the desired output port in order to guarantee forward progress [30,
12]. The complexity of oldest-first arbitration in routing can hinder
the adoption of bufferless routing in practice [12]. In addition,
bufferless routing causes 1) header information to be transmitted
with each flit, and 2) increased occurrence of deflections and hence
increased number of link traversals, both of which can lead to
increased energy consumption. Finally, some previous research
evaluated the area benefits of bufferless routing using back-of-the-
envelope calculations. These three aspects of bufferless routing are
very difficult to evaluate without a real implementation.

Our goal in this paper is to realistically and comprehensively
evaluate the implementability, benefits, and disadvantages of
bufferless routing in comparison to state-of-the-art buffered routing
algorithms. In particular, we would like to perform area, power,
frequency, performance, and complexity comparisons between
buffered and bufferless routing algorithms using real, comparable
implementations of each. We would also like to investigate possible
logic-level optimizations enabled by the elimination of buffers and
provide an experience report of the challenges encountered in the
design of both bufferless and buffered routing algorithms.

To this end, we have implemented several highly-optimized
versions of a deflection-based bufferless routing algorithm, BLESS
[30], and state-of-the-art virtual-channel-based buffered routing
algorithms on FPGA chips using the BEE2 board. This paper
provides extensive comparisons of these implementations, pointing
out the design challenges and power/performance, area/complexity
advantages/disadvantages/limitations of each.

This work makes the following major contributions:

1. To our knowledge, we provide the first realistic and detailed
implementation of deflection-based bufferless routing in on-chip
networks and its extensive comparative evaluation with state-of-the-
art buffered routing on the same FPGA platform and the same 65nm
ASIC CMOS technology.

2. We show that bufferless routing is efficiently implementable
in mesh and torus based on-chip networks, leading to significant area
(38%), power consumption (30%) reductions over the best buffered
router implementation on a 65nm ASIC design. Even on an FPGA
design, BLESS leads to 24% area reduction and 18% power
reduction. Bufferless routing has similar packet latency as buffered
routing at low packet injection rates. As the path diversity in the
network increases, the throughput of bufferless routing becomes
closer to that of buffered routing.

3. We identify that oldest-first arbitration, which is used to
guarantee livelock freedom of bufferless routing algorithms, as a key
design challenge of bufferless router design. However, with careful
design, oldest-first arbitration can be pipelined and can outperform
virtual channel arbitration, enabling higher frequencies with
bufferless routing than with buffered routing.

II. BACKGROUND

 On-chip networks (NoCs) use packet-switched routers, which
communicate information from one node to another (see Fig. 1). A
packet is divided into flits, each of which acts as a flow-control unit.
Each router has multiple input ports and multiple output ports. For
example, a router in a 2-dimensional mesh network usually has 5
input ports (one for each of the incoming 4 directions and one from
the resource it is connected to) and 5 output ports (one to each of the
outgoing directions and one to the resource it is connected to). The
function of a router is to determine the output port each flit needs to
take and transmit each flit in a packet from the incoming input port
to an outgoing input port. To accomplish this, the router can use
buffering to buffer flits when multiple incoming flits need the same
output port.

Router

0000

Router

0100

Router

1000

Router

1100

Router

0001

Router

0101

Router

1001

Router

1101

Router

0010

Router

0110

Router

1010

Router

1110

Router

0011

Router

0111

Router

1011

Router

1111

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

(b) 4x4 Mesh Network

x

y

Router

0000

Router

0100

Router

1000

Router

1100

Router

0001

Router

0101

Router

1001

Router

1101

Router

0010

Router

0110

Router

1010

Router

1110

Router

0011

Router

0111

Router

1011

Router

1111

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

(a) 4x4 Torus Network

x

y

 Fig. 1 Network topology examples: torus and mesh

A. Buffered Routing

Traditional routers in on-chip networks and off-chip networks
have used buffers in input ports, output ports, or both (e.g., see Fig.
2). When a flit arrives in the router, it is buffered in a FIFO buffer
associated with the corresponding input port. All flits at the head of
the different buffers that need to access the same output port arbitrate
for that output port. This arbitration usually prioritizes one input port
over other in round robin order across different cycles and is
commonly referred to as round-robin arbitration.

G R O P

VC0

VC1

Route

Compute

VC Req/Rel

VC

Response

Switch

Allocator

Virtual

Channel

Allocator

Switch Req

Switch Res

Flits

Credits Credits

Flits

West

North
East

South

Side

Input Controller CrossBar

Router

Resource

Logic

Flits Credits

West

North

South

East

Side

 Fig. 2 Microarchitecture of the evaluated VC-buffered router

There have been several optimizations proposed for buffered
routers that are implemented in existing systems. Wormhole routing
[8] simplifies the routing of a whole packet by performing route
computation only for the head flit. Only head flit contains packet
header information. All remaining flits follow the route computed for
the head flit (i.e. the output port assigned to the head flit) as if the
later parts of the worm follow the head of the worm, instead of
independently being assigned an output port. Virtual channels (VCs)
[7] multiplex a single physical port between multiple virtual ports.
The idea is to associate multiple FIFO buffers, called virtual
channels, with a single input/output port to reduce head-of-line
blocking and enable prioritization. The virtual channels of an input
port compete with each other for the physical channel, so adding
virtual channels complicates the arbitration process. Round-robin
arbiters in a router work by prioritizing among the input virtual
channels in a round robin manner: the arbiter chooses flits in
different VCs in a round-robin order such that a flit from the next
non-empty VC is selected every cycle. The downside of VCs is

increased arbitration complexity, increased number of buffers, and
increased hardware cost. Buffering in the network requires one
additional complexity. To ensure there is no deadlock in the network,
buffer allocation and deallocation across different routers need to be
flow-controlled. A router should not be able to allocate space in a
downstream router if the downstream router does not have enough
available buffers. A commonly used flow control mechanism is
credit-based flow control [10]. The downstream router sends credits
indicating the availability (i.e, freeing) of a buffer in its input ports to
its neighboring routers. Before allocating a downstream buffer to a
flit, each router checks whether or not there are enough credits are
available downstream. Note that the implementation of credit-based
flow control requires a back-network that communicates credit
information.

Several optimizations have also been proposed to reduce the
latency of virtual channel routers in NoCs. The two major
optimizations are 1) lookahead routing [8, 17], where the
computation of the route of a packet is performed in the previous
router, thereby eliminating route computation from the critical path
of packet processing in a router, and 2) speculation [31, 35], which
speculatively allocates an output VC for a packet, thereby reducing
router latency when this speculation succeeds.

B. Bufferless Routing

We will use the BLESS routing mechanisms [30], and in
particular FLIT-BLESS [30], as the bufferless router baseline in this
paper. BLESS eliminates all input and output buffers in a router (the
pipeline latches in the router pipeline are not eliminated) with the
goal of reducing the area, power consumption, and complexity of the
on-chip network. When a flit arrives at the router, instead of being
buffered, it is routed immediately to an output port. Since there are
no buffers, all packets that arrive at the router must be immediately
forwarded to an adjacent router. If multiple flits contend for the same
output port, one of them has to be routed to another output port that
is not desirable. In other words, a flit is deflected or misrouted to an
undesirable output port (which does not reduce the flit’s distance to
the destination) if no desirable output ports are available due to other
flits being routed there. The basic idea in BLESS is that the deflected
or misrouted packets will eventually reach destinations by going
through a different path through the network than the optimal one.

