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Abstract— Most existing packet-based on-chip networks assume 

routers have buffers to buffer packets at times of contention. 

Recently, deflection-based bufferless routing algorithms have 

been proposed as an alternative design to reduce the area, 

power, and complexity disadvantages associated with buffering 

in routers. While bufferless routing shows significant promise at 

an algorithmic level, these algorithms have not been shown to 

be efficiently implementable in practice. Neither were they 

extensively compared to existing buffered routing algorithms in 

realistic designs. This paper presents our comparative 

evaluation of and experiences with realistic FPGA and ASIC 

designs of state-of-the-art (1) virtual-channel buffered, (2) 

deflection-based bufferless, and (3) deflection-based buffered 

routing algorithms using two different network topologies and 

network sizes. We show that bufferless routing algorithms are 

implementable without significant complexity, and compare 

their performance, area, frequency, and power consumption to 

their buffered counterparts. Our results indicate that bufferless 

routing can lead to significant area (38%), power consumption 

(30%), and router cycle time (8%) reductions over the best 

buffered router implementation on 65nm ASIC design, while 

operating at higher frequency. 

I.  INTRODUCTION  

On-chip interconnection networks are envisioned to be the 
communication backbone between cores, caches, and memory 
controllers in a multi-core chip [9]. These networks consist of 
packet-switched routers that connect each node within the network 
where a node can consist of a core, a cache slice, a memory 
controller or a combination of them. As the number of cores on chip 
increases, the number of routers connecting the nodes increases 
proportionally. As such, designing efficient routers in terms of power, 
area, and performance becomes increasingly more desirable to keep 
the communication backbone efficient. Existing on-chip network 
designs and implementations [39, 23, 20, 42] were based on the 
assumption that routers need to buffer incoming packets before 
making a packet switching (also called routing or scheduling) 
decision. The purpose of buffering is to improve bandwidth-
efficiency in the network at times of congestion: if two incoming 
packets need to go out of the same output port of the router, only one 
of them can proceed and the other is buffered to be transmitted at a 
future time. However, buffers also have several disadvantages: 1) 
they consume additional energy/power, 2) occupy significant on-
chip network area, which was shown to be 75% in the TRIPS 
prototype chip [20], and 3) increase design complexity due to the 
management needed for their allocation and deallocation. 

Recently, bufferless routing algorithms have been proposed to 
overcome these disadvantages [30, 27, 19, 18, 11, 12, 13, 14, 15, 2, 5, 
28, 32, 33] of buffered routing. The basic idea of bufferless routing 
algorithms is to eliminate the input and output buffers in routers. 
When two incoming packets need to go out of the same output port, 
one of them is intentionally either (1) “misrouted” or “deflected” to 
an “undesirable” output port or (2) dropped and retransmitted, 
instead of being buffered. If contention is not common in the 
network, which was observed for most real applications run on on-
chip networks [6, 24, 25, 30], then the performance of bufferless 
routing can be close to that of buffered routing [30, 11, 12, 13, 5]. 
Recent simulation-based research [30] has shown that bufferless 

routing provides significant energy consumption reduction over 
buffered routing while having similar performance using real 
applications. Hence, bufferless routing holds significant promise to 
simplify on-chip network design. 

Unfortunately, previous research did not investigate in detail the 
efficient implementation (challenges and benefits) of bufferless 
routing in a real design. While bufferless routing eliminates buffers, 
it requires extra provisions to ensure that the network does not live-
lock. In particular, the router needs to prioritize the oldest packet to 
the desired output port in order to guarantee forward progress [30, 
12]. The complexity of oldest-first arbitration in routing can hinder 
the adoption of bufferless routing in practice [12]. In addition, 
bufferless routing causes 1) header information to be transmitted 
with each flit, and 2) increased occurrence of deflections and hence 
increased number of link traversals, both of which can lead to 
increased energy consumption. Finally, some previous research 
evaluated the area benefits of bufferless routing using back-of-the-
envelope calculations. These three aspects of bufferless routing are 
very difficult to evaluate without a real implementation. 

Our goal in this paper is to realistically and comprehensively 
evaluate the implementability, benefits, and disadvantages of 
bufferless routing in comparison to state-of-the-art buffered routing 
algorithms. In particular, we would like to perform area, power, 
frequency, performance, and complexity comparisons between 
buffered and bufferless routing algorithms using real, comparable 
implementations of each. We would also like to investigate possible 
logic-level optimizations enabled by the elimination of buffers and 
provide an experience report of the challenges encountered in the 
design of both bufferless and buffered routing algorithms. 

To this end, we have implemented several highly-optimized 
versions of a deflection-based bufferless routing algorithm, BLESS 
[30], and state-of-the-art virtual-channel-based buffered routing 
algorithms on FPGA chips using the BEE2 board. This paper 
provides extensive comparisons of these implementations, pointing 
out the design challenges and power/performance, area/complexity 
advantages/disadvantages/limitations of each. 

This work makes the following major contributions: 

1. To our knowledge, we provide the first realistic and detailed 
implementation of deflection-based bufferless routing in on-chip 
networks and its extensive comparative evaluation with state-of-the-
art buffered routing on the same FPGA platform and the same 65nm 
ASIC CMOS technology. 

2. We show that bufferless routing is efficiently implementable 
in mesh and torus based on-chip networks, leading to significant area 
(38%), power consumption (30%) reductions over the best buffered 
router implementation on a 65nm ASIC design. Even on an FPGA 
design, BLESS leads to 24% area reduction and 18% power 
reduction. Bufferless routing has similar packet latency as buffered 
routing at low packet injection rates. As the path diversity in the 
network increases, the throughput of bufferless routing becomes 
closer to that of buffered routing. 