FLIT-BLESS is a simple form of bufferless routing that
performs routing for each flit independently. Each flit has header
information associated with it, and flits from the same packet can be
routed to different output ports. To ensure livelock freedom (i.e, a flit
does not get deflected indefinitely), FLIT-BLESS forms a consistent
total order among all flits and performs oldest-first arbitration among
the incoming flits in each router. When multiple flits contend for the
same output port, the oldest one among them wins the arbitration and
is assigned the output port whereas others are potentially deflected to
an undesirable output port. A total packet order using oldest-first
arbitration guarantees that the oldest flit in the network will always
make forward progress to its destination, guaranteeing the network to
be livelock free, as shown in [30].

To ensure that the network is not overloaded with continuously
deflected packets and to avoid packet dropping, BLESS performs
injection control. A resource (or node) can inject a flit into the router
only when at least one incoming link in the router is free. This
ensures that no packets need to be dropped in BLESS unlike some
other proposals for bufferless networks [18, 19]. We refer the reader
to [30, 2, 5, 11, 12, 13] for details on bufferless routing.

Previous work [30] extensively evaluated the performance of
BLESS compared to buffered routing using simulation and showed
that for real applications the performance of BLESS is comparable to
buffered routing. The work also provided simulation-based energy
comparisons and back-of-the-envelope area comparisons between
BLESS and buffered routing, showing promising reductions in
network energy (40%) and network area (60%). Unfortunately, the
evaluation did not take into account implementation challenges in

both BLESS and buffered routing, and did not provide detailed area
and power estimates on a real implementation. Our goal is to

provide a more realistic comparison of BLESS and buffered
routing with a real implementation of each and to realistically
evaluate the implementability, benefits, and disadvantages of
bufferless routing in comparison to state-of-the-art buffered
routing algorithms.

Note that the deflection-based routing algorithm of BLESS can
be used with buffers, in order to reduce the probability of congestion
in the network. Moscibroda and Mutlu [30] call this mechanism
BLESS with buffers, and we evaluate it in this paper.

C. Topology

While buffered routing is implementable in any topology,
bufferless routing is restricted to certain topologies because every
incoming flit must be able to be routed right away to an outgoing
link immediately. This requires the number of outgoing links in a
router to be greater than or equal to the number of ingoing links. A
mesh topology satisfies this requirement, and we use a 2D mesh for
our basic implementation. A torus topology also satisfies the
requirements for BLESS. We also use a torus topology in our
alternative implementations. BLESS was not previously evaluated
for a torus topology.

III. EVALUATED ROUTER MICROARCHITECTURES

We first describe in detail the microarchitecture and logic design of

the buffered, bufferless and deflection-based buffered routers we

prototyped. We use round-robin VC arbitration for the buffered

router and oldest-flit-first arbitration for the bufferless router. The

buffered router uses the commonly implemented dimension order

(XY) routing, whereas the bufferless router uses the FLIT-BLESS

routing algorithm [30], which is a modified form of dimension-

ordered routing with deflections enforced if a flit cannot be assigned

a productive output port.

A. Baseline Buffered Router Microarchitecture

Fig. 2 shows the microarchitecture of our state-of-the-art
baseline buffered router. We have parameterized the router to make
the design easily configurable to support various features in addition
to credit-based flow control, wormhole routing, and virtual channels.
These parameters are as follows:

p: the number of physical input and output ports; we set p=5 in
our evaluation of mesh and torus networks;

v: the number of virtual channels supported by each physical
port; w: width of each flit;

l: the number of flits in each packet;

s: width of the control signals between routers for credit-based
flow control for buffer management.

For the look-ahead router, s also contains the routing address for
the next hop. We evaluate different number of virtual channels by
varying the parameter v. If v is set to 1, the buffered router is
essentially a canonical wormhole router with a single FIFO buffer
for each physical port; we call this configuration the 1-VC
configuration. The size of each FIFO buffer is set to buffer enough
flits such that a whole packet can be buffered in one virtual channel
at any given time. We use non-atomic allocation of virtual channels,
i.e., a virtual channel at any given point can contain flits from
multiple packets. We briefly describe the major modules
implemented in our prototype baseline buffered router.

Input Controller Module: The input controller is responsible
for controlling and managing all actions (allocation, buffer allocation)
related to the virtual channels in an input port. It contains one or
more virtual channels and one route computation module. For each
VC, the input controller performs both packet-level and flit-level
processing.

Virtual Channel (VC) Module: Virtual channel logic contains
a FIFO buffer and a set of state registers. The Global State Register

is used to record different processing stages a packet is in, such as
idle, routing, waiting output VC, and active. The Routing Register
holds the output port number for the incoming packet. The Output
VC Register holds the allocated output virtual channel number.
Finally, the FIFO Head and Tail Pointer Registers manage flit reads
and writes. The VC buffer is a simple FIFO buffer that stores
incoming flits. It includes control logic to forward the head flit in a
packet to the routing logic for route computation and body/tail flits
to the switch allocator for arbitration. Only the flit in the head of the
FIFO queue participates in route computation or output-VC/switch
arbitration. Note that there are as many VC modules as the total
number of virtual channels, i.e. (number of VCs per input port) x
(number of input ports).

Route Computation (RC) Module: The purpose of this module
is to compute the route of a packet. Since we use wormhole routing,
route computation is performed only for the head flit. The routing
logic uses XY (dimension-order) routing for direct k-ary n-cube
networks, such as torus and mesh networks. XY routing is
commonly implemented in NoCs and details of its operation and
properties can be found in [10].

Virtual-Channel Allocator (VA) Module: The purpose of this
module is to allocate an output virtual channel for the packet based
on the result of the route computation. Only the head flit in a packet
is processed by this module because other flits follow the head flit
due to wormhole routing. The VA module maintains a table
containing information for each output VC. The table indicates
whether or not each output VC is already assigned an input VC
whose contents will be forwarded to the output VC. Allocation of an
output VC to an input VC is done using a round-robin arbiter that
selects an input VC. For each output VC, the arbiter chooses a
different input VC in a round-robin order such that a non-empty VC
is selected every cycle.

Switch Allocator (SA) Module: The purpose of this module is
to allocate each crossbar port to one of the VCs that are contending
for the port. The switch allocator maintains an availability table for
each of the output VCs based on how many buffers are available in
the downstream router. Contrary to the traditional design where the
VC allocator processes the input credits, we use the SA to record
available downstream buffer space. This reduces unnecessary
communication between the VC and the SA as the SA always needs
to know the availability of downstream buffers. The priority among
competing input VCs on the same input port and priority among
competing input port is computed using round robin order to ensure
fairness.

Crossbar: The crossbar (or switch) contains logic to connect
physical input ports to physical output ports. Each input port shares a
single crossbar port between different virtual-channel buffers. Every
cycle, a flit of the selected VC is granted passage on the crossbar to
the appropriate VC in the appropriate output port.

Operation of the Buffered Router: The basic steps undertaken
by our 4-stage VC router for a given packet/flit are as follows. We
later describe the techniques to reduce the number of stages on the
critical path of the router to respectively 3 and 2, which we also
evaluate as part of our prototype.

0. Idle State: The virtual channel is in Idle state at cycle 0. When
a flit of a new packet arrives at the input controller, the packet
destination address and virtual channel field are extracted and
decoded. At the start of cycle 1, the destination address is sent to the
routing logic as shown in Fig 2. At the same time, this flit is stored in
the FIFO buffer based on its virtual channel field value, which was
assigned by the previous router that allocated the output virtual
channel for the packet. The input controller then changes the global
register state for the virtual channel from Idle to Routing.

1. Route Computation Stage: During cycle 1, the RC module
calculates which output port the head flit should be forwarded to
using the XY routing algorithm. The destination output port is ready
at the end of cycle 1.

2. Virtual-Channel Allocation Stage: At the start of cycle 2, the
input controller changes the state register from Routing to VC
allocation and stores the returned route from RC into the route
register. Simultaneously, the input controller sends a virtual channel
allocation request to the VC allocator given the packet’s physical
output port number assigned by RC. The VC allocator then arbitrates
VC requests from all the VC input controllers. At the end of cycle 2,
the VC allocator sends the result of VC allocation, indicating which
output VC is allocated for the head flit in which input VC, to input
controller.

3. Switch Allocation Stage: At the start of cycle 3, the input
controller checks the results from the VC allocator. If the VC
allocator failed to allocate any output VCs for the input VC, the
input controller stalls and keeps that VC in VC allocation stage to
repeat the work in Step 3. If the input VC is successfully assigned an
output VC, then its state is changed to the Active state. The input
controller sends the switch allocation request to the switch allocator
with its input VC’s physical port destination and output virtual
channel number. At the end of this cycle, the switch allocation logic
matches all the switch allocation requests from different input ports
to available output ports and sends the switch allocation results to
each allocated input VC. It also sends the path configuration signal
to the crossbar (this configures the connections of the crossbar such
that each input port is connected to the allocated output port).

4. Switch Transfer Stage: At the start of the cycle 4, the input
controller sends out the head flit of its selected VC (if any) to the
crossbar. The unselected, active input VCs (if any) will remain in
Active state and repeat Step 4 in the next cycle. If the flit in the
selected VC is not a tail flit, the VC stays in the Active state and
competes for switch allocation for the next flit in Step 4 (in the next
cycle), while the current flit is being transferred via the crossbar. If
the flit in the selected VC is a tail flit, then the selected VC changes
into the Idle state and the input controller sends a VC release signal
to VC allocator to recycle the assigned output VC number (because
the entire packet is now transferred to the output VC).

Latency Reduction Techniques (Lookahead Route
Computation): It is simple to reduce the number of pipeline stages
from four to three by performing route computation ahead of time in
a previous router to remove it from the critical path [8, 17]. A new
field called next hop routing is added into the head flit to record
output routing of the downstream router for this packet. When a new
head flit arrives, the VC goes directly to the VC Allocation state,
skipping route computation, which was already performed in the
previous router for this head flit. The input controller extracts the
next route field as its output port and sends a request to the VC
allocator for an available output VC on that output port. In the
meantime, RC calculates the route of this head flit in the downstream
router.

B. Bufferless (BLESS) Router Microarchitecture

Our BLESS router implements the FLIT-BLESS routing

algorithm, which is described in detail in [30, 11]. The algorithm

first prioritizes the incoming flits based on their ages, ranking older

flits over younger ones. Then, it assigns output ports to each flit

based on that prioritization order. The oldest flit is allocated an

output port first, and the youngest flit is allocated an output port last.

Each incoming flit has productive port(s) that it prefers to go to. A

productive port is a port that would reduce the distance of the flit to

its destination. For each flit, the BLESS routing algorithm first tries

to assign a productive port. If no productive port is available at the

time of port assignment, the flit is assigned a non-productive port,

i.e. it is deflected. If there are two possible ports for a flit, then the

arbiter picks the port in the X direction over that in the Y direction.

Based on this algorithm, the microarchitecture of the BLESS

router we designed is divided into three stages (Fig. 3). Note that

the productive ports of a flit is determined by the Route

Computation logic in stage 1 and fed into the arbiter using the

rmatrix (route matrix). At the same time, Rank Priorities logic ranks

the priorities of incoming flits based on their ages in parallel with

RC. The port assignment is done by the arbiter in stage 2. Once a

port is assigned, each fit proceeds through the Crossbar stage to its

output port. We describe each of the three stages.

Fig. 3 BLESS router microarchitecture

Route Computation (RC): In this stage, each incoming flit is

processed in parallel by RC modules to determine the shortest

direction it can take in X or Y dimensions to its destination. This

stage also generates the ready signal to notify the resource whether

or not its current flit can be injected into the network. To generate

this signal, the router samples each RC module to determine if

either less than four input ports have valid incoming flits coming in

or at least one of the incoming flits has reached its destination. If

either case is true, the ready signal is asserted indicating that the

resource can inject into the router.

Rank Priorities: Priority comparison sub-module is the first step

of an arbiter, ranking the incoming flits based on their ages through

a series of comparators in rank priority (Fig. 3). The arbiter ranks

the flits in age priority order with the oldest flit assigned the highest

priority while the youngest flit assigned the lowest. If an input port

does not have a valid flit during that particular cycle, it will bubble

down in the priority list. The priority of the resource’s port (i.e., the

injection port) is not calculated as it is always the lowest. Note that

the size of the age priority field is determined based on the

maximum time a packet can spend in the network.

Switch Allocation (SA): The microarchitecture of oldest first

arbiter for BLESS is shown in Fig. 4. After the first stage produces

a priority and effective output port lists, the second stage, through a

series of arbiter cells as shown in Figure 4, assigns an output port to

each flit one by one in priority order, going from highest to lowest

priority. Each arbiter cell takes as input the current output port

availability matrix (amatrix in Fig. 4), the input port number and the

desired effective output port matrix, rmatrix (Fig. 4). The input port

number is used to select its corresponding productive output port

list from rmatrix. Based on output availability bitmap, the arbiter

first tries to allocate an available productive output port in the X

dimension. If it fails, it will try to allocate a productive port in the Y

dimension. If it fails again, the flit will be deflected, and the arbiter

chooses an available output port based on a fixed order from north,

south, east and then west. When the arbiter cell finishes processing

a flit, it generates a new amatrix to the next arbiter cell, marking the

just-assigned output port unavailable and updating the route

configuration. Route configuration is a list of the five ports showing

which input port is assigned to which output in that cycle. Going

through each arbiter cell, the number of available output ports

decreases. The resource, if injecting, is allocated an output port after

the lowest priority input port is assigned its output port. After all the

five arbiter cells finish port allocation, route configuration table is

generated to configure the behavior of the crossbar for the next

cycle. As we can see in Fig. 4, P0, which corresponds to the oldest

incoming flit, is always the first to be allocated an output port (P4 is

for the flit to be injected).

Fig. 4 Oldest-first arbiter microarchitecture

Generally, the oldest-first arbiter is somewhat complex as it

needs to calculate priorities for each port and then assign the output

ports one by one from the highest to the lowest priority. The total

delay of the arbiter is the priority calculation logic and the serial

arbiter cells: DelayArbiter = DelayRank + DelayArbiterCellStage.

Priority rank calculation delay is proportional to log2(port number)

delay comparators. The delay of the port assignment is proportional

to the number of ports multiplied by the delay of each arbiter cell.