3. We identify that oldest-first arbitration, which is used to 
guarantee livelock freedom of bufferless routing algorithms, as a key 
design challenge of bufferless router design. However, with careful 
design, oldest-first arbitration can be pipelined and can outperform 
virtual channel arbitration, enabling higher frequencies with 
bufferless routing than with buffered routing.  



II. BACKGROUND 

  On-chip networks (NoCs) use packet-switched routers, which 
communicate information from one node to another (see Fig. 1). A 
packet is divided into flits, each of which acts as a flow-control unit. 
Each router has multiple input ports and multiple output ports. For 
example, a router in a 2-dimensional mesh network usually has 5 
input ports (one for each of the incoming 4 directions and one from 
the resource it is connected to) and 5 output ports (one to each of the 
outgoing directions and one to the resource it is connected to). The 
function of a router is to determine the output port each flit needs to 
take and transmit each flit in a packet from the incoming input port 
to an outgoing input port. To accomplish this, the router can use 
buffering to buffer flits when multiple incoming flits need the same 
output port. 
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 Fig. 1 Network topology examples: torus and mesh 

A. Buffered Routing 

Traditional routers in on-chip networks and off-chip networks 
have used buffers in input ports, output ports, or both (e.g., see Fig. 
2). When a flit arrives in the router, it is buffered in a FIFO buffer 
associated with the corresponding input port. All flits at the head of 
the different buffers that need to access the same output port arbitrate 
for that output port. This arbitration usually prioritizes one input port 
over other in round robin order across different cycles and is 
commonly referred to as round-robin arbitration. 
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 Fig. 2 Microarchitecture of the evaluated VC-buffered router 

There have been several optimizations proposed for buffered 
routers that are implemented in existing systems. Wormhole routing 
[8] simplifies the routing of a whole packet by performing route 
computation only for the head flit. Only head flit contains packet 
header information. All remaining flits follow the route computed for 
the head flit (i.e. the output port assigned to the head flit) as if the 
later parts of the worm follow the head of the worm, instead of 
independently being assigned an output port. Virtual channels (VCs) 
[7] multiplex a single physical port between multiple virtual ports. 
The idea is to associate multiple FIFO buffers, called virtual 
channels, with a single input/output port to reduce head-of-line 
blocking and enable prioritization. The virtual channels of an input 
port compete with each other for the physical channel, so adding 
virtual channels complicates the arbitration process. Round-robin 
arbiters in a router work by prioritizing among the input virtual 
channels in a round robin manner: the arbiter chooses flits in 
different VCs in a round-robin order such that a flit from the next 
non-empty VC is selected every cycle. The downside of VCs is 

increased arbitration complexity, increased number of buffers, and 
increased hardware cost. Buffering in the network requires one 
additional complexity. To ensure there is no deadlock in the network, 
buffer allocation and deallocation across different routers need to be 
flow-controlled. A router should not be able to allocate space in a 
downstream router if the downstream router does not have enough 
available buffers. A commonly used flow control mechanism is 
credit-based flow control [10]. The downstream router sends credits 
indicating the availability (i.e, freeing) of a buffer in its input ports to 
its neighboring routers. Before allocating a downstream buffer to a 
flit, each router checks whether or not there are enough credits are 
available downstream. Note that the implementation of credit-based 
flow control requires a back-network that communicates credit 
information. 

Several optimizations have also been proposed to reduce the 
latency of virtual channel routers in NoCs. The two major 
optimizations are 1) lookahead routing [8, 17], where the 
computation of the route of a packet is performed in the previous 
router, thereby eliminating route computation from the critical path 
of packet processing in a router, and 2) speculation [31, 35], which 
speculatively allocates an output VC for a packet, thereby reducing 
router latency when this speculation succeeds.  

B. Bufferless Routing 

We will use the BLESS routing mechanisms [30], and in 
particular FLIT-BLESS [30], as the bufferless router baseline in this 
paper. BLESS eliminates all input and output buffers in a router (the 
pipeline latches in the router pipeline are not eliminated) with the 
goal of reducing the area, power consumption, and complexity of the 
on-chip network. When a flit arrives at the router, instead of being 
buffered, it is routed immediately to an output port. Since there are 
no buffers, all packets that arrive at the router must be immediately 
forwarded to an adjacent router. If multiple flits contend for the same 
output port, one of them has to be routed to another output port that 
is not desirable. In other words, a flit is deflected or misrouted to an 
undesirable output port (which does not reduce the flit’s distance to 
the destination) if no desirable output ports are available due to other 
flits being routed there. The basic idea in BLESS is that the deflected 
or misrouted packets will eventually reach destinations by going 
through a different path through the network than the optimal one. 

FLIT-BLESS is a simple form of bufferless routing that 
performs routing for each flit independently. Each flit has header 
information associated with it, and flits from the same packet can be 
routed to different output ports. To ensure livelock freedom (i.e, a flit 
does not get deflected indefinitely), FLIT-BLESS forms a consistent 
total order among all flits and performs oldest-first arbitration among 
the incoming flits in each router. When multiple flits contend for the 
same output port, the oldest one among them wins the arbitration and 
is assigned the output port whereas others are potentially deflected to 
an undesirable output port. A total packet order using oldest-first 
arbitration guarantees that the oldest flit in the network will always 
make forward progress to its destination, guaranteeing the network to 
be livelock free, as shown in [30]. 

To ensure that the network is not overloaded with continuously 
deflected packets and to avoid packet dropping, BLESS performs 
injection control. A resource (or node) can inject a flit into the router 
only when at least one incoming link in the router is free. This 
ensures that no packets need to be dropped in BLESS unlike some 
other proposals for bufferless networks [18, 19]. We refer the reader 
to [30, 2, 5, 11, 12, 13] for details on bufferless routing. 