The delay of each arbiter cell is also linearly proportional to the

number of ports, which indicates that the delay of output port

assignment is proportional to the square of the number of incoming

ports. If we treat arbitration as an atomic operation, it will take a

long time and it will likely cause BLESS to have low clock

frequency than a 1-VC router. However, with the design in Fig. 2,

we pipeline the arbiter into two stages and hide priority ranking

latency with route computation latency. This can greatly decrease

the critical path delay of oldest-first arbitration. Therefore, the delay

of the oldest-first arbiter for the BLESS router can be less than that

of 1-VC buffered (Sec. 4).

C. Deflection-based Lightly-Buffered Router

Microarchitecture (BLESS with Buffers)

In order to increase throughput and decrease latency for medium
and high injection rates in BLESS, we add a single-flit size buffer for
each input port plus some control logic to buffer an incoming flit in
case it does not find an effective output, which can reduce its
distance to its destination. We call this design BLESS with buffers
[30] (see Fig. 5). The key difference from the buffered router is that
the basic principle of deflection routing remains the same as in
BLESS, and flow-control is purely local as in BLESS. The
differences between BLESS and “BLESS with buffers” are twofold.
First, BLESS with buffers has a controller in each input port to
manage the buffer. This controller also generates control signals to
control the behavior of the two pipeline stages. Second, BLESS with
buffers has a mustSchedule bit [30] for each flit of each pipeline
stage, which indicates that the flit must leave the router because
some other flit will need to be buffered.

Oldest-first

Arbiter

Smart

Crossbar

P

I

P

E

L

I

N

E

R

E

G

S

P

I

P

E

L

I

N

E

R

E

G

S

P

I

P

E

L

I

N

E

R

E

G

S

Route

Configuration

Ages

Highest Priority

Lowest Priority

W

N

E

S

Re
Rank Priorities

Route

Computing

Controller

(FSM)

Buffer

..
.

Force

Schedule

Force

Schedule

Feedback

 Fig. 5 BLESS with Buffers microarchitecture

An incoming flit is buffered in the single-flit buffer if it cannot
be forwarded to a productive output port (instead of being deflected
as in BLESS). A flit in the buffer is marked mustSchedule if the
same input port receives another flit. Note that, whether or not a flit
receives a productive output port is determined at the end of the

router pipeline. Therefore, when a flit is marked mustSchedule, there
might already be flits in the router pipeline that might not receive
productive output ports. Since there is a single buffer entry and a
new flit is present in the input port, all such flits must be scheduled
regardless of whether or not they will receive productive output ports.
To achieve this, the mustSchedule bits of the flits associated with an
input port in the router pipeline are all set, when the mustSchedule
bit of the buffered flit is set. All mustSchedule flits have to be sent
out of the router; they cannot be buffered.

 When a flit stays in the input buffer, its age increases every
clock cycle. The flit can eventually become old enough to gain high
priority to leave that router, guaranteeing deadlock freedom.

The stages of BLESS with buffers are briefly described below.

Stage 1: If both the incoming flit and the flit in the buffer are
valid, the controller selects the flit in the buffer for routing and stores
the incoming flit in the buffer. In addition, the mustSchedule bit in
stage 1 of that port is set. In the “rank priorities” logic, the flit with
the mustSchedule bit set gets higher priority than flits from other
ports with mustSchedule set to zero. At the same time, the controller
forces the mustSchedule bit in stages 2 and 3. Thus, previous valid
flits have to leave the router to make way to the mustSchedule flit
that cannot be buffered.

Stage 2: This stage receives flits to be switched, desired output
port list, assigned priorities, and the mustSchedule bit from stage 1. It
works the same as the BLESS router except for how it deals with the
mustSchedule bit. If the mustSchedule bit from stage 1 is set, the
controller forces the mustSchedulebit in stage 2 to be set.

Stage 3: The crossbar is slightly different from the crossbar of
BLESS. If the inherited mustSchedule bit from previous stage is set
or the controller forces it to be set, the mustSchedule bit in stage 3
will be set. Just like in BLESS, all incoming valid flits have now
been assigned a unique output port, either a desirable one or an
undesirable one (deflected port). Only those flits that 1) have their
mustSchedule bits set or 2) are assigned productive output ports can
leave the router. All other flits are blocked. The latter type of flits
notify the controller that the contents in the input buffer are still valid,
and the flit in the input buffer should compete for arbitration in the
next cycle.

IV. EXPERIMENTAL METHODOLOGY

We evaluate the performance of routers via FPGA and ASIC-
process implementations of each. The different versions of VC
buffered routers are compared to the BLESS router in terms of chip
area, clock frequency/critical path delay, power consumption, packet
delivery latency, and network saturation throughput.

Interconnection Network Model: We implemented two types
of on-chip network topologies, 2D mesh and 2D torus, for various
performance comparisons. We evaluate network dimensions of 3x3
and 4x4. Each router has its own address as {x, y} to locate its
position in the network for dimension-order routing. Each router has
5 input ports and 5 output ports, including the injection port. Each
data packet consists of 4 flits and each flit is 32-bit wide to cross the
32-bit data link in one clock cycle. For the buffered router, additional
signaling links are used to convey credits between adjacent routers
for flow control.

Request Generation Patterns: Each of the routers is associated
with an injection logic. The injection logic mimics the behavior of
processor cores and cache by injecting various synthetic traffic
patterns into the network. We investigated six different traffic
patterns, which are listed and described in Table I. For uniform
random (UR) and nearest neighbor (NN) traffic, the destination
address of each packet is determined by a defined statistical process.
We use a linear feedback shift register (LFSR) to get the destination
address in a pseudo-random fashion. For transpose (TR), tornado
(TOR), bit complement (BC), and hot spot (HS), the destination
address is determined according to the criteria listed in Table I. All
these traffic patterns are experimented with in the real FPGA
implementations of the NoC with 100-million packet injections.

TABLE I. Evaluated traffic patterns

UR Router chooses a random destination among other routers with
equal probability and sends a packet to that destination. The
probability is equal among the other routers

NN Each node sends a packet to one of its immediate neighbors with
equal probability

TOR Node {X, Y} sends packets to node {X+k/2−1, y} mod k for the k-
ary network (k=4)

TR Node{X, Y} sends packets to node {Y, X}

BC Node with address {b0, b1, b2, b3} in bits sends packets to the
node with address NOT{b0, b1, b2, b3} in bits

HS All the nodes send the packet to a certain single node. The hot spot
can act as receiver only or can be transmitter and receiver.

FPGA Evaluation Hardware Platform: We use the Berkeley
Emulation Engine 2 (BEE2) board to emulate both the BLESS and
buffered on-chip networks. The BEE2 board is a multi-FPGA board
containing five Xilinx Virtex-II Pro FPGAs. Each Virtex-II Pro
FPGA contains two on-chip PowerPC 405 cores. Additionally,
firmware can run on these PowerPC cores to collect emulation
results. We currently use the control FPGA to emulate the 4x4 and
3x3 networks. As shown in Figure 1, each router has its own local
injection logic. Together with auxiliary logic, it can be integrated
with other Xilinx IPs to form a working evaluation system. When
simulation starts, the PowerPC initiates a start command and
configures the emulation core with a set of parameters. These
include flit injection rate and traffic patterns. Every time interval, the
emulation core returns back the simulation results such as the
number of flits sent and received, the maximum and average age of
the packets, and the total clock cycles elapsed. The PowerPC collects
all these results and stores them for further analysis. During network
performance analysis, we run the PowerPC core at 400MHz and the
on-chip bus at 100MHz to collect latency data. The routers and their
injection nodes run at their maximum possible clock frequency.

FPGA Area/Frequency/Power Estimation: Router
architectures are implemented in Verilog HDL. They are synthesized
to 2vp70-ff1704Xilinx VirtexII-Pro FPGA with speed grade 7. The
resulting netlist is placed and routed to the same FPGA using Xilinx
ISE 9.2i. Xilinx synthesis tools are used to obtain the maximum
frequency and the delay of the critical path. The area of BLESS and
buffered routers is compared by their resource usage in the FPGA.
The power consumption of both routers is estimated by XPower [34],
a commercial tool provided by Xilinx. XPower reports the power of
individual design parts, including signals, clocks, logic, input/outputs,
and static leakage power. Signal power is the power dissipated by the
wiring between logic blocks. Clock power is consumed by the clock
tree on the FPGA. Logic power is the power consumed by
combinational and sequential logic. Input/output power is the power
consumed by the FPGA’s input/output buffers. Since both BLESS
and buffered routers are on-chip and do not affect input/output power,
we ignore input/output power. Static power is always overestimated
by XPower as a large constant value regardless of working
frequency and logic design so we cannot compare the static power of
different designs due to the XPower’s limitations. As such, we will
only compare the logic, signal, and clock power between BLESS and
buffered router architectures. Note that it is expected that eliminating
buffers reduces static power, which makes our power estimations
biased in favor of the buffered router.

ASIC Evaluation: We also use the Synopsys Design Compiler
tool to synthesize each router’s Verilog design using an industrial
65nm bulk CMOS process to further investigate its area, power, and
frequency in a real ASIC design flow.

V. EXPERIMENTAL RESULTS AND ANALYSYS

We first show the results of area, power, and frequency obtained
by analyzing each router implementation with synthesis tools.
Second, we present network-level comparisons. Third, we compare
the networks in terms of delay and throughput using synthetic traffic
patterns injected into the FPGA implementation. Finally, we provide
analysis results from an ASIC implementation.

A. FPGA Area Consumption

The elementary programmable logic block in an FPGA is called
a slice. Each slice consists of two 4-input LUTs (Look-Up Tables),
which can implement any 4-input Boolean function; two 1-bit
registers that can be configured either as flip-flops or latches, and
two dedicated user-controlled multiplexers and other arithmetic logic.
These basic FPGA hardware resources are allocated to the designed
logic. The area of each router design therefore can be determined by
how many slices have been allocated on the FPGA. Table II shows
the total area of each router in terms of the number of slices, flip-
flops, and LUTs used and the percentage of FPGA resources
consumed for the BLESS router, BLESS with buffers and buffered
routers with 1, 2, 4 virtual channels. Fig. 6 breaks down the area
usage of each router to individual router components (input
controller, VA, SA, and crossbar).

TABLE II. FPGA area usage of various routers

 BLESS BLESS(Buf) 1-VC 2-VC 4-VC

Slices 634 930 (2%) 989 (2%) 2098(6%) 4638(14%)

FF 335 695 (1%) 947 (1%) 1764(2%) 3480(5%)

LUTs 1090 1671 (2%) 1392(2%) 3133(4%) 7362(11%)

Fig. 6 FPGA resource consumption of various routers

Several observations are in order from these figures. First,
BLESS consumes significantly smaller area than all the other routers.
A single-VC wormhole router that has a single 4-flit FIFO in each of
its input ports consumes 55.9% more area than BLESS that has no
input buffers. As the number of VCs increases in the buffered router,
BLESS’s area advantage becomes significantly more pronounced.
The 2-VC and 4-VC buffered routers respectively consume 3.31 and
7.32 times more area than BLESS. Hence, we conclude that BLESS
is a significantly more area-efficient router design than even the
simplest buffered designs with very few buffers.

Second, as expected, BLESS’s area advantage mainly comes
from a significantly smaller area in the input controllers, which
contain the input FIFO buffers in buffered designs that BLESS
eliminates. Note that in our design we did not make the buffer entries
large as we emulate only packets with short flits (4 bytes per flit) and
each buffer takes up four entries to store the incoming flits. BLESS
and BLESS with buffers also do not need VC allocation logic as they
eliminate VCs and are therefore more area-efficient than multiple-
VC designs which consume significant area to perform allocation of
multiple VCs. Since the crossbar remains very similar in BLESS and
buffered designs, its area consumption is relatively constant across
designs. The only exception is BLESS with buffers, as its crossbar
has to prevent flits with mustSchedule bit set to zero from leaving the
router.

Third, perhaps surprisingly, BLESS requires 18% more area in
the switch allocator logic than the 1-VC buffered router. The
overhead of BLESS comes from the large number of gates required
to implement the oldest-first arbitration logic between the 4 input
ports (as described earlier, this is needed to prevent livelock).
BLESS with buffers takes 54% more area than 1-VC due to the
complexity of oldest-first arbitration plus the additional logic to deal
with the mustSchedule bits. This complexity is not present in the
buffered routers that perform round-robin arbitration across all VCs.
However, as the number of VCs increases in the buffered router,
BLESS’s area disadvantage in the switch allocator turns into an area
advantage. Arbitrating between 8 input VCs in the 2-VC buffered
design (2 VCs per input port) using round robin consumes more area
than arbitrating between 4 input ports using oldest-first. We

conclude that the area-efficiency of the oldest-first arbiter used
in our implementation becomes relatively higher than the area

efficiency of the round-robin arbiter used in our buffered router
as the number of VCs increases.

B. Frequency Analysis

Table III shows the critical path delay and maximum clock

frequency of various routers. BLESS router’s clock frequency is

20% higher than the buffered 1-VC router. With careful design of

the oldest-first arbiter, we were able to divide it into two atomic

operations (rank priority and oldest-first arbitration) and hide the

latency of rank prioritization under the latency of route computation.

Due to additional processing on mustSchedule bits, BLESS with

buffers has an 8% lower clock frequency than a single virtual

channel router. As the number of VCs in the buffered router

increases, the critical path of the buffered router increases due to

increased complexity of switch allocation between multiple virtual

channels. In fact, BLESS becomes even more advantageous in

terms of frequency over a 2-VC buffered router, providing 1.56

times higher frequency. The arbitration complexity of multiple VCs

is higher than that of BLESS because in BLESS only 5 input ports

arbitrate for 5 output ports whereas as the number of ports that

participate in arbitration increases with the number of VCs. For

example, with a 2-VC router, 10 virtual input ports arbitrate for 10

virtual output ports, the number of virtual ports that participate in

arbitration becomes 20 with 4 VCs. Hence, we conclude that BLESS

provides a higher frequency router design than buffered routing.

TABLE III. Critical path length of various routers

 BLESS BLESS(Buf) 1-VC 2-VC 4-VC

Delay (ns) 13.285 17.335 15.948 34.081 71.788

Freq. (MHz) 75.27 57.69 62.704 29.342 13.93

Figure 7 shows the delay of each pipeline stage in all the routers.