Previous work [30] extensively evaluated the performance of 
BLESS compared to buffered routing using simulation and showed 
that for real applications the performance of BLESS is comparable to 
buffered routing. The work also provided simulation-based energy 
comparisons and back-of-the-envelope area comparisons between 
BLESS and buffered routing, showing promising reductions in 
network energy (40%) and network area (60%). Unfortunately, the 
evaluation did not take into account implementation challenges in 



both BLESS and buffered routing, and did not provide detailed area 
and power estimates on a real implementation. Our goal is to 

provide a more realistic comparison of BLESS and buffered 
routing with a real implementation of each and to realistically 
evaluate the implementability, benefits, and disadvantages of 
bufferless routing in comparison to state-of-the-art buffered 
routing algorithms. 

Note that the deflection-based routing algorithm of BLESS can 
be used with buffers, in order to reduce the probability of congestion 
in the network. Moscibroda and Mutlu [30] call this mechanism 
BLESS with buffers, and we evaluate it in this paper. 

C. Topology 

While buffered routing is implementable in any topology, 
bufferless routing is restricted to certain topologies because every 
incoming flit must be able to be routed right away to an outgoing 
link immediately. This requires the number of outgoing links in a 
router to be greater than or equal to the number of ingoing links. A 
mesh topology satisfies this requirement, and we use a 2D mesh for 
our basic implementation. A torus topology also satisfies the 
requirements for BLESS. We also use a torus topology in our 
alternative implementations. BLESS was not previously evaluated 
for a torus topology. 

III. EVALUATED ROUTER MICROARCHITECTURES 

We first describe in detail the microarchitecture and logic design of 

the buffered, bufferless and deflection-based buffered routers we 

prototyped. We use round-robin VC arbitration for the buffered 

router and oldest-flit-first arbitration for the bufferless router. The 

buffered router uses the commonly implemented dimension order 

(XY) routing, whereas the bufferless router uses the FLIT-BLESS 

routing algorithm [30], which is a modified form of dimension-

ordered routing with deflections enforced if a flit cannot be assigned 

a productive output port. 

A. Baseline Buffered Router Microarchitecture 

Fig. 2 shows the microarchitecture of our state-of-the-art 
baseline buffered router. We have parameterized the router to make 
the design easily configurable to support various features in addition 
to credit-based flow control, wormhole routing, and virtual channels. 
These parameters are as follows:  

p: the number of physical input and output ports; we set p=5 in 
our evaluation of mesh and torus networks;  

v: the number of virtual channels supported by each physical 
port; w: width of each flit;  

l: the number of flits in each packet; 

s: width of the control signals between routers for credit-based 
flow control for buffer management.  

For the look-ahead router, s also contains the routing address for 
the next hop. We evaluate different number of virtual channels by 
varying the parameter v. If v is set to 1, the buffered router is 
essentially a canonical wormhole router with a single FIFO buffer 
for each physical port; we call this configuration the 1-VC 
configuration. The size of each FIFO buffer is set to buffer enough 
flits such that a whole packet can be buffered in one virtual channel 
at any given time. We use non-atomic allocation of virtual channels, 
i.e., a virtual channel at any given point can contain flits from 
multiple packets. We briefly describe the major modules 
implemented in our prototype baseline buffered router. 

Input Controller Module: The input controller is responsible 
for controlling and managing all actions (allocation, buffer allocation) 
related to the virtual channels in an input port. It contains one or 
more virtual channels and one route computation module. For each 
VC, the input controller performs both packet-level and flit-level 
processing.  

Virtual Channel (VC) Module: Virtual channel logic contains 
a FIFO buffer and a set of state registers. The Global State Register 

is used to record different processing stages a packet is in, such as 
idle, routing, waiting output VC, and active. The Routing Register 
holds the output port number for the incoming packet. The Output 
VC Register holds the allocated output virtual channel number. 
Finally, the FIFO Head and Tail Pointer Registers manage flit reads 
and writes. The VC buffer is a simple FIFO buffer that stores 
incoming flits. It includes control logic to forward the head flit in a 
packet to the routing logic for route computation and body/tail flits 
to the switch allocator for arbitration. Only the flit in the head of the 
FIFO queue participates in route computation or output-VC/switch 
arbitration. Note that there are as many VC modules as the total 
number of virtual channels, i.e. (number of VCs per input port) x 
(number of input ports). 

Route Computation (RC) Module: The purpose of this module 
is to compute the route of a packet. Since we use wormhole routing, 
route computation is performed only for the head flit. The routing 
logic uses XY (dimension-order) routing for direct k-ary n-cube 
networks, such as torus and mesh networks. XY routing is 
commonly implemented in NoCs and details of its operation and 
properties can be found in [10]. 

Virtual-Channel Allocator (VA) Module: The purpose of this 
module is to allocate an output virtual channel for the packet based 
on the result of the route computation. Only the head flit in a packet 
is processed by this module because other flits follow the head flit 
due to wormhole routing. The VA module maintains a table 
containing information for each output VC. The table indicates 
whether or not each output VC is already assigned an input VC 
whose contents will be forwarded to the output VC. Allocation of an 
output VC to an input VC is done using a round-robin arbiter that 
selects an input VC. For each output VC, the arbiter chooses a 
different input VC in a round-robin order such that a non-empty VC 
is selected every cycle. 