We make several observations. First, switch allocation is the critical

path in buffered routers, while priority ranking is the critical path

for the BLESS router. As the switch allocation of the buffered

router is atomic, it is not easy to divide it into multiple stages to

reduce the critical path. As the number of VCs increases, more

allocation requests need to be processed by the switch allocator and

the increase in delay is nearly linear with the number of VCs.

Fig. 7 Combinational delay of each pipeline stage of various routers

Second, all buffered routers have very similar logic delay for the

input controller and the crossbar. Despite adding buffers to the input

controller for the buffered router, we optimized the router such that

buffer writing/reading is performed in parallel with route

computation. By moving the input buffer out of the critical path, our

buffered router input controller implementation hides the buffering

delay. Therefore, all routers have the same delay for their input

controllers. As the crossbars we used for each router, except for

BLESS with buffers, are almost exactly the same, it is expected that

they have the same delay.

C. Power Analysis

We use XPower to estimate the total power consumption of each

router. XPower is a widely used commercial tool that performs

power estimation for Xilinx FPGAs. The tool is able to break down

the sources of power consumption for a certain design given a

specific working environment. In our analysis, the design works

under the environment of voltage source Vccint = 1.50v, Vccaux =

2.50v, and Vcc025 = 2.50v. The junction temperature is set to 29℃,

ambient temperature to 25℃, case temperature to 29℃, and Theta

J-A (i.e., thermal resistance) to 9℃/W. We evaluate the router at the

various clock rates, including 10MHz, 25MHz and 50MHz. For

each clock speed, the power consumption of the individual routers

is investigated under various injection rates (5% to 50%, in fraction

of cycles during which a flit is injected to each node). Figures 8-10

respectively show the power consumption results at 10, 25, and 50

MHz. There are several key observations from these figures. First,

the BLESS router consumes significantly less power than all types

of buffered routers for all clock frequencies and for all injection

rates. For example, at 10MHz and 5% injection rate, the 1-VC

router consumes 1.6X more total power than the BLESS router.

This power savings of BLESS is a direct result of eliminating the

management of buffers.

Fig. 8 Power consumption of various routers running at 10 MHz

Fig. 9 Power consumption of various routers running at 25 MHz

Fig. 10 Power consumption of various routers running at 50 MHz

Second, as the number of VCs increases, the power consumption

of the buffered router also increases proportionally. At 10MHz and

5% injection rate, the 2-VC router consumes 2.13 times and the 4-

VC router consumes 3.73 times more power than the BLESS router.

Virtual channel allocation, switch allocation, as well as buffer

management becomes more complicated, requiring more signaling

to be active as number of VCs increases, thereby leading to

significantly larger power consumption over BLESS.

Third, as injection rate into the router increases, the power

consumption benefit of BLESS over the buffered routers also

increases. The buffered routers have significantly more internal

communication signals and wires between different blocks

(described in Section 3.1) to enable buffer management and virtual

channel allocation, a complexity that does not exist in BLESS. As

injection rate increases, more of these signals become active,

leading to more communication and hence higher power

consumption. Note that this conclusion is supported by the

observation that the signaling power (denoted as Signals in Figs. 8,

9, 10) shows the greatest disparity between bufferless and buffered

routers at high injection rates (e.g., 50%).

Fourth, as injection rate increases, the signaling power, the power

consumed by interconnect within the router, consumes a greater

fraction of the total router power. This is expected as more of

interconnect becomes active more frequently with more frequent

injections into the router. Buffered routers design can be made more

efficient at higher frequencies by reducing the amount of

interconnect.

Fifth, at low injection rates, which are more common in general-
purpose applications run on chip multiprocessor on-chip networks
(as shown in [30]), the power consumed by the clock tree dominates
the total power consumption of the bufferless router. Therefore, to
increase the efficiency of bufferless routers even further in such
designs, designers should focus on optimizing clock tree
implementations and investigate clock power reduction techniques.

D. Network Analysis

We show the FPGA area usage for the 3x3 and 4x4 torus on-chip
networks in Figure. 11. The 3x3 BLESS network uses 22% fewer
slices, 55% fewer flip-flops and 6% fewer 4-input LUTs compared
to the 3x3 network that is built with the most area-efficient buffered
router with only one VC. For the 4x4 network, BLESS network uses
24% fewer slices, 55% fewer flip-flops, and 7% fewer 4-input LUTs
than the 1-VC buffered network.

Fig. 11 FPGA area usage of (a) 3x3 and (b) 4x4 torus designs

BLESS network uses much fewer flip flops than buffered
networks because 1) it eliminates all input buffers, which are
implemented with flip-flops, 2) it does not need to maintain buffer
management related state (such as Idle, Routing, VC allocation,
Active and Transfer states) as done in the buffered network.
However, the combinational logic area complexity of the BLESS
network is not greatly better than that of the 1-VC buffered network:
BLESS network uses only 7% fewer 4-input LUTs than the 1-VC
buffered network. This is because BLESS routers need to prioritize
flits using oldest-first arbitration, which requires significant
combinational logic complexity. However, when the buffered
network uses 2-VCs, combinational logic complexity of oldest-first
arbitration is dwarfed by the combinational logic complexity of
managing multiple virtual channels: the 3x3 BLESS network
consumes approximately 30% of the area of a 2-VC buffered
network, showing that BLESS has significant area-efficiency
advantages for the entire network.

Figure 12 shows the entire network power consumption for
respectively 3x3 and 4x4 torus networks at 25MHz with 5% and
10% injection rates. In the 3x3 configuration, BLESS saves 25%
total power under 5% injection rate and 23% under 10% injection
rate compared to the 1-VC network. For the 4x4 network, BLESS
saves 18% and 19% total power respectively under 5% and 10%
injection rates, compared to the 1-VC network. We can see that
BLESS consumes slightly more logic power than the 1-VC router

due to the complexity of oldest-first arbitration used to prioritize
incoming flits, but it consumes significantly less signaling power
because it does not perform buffer state management or virtual
channel allocation. The BLESS network’s power savings is higher
when compared to the 2-VC network, ranging from 38% to 72%. We
conclude that BLESS leads to substantial overall network power
savings, ranging from 18% to 72%, over buffered networks even
though it increases arbitration complexity in each router.

Fig. 12 FPGA power consumption of (a) 3x3 and (b) 4x4 torus designs

E. Network Packet Delay and Throughput

Figs. 13 and 14 show packet latency as injection rate (in

flits/node/cycle) is varied with 6 different traffic patterns for 4x4

torus and mesh networks respectively. All traffic patterns are run on

our FPGA implementation of BLESS and 2-VC buffered networks.

We use a 3-stage BLESS router and a 3-stage 2-VC channel router,

which incorporates look-ahead routing. We set the latency of each

router to 3 cycles to provide a fair comparison (Note that the

frequency of this BLESS router is actually 2.56 times higher but we

do not factor this into our evaluation to favor the buffered router).

Hot spot pattern is emulated by having each router send packets to

the router at address 0101. Several observations are in order from

these load-latency curves. First, as expected, BLESS network’s

latency is similar to that of the buffered network at low flit injection

rates for all traffic patterns. However, as injection rate increases

buffered network becomes lower latency because BLESS starts

deflecting packets due to congestion. This happens only in those

patterns where congestion happens. Since congestion dos not arise

in bit complement, tornado, and transpose patterns on the torus, and

the tornado pattern on the mesh, packet latency stays constant with

injection rate. Buffered network is better able to tolerate congestion

and leads to reduced latency at high injection rates because

buffering packets leads to better bandwidth utilization than

deflecting them.