Switch Allocator (SA) Module: The purpose of this module is 
to allocate each crossbar port to one of the VCs that are contending 
for the port. The switch allocator maintains an availability table for 
each of the output VCs based on how many buffers are available in 
the downstream router. Contrary to the traditional design where the 
VC allocator processes the input credits, we use the SA to record 
available downstream buffer space. This reduces unnecessary 
communication between the VC and the SA as the SA always needs 
to know the availability of downstream buffers. The priority among 
competing input VCs on the same input port and priority among 
competing input port is computed using round robin order to ensure 
fairness. 

Crossbar: The crossbar (or switch) contains logic to connect 
physical input ports to physical output ports. Each input port shares a 
single crossbar port between different virtual-channel buffers. Every 
cycle, a flit of the selected VC is granted passage on the crossbar to 
the appropriate VC in the appropriate output port. 

Operation of the Buffered Router: The basic steps undertaken 
by our 4-stage VC router for a given packet/flit are as follows. We 
later describe the techniques to reduce the number of stages on the 
critical path of the router to respectively 3 and 2, which we also 
evaluate as part of our prototype. 

0. Idle State: The virtual channel is in Idle state at cycle 0. When 
a flit of a new packet arrives at the input controller, the packet 
destination address and virtual channel field are extracted and 
decoded. At the start of cycle 1, the destination address is sent to the 
routing logic as shown in Fig 2. At the same time, this flit is stored in 
the FIFO buffer based on its virtual channel field value, which was 
assigned by the previous router that allocated the output virtual 
channel for the packet. The input controller then changes the global 
register state for the virtual channel from Idle to Routing. 

1. Route Computation Stage: During cycle 1, the RC module 
calculates which output port the head flit should be forwarded to 
using the XY routing algorithm. The destination output port is ready 
at the end of cycle 1. 



2. Virtual-Channel Allocation Stage: At the start of cycle 2, the 
input controller changes the state register from Routing to VC 
allocation and stores the returned route from RC into the route 
register. Simultaneously, the input controller sends a virtual channel 
allocation request to the VC allocator given the packet’s physical 
output port number assigned by RC. The VC allocator then arbitrates 
VC requests from all the VC input controllers. At the end of cycle 2, 
the VC allocator sends the result of VC allocation, indicating which 
output VC is allocated for the head flit in which input VC, to input 
controller. 

3. Switch Allocation Stage: At the start of cycle 3, the input 
controller checks the results from the VC allocator. If the VC 
allocator failed to allocate any output VCs for the input VC, the 
input controller stalls and keeps that VC in VC allocation stage to 
repeat the work in Step 3. If the input VC is successfully assigned an 
output VC, then its state is changed to the Active state. The input 
controller sends the switch allocation request to the switch allocator 
with its input VC’s physical port destination and output virtual 
channel number. At the end of this cycle, the switch allocation logic 
matches all the switch allocation requests from different input ports 
to available output ports and sends the switch allocation results to 
each allocated input VC. It also sends the path configuration signal 
to the crossbar (this configures the connections of the crossbar such 
that each input port is connected to the allocated output port). 

4. Switch Transfer Stage: At the start of the cycle 4, the input 
controller sends out the head flit of its selected VC (if any) to the 
crossbar. The unselected, active input VCs (if any) will remain in 
Active state and repeat Step 4 in the next cycle. If the flit in the 
selected VC is not a tail flit, the VC stays in the Active state and 
competes for switch allocation for the next flit in Step 4 (in the next 
cycle), while the current flit is being transferred via the crossbar. If 
the flit in the selected VC is a tail flit, then the selected VC changes 
into the Idle state and the input controller sends a VC release signal 
to VC allocator to recycle the assigned output VC number (because 
the entire packet is now transferred to the output VC). 

Latency Reduction Techniques (Lookahead Route 
Computation): It is simple to reduce the number of pipeline stages 
from four to three by performing route computation ahead of time in 
a previous router to remove it from the critical path [8, 17]. A new 
field called next hop routing is added into the head flit to record 
output routing of the downstream router for this packet. When a new 
head flit arrives, the VC goes directly to the VC Allocation state, 
skipping route computation, which was already performed in the 
previous router for this head flit. The input controller extracts the 
next route field as its output port and sends a request to the VC 
allocator for an available output VC on that output port. In the 
meantime, RC calculates the route of this head flit in the downstream 
router.  

B. Bufferless (BLESS) Router Microarchitecture 

Our BLESS router implements the FLIT-BLESS routing 

algorithm, which is described in detail in [30, 11]. The algorithm 

first prioritizes the incoming flits based on their ages, ranking older 

flits over younger ones. Then, it assigns output ports to each flit 

based on that prioritization order. The oldest flit is allocated an 

output port first, and the youngest flit is allocated an output port last. 

Each incoming flit has productive port(s) that it prefers to go to. A 

productive port is a port that would reduce the distance of the flit to 

its destination. For each flit, the BLESS routing algorithm first tries 

to assign a productive port. If no productive port is available at the 

time of port assignment, the flit is assigned a non-productive port, 

i.e. it is deflected. If there are two possible ports for a flit, then the 

arbiter picks the port in the X direction over that in the Y direction.  

Based on this algorithm, the microarchitecture of the BLESS 

router we designed is divided into three stages (Fig. 3). Note that 

the productive ports of a flit is determined by the Route 

Computation logic in stage 1 and fed into the arbiter using the 

rmatrix (route matrix). At the same time, Rank Priorities logic ranks 

the priorities of incoming flits based on their ages in parallel with 

RC. The port assignment is done by the arbiter in stage 2. Once a 

port is assigned, each fit proceeds through the Crossbar stage to its 

output port. We describe each of the three stages. 

 

Fig. 3 BLESS router microarchitecture 

Route Computation (RC): In this stage, each incoming flit is 

processed in parallel by RC modules to determine the shortest 

direction it can take in X or Y dimensions to its destination. This 

stage also generates the ready signal to notify the resource whether 

or not its current flit can be injected into the network. To generate 

this signal, the router samples each RC module to determine if 

either less than four input ports have valid incoming flits coming in 

or at least one of the incoming flits has reached its destination. If 

either case is true, the ready signal is asserted indicating that the 

resource can inject into the router. 

Rank Priorities: Priority comparison sub-module is the first step 

of an arbiter, ranking the incoming flits based on their ages through 

a series of comparators in rank priority (Fig. 3). The arbiter ranks 

the flits in age priority order with the oldest flit assigned the highest 

priority while the youngest flit assigned the lowest. If an input port 

does not have a valid flit during that particular cycle, it will bubble 

down in the priority list. The priority of the resource’s port (i.e., the 

injection port) is not calculated as it is always the lowest. Note that 

the size of the age priority field is determined based on the 

maximum time a packet can spend in the network. 

Switch Allocation (SA): The microarchitecture of oldest first 

arbiter for BLESS is shown in Fig. 4. After the first stage produces 

a priority and effective output port lists, the second stage, through a 

series of arbiter cells as shown in Figure 4, assigns an output port to 

each flit one by one in priority order, going from highest to lowest 

priority. Each arbiter cell takes as input the current output port 

availability matrix (amatrix in Fig. 4), the input port number and the 

desired effective output port matrix, rmatrix (Fig. 4). The input port 

number is used to select its corresponding productive output port 

list from rmatrix. Based on output availability bitmap, the arbiter 

first tries to allocate an available productive output port in the X 

dimension. If it fails, it will try to allocate a productive port in the Y 

dimension. If it fails again, the flit will be deflected, and the arbiter 

chooses an available output port based on a fixed order from north, 

south, east and then west. When the arbiter cell finishes processing 

a flit, it generates a new amatrix to the next arbiter cell, marking the 

just-assigned output port unavailable and updating the route 

configuration. Route configuration is a list of the five ports showing 

which input port is assigned to which output in that cycle. Going 

through each arbiter cell, the number of available output ports 

decreases. The resource, if injecting, is allocated an output port after 

the lowest priority input port is assigned its output port. After all the 

five arbiter cells finish port allocation, route configuration table is 

generated to configure the behavior of the crossbar for the next 

cycle. As we can see in Fig. 4, P0, which corresponds to the oldest 

incoming flit, is always the first to be allocated an output port (P4 is 

for the flit to be injected). 



 
Fig. 4 Oldest-first arbiter microarchitecture 

Generally, the oldest-first arbiter is somewhat complex as it 

needs to calculate priorities for each port and then assign the output 

ports one by one from the highest to the lowest priority. The total 

delay of the arbiter is the priority calculation logic and the serial 

arbiter cells: DelayArbiter = DelayRank + DelayArbiterCellStage. 

Priority rank calculation delay is proportional to log2(port number) 

delay comparators. The delay of the port assignment is proportional 

to the number of ports multiplied by the delay of each arbiter cell. 

The delay of each arbiter cell is also linearly proportional to the 

number of ports, which indicates that the delay of output port 

assignment is proportional to the square of the number of incoming 

ports. If we treat arbitration as an atomic operation, it will take a 

long time and it will likely cause BLESS to have low clock 

frequency than a 1-VC router. However, with the design in Fig. 2, 

we pipeline the arbiter into two stages and hide priority ranking 

latency with route computation latency. This can greatly decrease 

the critical path delay of oldest-first arbitration. Therefore, the delay 

of the oldest-first arbiter for the BLESS router can be less than that 

of 1-VC buffered (Sec. 4). 

C. Deflection-based Lightly-Buffered Router 

Microarchitecture (BLESS with Buffers) 

In order to increase throughput and decrease latency for medium 
and high injection rates in BLESS, we add a single-flit size buffer for 
each input port plus some control logic to buffer an incoming flit in 
case it does not find an effective output, which can reduce its 
distance to its destination. We call this design BLESS with buffers 
[30] (see Fig. 5). The key difference from the buffered router is that 
the basic principle of deflection routing remains the same as in 
BLESS, and flow-control is purely local as in BLESS. The 
differences between BLESS and “BLESS with buffers” are twofold. 
First, BLESS with buffers has a controller in each input port to 
manage the buffer. This controller also generates control signals to 
control the behavior of the two pipeline stages. Second, BLESS with 
buffers has a mustSchedule bit [30] for each flit of each pipeline 
stage, which indicates that the flit must leave the router because 
some other flit will need to be buffered.  
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 Fig. 5 BLESS with Buffers microarchitecture 

An incoming flit is buffered in the single-flit buffer if it cannot 
be forwarded to a productive output port (instead of being deflected 
as in BLESS). A flit in the buffer is marked mustSchedule if the 
same input port receives another flit. Note that, whether or not a flit 
receives a productive output port is determined at the end of the 

router pipeline. Therefore, when a flit is marked mustSchedule, there 
might already be flits in the router pipeline that might not receive 
productive output ports. Since there is a single buffer entry and a 
new flit is present in the input port, all such flits must be scheduled 
regardless of whether or not they will receive productive output ports. 
To achieve this, the mustSchedule bits of the flits associated with an 
input port in the router pipeline are all set, when the mustSchedule 
bit of the buffered flit is set. All mustSchedule flits have to be sent 
out of the router; they cannot be buffered. 

 When a flit stays in the input buffer, its age increases every 
clock cycle. The flit can eventually become old enough to gain high 
priority to leave that router, guaranteeing deadlock freedom.  

The stages of BLESS with buffers are briefly described below.  