Second, BLESS has lower saturation throughput than the
buffered network because deflections increase the load on the
network links, leading to increased network utilization and saturation
as there is no other place than the links to keep the packets at times
of congestion. With hot spot traffic on the mesh, BLESS saturates at
an injection rate of 0.033 flits/node/cycle whereas buffered network
saturates at a rate of 0.058. Hot spot traffic pattern presents the worst
case for BLESS among the evaluated patterns because it results in
the highest congestion, leading to a high deflection rate. Third,
BLESS’s performance (saturation throughput and latency at high
injection rates) becomes much more comparable to the buffered
network for all traffic patterns when the network topology is a torus
instead of a mesh. This is because the additional links in the torus
adds 1) path diversity, which increases the number of paths that can
be taken by deflected packets, 2) ensure the torus does not suffer
from congestion in edge routers. Since BLESS essentially uses links
as “temporary buffers,” additional links enable the BLESS network
to sustain a higher throughput. As a result, with hot spot traffic, the
saturation throughput of BLESS on the torus is 0.055, which is close
to the buffered network’s 0.066. We conclude that a torus topology
is a good substrate for bufferless routing. Overall, our results show
that BLESS has competitive latency with 2-VC buffered networks at

low injection rates in both torus and mesh topologies, and almost-
competitive saturation throughput in the torus topology. Given that
BLESS actually has higher frequency (2.56 times), lower network
power consumption (by at least 38%), and lower area consumption
(by approximately 62%) compared to the 2-VC router (as we showed
in earlier sections), we conclude that BLESS can be an effective
alternative to buffered networks.

Fig. 13 Packet latency with various routers on the 4x4 torus

Fig. 14 Packet latency with various routers on the 4x4 mesh

F. ASIC Implementation Results

To explore the tradeoffs of different router microarchitectures in

an ASIC implementation, we synthesized the same RTL Verilog

design of each router we discussed above. Results for area, power,

and frequency are derived from synthesizing the Verilog design to

the TSMC 65nm standard cell library using the Synopsys Design

Compiler with the highest level of optimization enabled. Table IV

shows the results. Power numbers inside the parentheses indicate

the power consumption of each router for the maximum frequency

it can run at. For fair comparison with BLESS, power numbers

outside the parentheses indicate the power consumption of each

router, assuming all routers run at the same clock frequency as the

BLESS router. Although the exact numbers of FPGA results are

different from ASIC results, the relative relationships between

different routers are the same. BLESS is still the most efficient

design with 38% area and 30% power saving compared to the 1-VC

router, the simplest buffered router. At the same time, with our

balanced oldest-first arbiter, BLESS is still 8% faster than the 1-VC

router. Similarly to the FPGA results, when the number of virtual

channels increases, BLESS’s area, power, and frequency
advantages increase over the buffered routers.

Table IV: 65nm ASIC results for all the routers

Router Area (μm2) Power (mW) Max Frequency

BLESS 12353 2.14 214.6MHz (4.66ns)

BLESS (Buf) 16854 2.74 (2.61) 204.5MHz (4.89ns)

1-VC 20139 3.03 (2.79) 197.2MHz (5.07ns)

2-VC 36152 5.12 (2.40) 100.4MHz (9.93ns)

4-VC 79900 10.11 (2.37) 50.3MHz (19.9ns)

VI. RELATED WORK

To our knowledge, this is the first paper that provides realistic

and detailed FPGA and ASIC-process prototype network-on-chip

implementations of bufferless routing and compares them

extensively with that of buffered routing. We briefly describe

related work in both buffered and bufferless routing domains.

On-chip network prototypes: Several prototype chip

implementations incorporated on-chip networks. These include the

MIT RAW chip [39], the UT TRIPS chip [20], the Intel 80-core

TeraFlops Polaris chip [23], and the Tilera TILE64 processor [42].

All of these NoC implementations used buffered routers on a 2D

mesh topology. Buffered on-chip networks were shown to consume

30% of the system power in the Intel 80-core TeraFlops Polaris chip

[23] and 40% of the system power in the MIT RAW chip [39].

Gratz et al. [20] showed that router input buffers occupy 75% of the

total on-chip network area in the TRIPS chip. While these works

provided a good characterization of buffered routers, they have not

implemented bufferless routers and their characteristics. Our work

leverages the insights developed in these works to build a baseline

state-of-the-art router, which we comparatively evaluate with

bufferless routing in our FPGA-based network-on-chip prototype.

Recent bufferless routers: Recent works provided various

algorithms for and forms of bufferless routing [30, 27, 18, 19, 11,

12, 13, 5, 2, 28, 14, 15, 32, 33], but most of these works did not

study the feasibility and advantages/disadvantages in detail in an

implemented bufferless router prototype as our work does.

Moscibroda and Mutlu [30] described livelock-free algorithms

for bufferless routing and evaluated these algorithms in simulation

of 2D mesh networks. They found that for low injection rates, the

common case in most realistic applications, bufferless routing

provides similar performance as buffered routing while reducing the

on-chip network energy consumption by 40%. They performed

back-of-the-envelope calculations to evaluate the area benefits of

bufferless routing. However, they did not study the implementation

complexity of bufferless routers. Our work builds upon [30] by

implementing the algorithms developed in [30] for both 2D mesh

and torus topologies, evaluating their complexity, area, power, and

latency in a realistic implementation, and providing extensive

comparisons to buffered routing. By using a real FPGA/ASIC

implementation, we find that 1) the frequency of a bufferless router

exceeds that of a buffered router, via careful design of the oldest-

first arbiter, 2) bufferless routing provides significant area and

power benefits over buffered routing on an FPGA/ASIC.

The closest work to ours is that of Michelogiannakis et al. [28],

which evaluated bufferless and buffered routers using RTL

implementations. They found that the bufferless routers are only

marginally more energy efficient than a carefully designed buffered

router. We believe our work provides another data point in open

literature to complement their implementation and results by

optimizing both the bufferless and the buffered router designs on

the same FPGA or ASIC process.

Several other previous works [29, 27, 18, 19, 21, 40] also studied

the use of bufferless routing in on-chip networks. [18, 19, 21]

require packet dropping when congestion arises, a complexity that

is not present in the bufferless routing techniques we implement and

evaluate. [40] does not seem to provide livelock freedom. These

previous studies mainly consist of simulation-based evaluation of

deflection routing and packet dropping algorithms on performance.

As such, they do not evaluate 1) the energy consumption, routing

latency, and area of deflection-based bufferless routers, 2) describe

the implementation advantages/disadvantages encountered in

designing BLESS and BLESS with buffers.

Improvements in bufferless routers: Recent works proposed

mechanisms to improve the efficiency of bufferless routers by

providing simpler livelock and deadlock freedom mechanisms as

well as deflection routing implementations [12], source throttling

based congestion control techniques [5, 32, 33], and the use of

minimal buffering mechanisms [13]. Using these techniques can

improve results we show for bufferless routers. Recent work also

devised deflection based bufferless router designs for hierarchical

ring networks [2, 14, 15], showing significant energy efficiency

benefits, but did not evaluate such designs using real FPGA or

ASIC-synthesis implementations. A summary of recent progress in

bufferless deflection routing can be found in [11].