Stage 1: If both the incoming flit and the flit in the buffer are 
valid, the controller selects the flit in the buffer for routing and stores 
the incoming flit in the buffer. In addition, the mustSchedule bit in 
stage 1 of that port is set. In the “rank priorities” logic, the flit with 
the mustSchedule bit set gets higher priority than flits from other 
ports with mustSchedule set to zero. At the same time, the controller 
forces the mustSchedule bit in stages 2 and 3. Thus, previous valid 
flits have to leave the router to make way to the mustSchedule flit 
that cannot be buffered.  

Stage 2: This stage receives flits to be switched, desired output 
port list, assigned priorities, and the mustSchedule bit from stage 1. It 
works the same as the BLESS router except for how it deals with the 
mustSchedule bit. If the mustSchedule bit from stage 1 is set, the 
controller forces the mustSchedulebit in stage 2 to be set.  

Stage 3: The crossbar is slightly different from the crossbar of 
BLESS. If the inherited mustSchedule bit from previous stage is set 
or the controller forces it to be set, the mustSchedule bit in stage 3 
will be set. Just like in BLESS, all incoming valid flits have now 
been assigned a unique output port, either a desirable one or an 
undesirable one (deflected port). Only those flits that 1) have their 
mustSchedule bits set or 2) are assigned productive output ports can 
leave the router. All other flits are blocked. The latter type of flits 
notify the controller that the contents in the input buffer are still valid, 
and the flit in the input buffer should compete for arbitration in the 
next cycle. 

IV. EXPERIMENTAL METHODOLOGY 

We evaluate the performance of routers via FPGA and ASIC-
process implementations of each. The different versions of VC 
buffered routers are compared to the BLESS router in terms of chip 
area, clock frequency/critical path delay, power consumption, packet 
delivery latency, and network saturation throughput. 

Interconnection Network Model: We implemented two types 
of on-chip network topologies, 2D mesh and 2D torus, for various 
performance comparisons. We evaluate network dimensions of 3x3 
and 4x4. Each router has its own address as {x, y} to locate its 
position in the network for dimension-order routing. Each router has 
5 input ports and 5 output ports, including the injection port. Each 
data packet consists of 4 flits and each flit is 32-bit wide to cross the 
32-bit data link in one clock cycle. For the buffered router, additional 
signaling links are used to convey credits between adjacent routers 
for flow control. 

Request Generation Patterns: Each of the routers is associated 
with an injection logic. The injection logic mimics the behavior of 
processor cores and cache by injecting various synthetic traffic 
patterns into the network. We investigated six different traffic 
patterns, which are listed and described in Table I. For uniform 
random (UR) and nearest neighbor (NN) traffic, the destination 
address of each packet is determined by a defined statistical process. 
We use a linear feedback shift register (LFSR) to get the destination 
address in a pseudo-random fashion. For transpose (TR), tornado 
(TOR), bit complement (BC), and hot spot (HS), the destination 
address is determined according to the criteria listed in Table I. All 
these traffic patterns are experimented with in the real FPGA 
implementations of the NoC with 100-million packet injections. 



TABLE I. Evaluated traffic patterns 

UR Router chooses a random destination among other routers with 
equal probability and sends a packet to that destination. The 
probability is equal among the other routers 

NN Each node sends a packet to one of its immediate neighbors with 
equal probability 

TOR Node {X, Y} sends packets to node {X+k/2−1, y} mod k for the k-
ary network (k=4) 

TR Node{X, Y} sends packets to node {Y, X} 

BC Node with address {b0, b1, b2, b3} in bits sends packets to the 
node with address NOT{b0, b1, b2, b3} in bits 

HS All the nodes send the packet to a certain single node. The hot spot 
can act as receiver only or can be transmitter and receiver. 

FPGA Evaluation Hardware Platform: We use the Berkeley 
Emulation Engine 2 (BEE2) board to emulate both the BLESS and 
buffered on-chip networks. The BEE2 board is a multi-FPGA board 
containing five Xilinx Virtex-II Pro FPGAs. Each Virtex-II Pro 
FPGA contains two on-chip PowerPC 405 cores. Additionally, 
firmware can run on these PowerPC cores to collect emulation 
results. We currently use the control FPGA to emulate the 4x4 and 
3x3 networks. As shown in Figure 1, each router has its own local 
injection logic. Together with auxiliary logic, it can be integrated 
with other Xilinx IPs to form a working evaluation system. When 
simulation starts, the PowerPC initiates a start command and 
configures the emulation core with a set of parameters. These 
include flit injection rate and traffic patterns. Every time interval, the 
emulation core returns back the simulation results such as the 
number of flits sent and received, the maximum and average age of 
the packets, and the total clock cycles elapsed. The PowerPC collects 
all these results and stores them for further analysis. During network 
performance analysis, we run the PowerPC core at 400MHz and the 
on-chip bus at 100MHz to collect latency data. The routers and their 
injection nodes run at their maximum possible clock frequency. 

FPGA Area/Frequency/Power Estimation: Router 
architectures are implemented in Verilog HDL. They are synthesized 
to 2vp70-ff1704Xilinx VirtexII-Pro FPGA with speed grade 7. The 
resulting netlist is placed and routed to the same FPGA using Xilinx 
ISE 9.2i. Xilinx synthesis tools are used to obtain the maximum 
frequency and the delay of the critical path. The area of BLESS and 
buffered routers is compared by their resource usage in the FPGA. 
The power consumption of both routers is estimated by XPower [34], 
a commercial tool provided by Xilinx. XPower reports the power of 
individual design parts, including signals, clocks, logic, input/outputs, 
and static leakage power. Signal power is the power dissipated by the 
wiring between logic blocks. Clock power is consumed by the clock 
tree on the FPGA. Logic power is the power consumed by 
combinational and sequential logic. Input/output power is the power 
consumed by the FPGA’s input/output buffers. Since both BLESS 
and buffered routers are on-chip and do not affect input/output power, 
we ignore input/output power. Static power is always overestimated 
by XPower as a large constant value regardless of working 
frequency and logic design so we cannot compare the static power of 
different designs due to the XPower’s limitations. As such, we will 
only compare the logic, signal, and clock power between BLESS and 
buffered router architectures. Note that it is expected that eliminating 
buffers reduces static power, which makes our power estimations 
biased in favor of the buffered router.   

ASIC Evaluation: We also use the Synopsys Design Compiler 
tool to synthesize each router’s Verilog design using an industrial 
65nm bulk CMOS process to further investigate its area, power, and 
frequency in a real ASIC design flow. 

V. EXPERIMENTAL RESULTS AND ANALYSYS  

We first show the results of area, power, and frequency obtained 
by analyzing each router implementation with synthesis tools. 
Second, we present network-level comparisons. Third, we compare 
the networks in terms of delay and throughput using synthetic traffic 
patterns injected into the FPGA implementation. Finally, we provide 
analysis results from an ASIC implementation.  

A. FPGA Area Consumption 

The elementary programmable logic block in an FPGA is called 
a slice. Each slice consists of two 4-input LUTs (Look-Up Tables), 
which can implement any 4-input Boolean function; two 1-bit 
registers that can be configured either as flip-flops or latches, and 
two dedicated user-controlled multiplexers and other arithmetic logic. 
These basic FPGA hardware resources are allocated to the designed 
logic. The area of each router design therefore can be determined by 
how many slices have been allocated on the FPGA. Table II shows 
the total area of each router in terms of the number of slices, flip-
flops, and LUTs used and the percentage of FPGA resources 
consumed for the BLESS router, BLESS with buffers and buffered 
routers with 1, 2, 4 virtual channels. Fig. 6 breaks down the area 
usage of each router to individual router components (input 
controller, VA, SA, and crossbar). 

TABLE II. FPGA area usage of various routers 

 BLESS BLESS(Buf) 1-VC 2-VC 4-VC 

Slices 634 930 (2%) 989 (2%) 2098(6%) 4638(14%) 

FF 335 695 (1%) 947 (1%) 1764(2%) 3480(5%) 

LUTs 1090 1671 (2%) 1392(2%) 3133(4%) 7362(11%) 

 
Fig. 6 FPGA resource consumption of various routers 

Several observations are in order from these figures. First, 
BLESS consumes significantly smaller area than all the other routers. 
A single-VC wormhole router that has a single 4-flit FIFO in each of 
its input ports consumes 55.9% more area than BLESS that has no 
input buffers. As the number of VCs increases in the buffered router, 
BLESS’s area advantage becomes significantly more pronounced. 
The 2-VC and 4-VC buffered routers respectively consume 3.31 and 
7.32 times more area than BLESS. Hence, we conclude that BLESS 
is a significantly more area-efficient router design than even the 
simplest buffered designs with very few buffers.  

Second, as expected, BLESS’s area advantage mainly comes 
from a significantly smaller area in the input controllers, which 
contain the input FIFO buffers in buffered designs that BLESS 
eliminates. Note that in our design we did not make the buffer entries 
large as we emulate only packets with short flits (4 bytes per flit) and 
each buffer takes up four entries to store the incoming flits. BLESS 
and BLESS with buffers also do not need VC allocation logic as they 
eliminate VCs and are therefore more area-efficient than multiple-
VC designs which consume significant area to perform allocation of 
multiple VCs. Since the crossbar remains very similar in BLESS and 
buffered designs, its area consumption is relatively constant across 
designs. The only exception is BLESS with buffers, as its crossbar 
has to prevent flits with mustSchedule bit set to zero from leaving the 
router. 

Third, perhaps surprisingly, BLESS requires 18% more area in 
the switch allocator logic than the 1-VC buffered router. The 
overhead of BLESS comes from the large number of gates required 
to implement the oldest-first arbitration logic between the 4 input 
ports (as described earlier, this is needed to prevent livelock). 
BLESS with buffers takes 54% more area than 1-VC due to the 
complexity of oldest-first arbitration plus the additional logic to deal 
with the mustSchedule bits. This complexity is not present in the 
buffered routers that perform round-robin arbitration across all VCs. 
However, as the number of VCs increases in the buffered router, 
BLESS’s area disadvantage in the switch allocator turns into an area 
advantage. Arbitrating between 8 input VCs in the 2-VC buffered 
design (2 VCs per input port) using round robin consumes more area 
than arbitrating between 4 input ports using oldest-first. We 

conclude that the area-efficiency of the oldest-first arbiter used 
in our implementation becomes relatively higher than the area 



efficiency of the round-robin arbiter used in our buffered router 
as the number of VCs increases. 

B. Frequency Analysis 

Table III shows the critical path delay and maximum clock 

frequency of various routers. BLESS router’s clock frequency is 

20% higher than the buffered 1-VC router. With careful design of 

the oldest-first arbiter, we were able to divide it into two atomic 

operations (rank priority and oldest-first arbitration) and hide the 

latency of rank prioritization under the latency of route computation. 