Deflection routing: Buffered or bufferless versions of deflection

routing had been proposed for distributed systems [3] and used in

massively parallel machines such as the HEP [36, 37], the Tera [1],

and the Connection Machine [22] in their large-scale

interconnection networks that connect different chips. These

techniques are not disclosed in detail and, to our knowledge, have

not been publicly evaluated in terms of energy consumption or

performance. Some of these deflection routing algorithms do not

eliminate buffers [38]. The Chaos router [26], which was proposed

to connect multiple chips, uses a form of deflection routing when a

node is congested, but it still buffers packets in the router. An

implementation of the Chaos router was realized as an ASIC.

However, its evaluation consisted of performance studies and did

not quantify area, power consumption, latency optimizations, and

complexity of buffered deflection routing.

Other buffered router prototypes: Many prototype routing

chips with buffered routers were designed and evaluated for off-

chip interconnection networks. Examples include the torus routing

chip [8], the SGI routing chip [17], and TRIPS [20].

Buffered router optimizations: Virtual channels [7], wormhole

routing [8], speculation [35], and other latency optimizations for

buffered routers [31] have been studied in the past. Our buffered

router design incorporates these optimizations, thereby providing a

state-of-the-art baseline to which we compared bufferless routing.

Bufferless routing in theory and optical networks: Theoretical
studies [16, 4] have evaluated static algorithms for deflection routing
and did not provide implementations. Deflection routing has been
implemented in optical transmission networks [41], which have very
different energy and performance characteristics than the on-chip
electrical networks we examine.

VII. CONCLUSION

Bufferless routing promises large reductions in network area,

power, and complexity compared to buffered routing commonly

employed in existing on-chip networks. This paper investigates if

this promise translates to real benefits in on-chip network designs

by comparatively evaluating bufferless and buffered network

prototypes using FPGA and ASIC-synthesis implementations.

Our extensive experiments and analyses on different types of

network topologies, different network sizes, and a large number of

traffic patterns suggest that while bufferless routing can increase

implementation complexity of routers by requiring more complex

oldest-first arbitration, this complexity can be overcome with

careful design of the arbiter. Overall, bufferless routing leads to

significant power, area, and router cycle time savings in both mesh

and torus topologies against buffered routing in real

implementations. Two trends likely increase the advantages of

bufferless routing. First, as path diversity in the network increases

with richer topologies, bufferless routing starts performing similarly

to its buffered counterpart. Second, the trend in existing network-

on-chip design is to have multiple virtual channels. As the number

of virtual channels increases in the buffered design, bufferless

routing provides even higher frequency, higher area savings, and

lower power consumption in real implementations. We conclude

that bufferless routing can provide an efficient way of designing

future interconnects.

REFERENCES
[1] R. Alverson et al. The Tera computer system. ICS, 1990.

[2] R. Ausavarungnirun et al., Design and Evaluation of Hierarchical Rings
with Deflection Routing. SBAC-PAD, 2014.

[3] P. Baran. On distributed communications networks. IEEE Transactions on
Communications, Mar. 1964.

[4] C. Busch et al. Routing without flow control. SPAA, 2001.
[5] K. Chang et al. HAT: Heterogeneous Adaptive Throttling for On-Chip

Networks. SBAC-PAD, 2012.

[6] S. Cho and L. Jin. Managing distributed, shared L2 caches through OS-
level page allocation. MICRO, 2006.

[7] W. J. Dally. Virtual-channel flow control. ISCA, 1990.

[8] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing,
1986.

[9] W. J. Dally and B. Towles. Route packets, not wires: On-chip
interconnection networks. DAC, 2001.

[10] W. J. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[11] C. Fallin et al., Bufferless and Minimally-Buffered Deflection Routing.
Chapter in Routing Algorithms in Networks-on-chip, Springer, 2014.

[12] C. Fallin et al., CHIPPER: A Low-Complexity Bufferless Deflection
Router. HPCA, 2011.

[13] C. Fallin et al., MinBD: Minimally-Buffered Deflection Routing for
Energy-Efficient Interconnect. NOCS, 2012.

[14] C. Fallin et al., HiRD: A Low-Complexity, Energy-Efficient Hierarchical
Ring Interconnect. CMU SAFARI Tech. Report, 2012.

[15] C. Fallin et al., A High-Performance Hierarchical Ring On-Chip
Interconnect with Low-Cost Routers. CMU SAFARI Tech. Report, 2011.

[16] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. STOC,
1992.

[17] M. Galles. Spider: A High-Speed Network Interconnect. IEEE Micro, 17(1),
1997.

[18] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato. A bufferless switching
technique for NoCs. Wina, 2008.

[19] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato. Reducing packet
dropping in a bufferless NoC. Euro-Par, 2008.

[20] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger.
Implementation and evaluation of on-chip network architectures. ICCD,
2006.

[21] M. Hayenga et al., SCARAB: A Single Cycle Adaptive Routing and
Bufferless Network. MICRO, 2009.

[22] W. D. Hillis. The Connection Machine. MIT Press, 1989.

[23] Y. Hoskote et al. A 5-ghz mesh interconnect for a teraflops processor. IEEE
Micro, 2007.

[24] N. D. E. Jerger et al. Circuit-switched coherence. NOCS, 2008.

[25] J. Kim, J. D. Balfour, and W. J. Dally. Flattened butterfly topology for on-
chip networks. MICRO, 2007.

[26] S. Konstantinidou and L. Snyder. Chaos Router: Architecture and
Performance. ISCA 1991.

[27] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip networks using
deflection routing. GLSVLSI, 2006.

[28] G. Michelogiannakis et al., Evaluating Bufferless Flow Control for On-chip
Networks. NOCS, 2010.

[29] M. Millberg et al. Guaranteed bandwidth using looped containers in
temporally disjoint networks within the Nostrum network on chip. DATE,
2004.

[30] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-chip
networks. ISCA, 2009.

[31] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for
on-chip networks. ISCA, 2004.

[32] G. Nychis et al., Next Generation On-Chip Networks: What Kind of
Congestion Control Do We Need? HotNets, 2010.

[33] G. Nychis et al., On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects. SIGCOMM, 2012.

[34] M. Parlak et al. A novel computational complexity and power reduction
technique for H.264 intra prediction. IEEE Transactions on Consumer
Electronics, 2008.

[35] L.-S. Peh and W. J. Dally. A delay model and speculative architecture for
pipelined routers. HPCA, 2001.

[36] B. J. Smith. A pipelined shared resource MIMD computer. ICPP, 1978.
[37] B. J. Smith. Architecture and applications of the HEP multiprocessor

computer system. SPIE, 1981.
[38] B. J. Smith, Apr. 2008. Personal communication.
[39] M. B. Taylor et al. Evaluation of the Raw microprocessor: An exposed-

wire-delay architecture for ILP and streams. ISCA, 2004.

[40] S. Tota, M. R. Casu, and L. Macchiarulo. Implementation analysis of NoC:
a MPSoC trace-driven approach. GLSVLSI, 2006.

[41] X. Wang et al. Burst optical deflection routing protocol for wavelength
routing WDM networks. SPIE/IEEE Opticom, 2004.

[42] D. Wentzlaff et al. On-chip interconnection architecture of the Tile
processor. IEEE Micro, 2007.