Due to additional processing on mustSchedule bits, BLESS with 

buffers has an 8% lower clock frequency than a single virtual 

channel router. As the number of VCs in the buffered router 

increases, the critical path of the buffered router increases due to 

increased complexity of switch allocation between multiple virtual 

channels. In fact, BLESS becomes even more advantageous in 

terms of frequency over a 2-VC buffered router, providing 1.56 

times higher frequency. The arbitration complexity of multiple VCs 

is higher than that of BLESS because in BLESS only 5 input ports 

arbitrate for 5 output ports whereas as the number of ports that 

participate in arbitration increases with the number of VCs. For 

example, with a 2-VC router, 10 virtual input ports arbitrate for 10 

virtual output ports, the number of virtual ports that participate in 

arbitration becomes 20 with 4 VCs. Hence, we conclude that BLESS 

provides a higher frequency router design than buffered routing.  

TABLE III. Critical path length of various routers 

 BLESS BLESS(Buf) 1-VC 2-VC 4-VC 

Delay (ns) 13.285 17.335 15.948 34.081 71.788 

Freq. (MHz) 75.27 57.69 62.704 29.342 13.93 

Figure 7 shows the delay of each pipeline stage in all the routers. 

We make several observations. First, switch allocation is the critical 

path in buffered routers, while priority ranking is the critical path 

for the BLESS router. As the switch allocation of the buffered 

router is atomic, it is not easy to divide it into multiple stages to 

reduce the critical path. As the number of VCs increases, more 

allocation requests need to be processed by the switch allocator and 

the increase in delay is nearly linear with the number of VCs. 

 

Fig. 7 Combinational delay of each pipeline stage of various routers 

Second, all buffered routers have very similar logic delay for the 

input controller and the crossbar. Despite adding buffers to the input 

controller for the buffered router, we optimized the router such that 

buffer writing/reading is performed in parallel with route 

computation. By moving the input buffer out of the critical path, our 

buffered router input controller implementation hides the buffering 

delay. Therefore, all routers have the same delay for their input 

controllers. As the crossbars we used for each router, except for 

BLESS with buffers, are almost exactly the same, it is expected that 

they have the same delay. 

C. Power Analysis 

We use XPower to estimate the total power consumption of each 

router. XPower is a widely used commercial tool that performs 

power estimation for Xilinx FPGAs. The tool is able to break down 

the sources of power consumption for a certain design given a 

specific working environment. In our analysis, the design works 

under the environment of voltage source Vccint = 1.50v, Vccaux = 

2.50v, and Vcc025 = 2.50v. The junction temperature is set to 29℃, 

ambient temperature to 25℃, case temperature to 29℃, and Theta 

J-A (i.e., thermal resistance) to 9℃/W. We evaluate the router at the 

various clock rates, including 10MHz, 25MHz and 50MHz. For 

each clock speed, the power consumption of the individual routers 

is investigated under various injection rates (5% to 50%, in fraction 

of cycles during which a flit is injected to each node). Figures 8-10 

respectively show the power consumption results at 10, 25, and 50 

MHz. There are several key observations from these figures. First, 

the BLESS router consumes significantly less power than all types 

of buffered routers for all clock frequencies and for all injection 

rates. For example, at 10MHz and 5% injection rate, the 1-VC 

router consumes 1.6X more total power than the BLESS router. 

This power savings of BLESS is a direct result of eliminating the 

management of buffers.  

 
Fig. 8 Power consumption of various routers running at 10 MHz 

 
Fig. 9 Power consumption of various routers running at 25 MHz 

 
Fig. 10 Power consumption of various routers running at 50 MHz 

Second, as the number of VCs increases, the power consumption 

of the buffered router also increases proportionally. At 10MHz and 

5% injection rate, the 2-VC router consumes 2.13 times and the 4-

VC router consumes 3.73 times more power than the BLESS router. 

Virtual channel allocation, switch allocation, as well as buffer 

management becomes more complicated, requiring more signaling 

to be active as number of VCs increases, thereby leading to 

significantly larger power consumption over BLESS. 

Third, as injection rate into the router increases, the power 

consumption benefit of BLESS over the buffered routers also 



increases. The buffered routers have significantly more internal 

communication signals and wires between different blocks 

(described in Section 3.1) to enable buffer management and virtual 

channel allocation, a complexity that does not exist in BLESS. As 

injection rate increases, more of these signals become active, 

leading to more communication and hence higher power 

consumption. Note that this conclusion is supported by the 

observation that the signaling power (denoted as Signals in Figs. 8, 

9, 10) shows the greatest disparity between bufferless and buffered 

routers at high injection rates (e.g., 50%). 

Fourth, as injection rate increases, the signaling power, the power 

consumed by interconnect within the router, consumes a greater 

fraction of the total router power. This is expected as more of 

interconnect becomes active more frequently with more frequent 

injections into the router. Buffered routers design can be made more 

efficient at higher frequencies by reducing the amount of 

interconnect. 

Fifth, at low injection rates, which are more common in general-
purpose applications run on chip multiprocessor on-chip networks 
(as shown in [30]), the power consumed by the clock tree dominates 
the total power consumption of the bufferless router. Therefore, to 
increase the efficiency of bufferless routers even further in such 
designs, designers should focus on optimizing clock tree 
implementations and investigate clock power reduction techniques. 

D. Network Analysis 

We show the FPGA area usage for the 3x3 and 4x4 torus on-chip 
networks in Figure. 11. The 3x3 BLESS network uses 22% fewer 
slices, 55% fewer flip-flops and 6% fewer 4-input LUTs compared 
to the 3x3 network that is built with the most area-efficient buffered 
router with only one VC. For the 4x4 network, BLESS network uses 
24% fewer slices, 55% fewer flip-flops, and 7% fewer 4-input LUTs 
than the 1-VC buffered network. 

 
Fig. 11 FPGA area usage of (a) 3x3 and (b) 4x4 torus designs 

BLESS network uses much fewer flip flops than buffered 
networks because 1) it eliminates all input buffers, which are 
implemented with flip-flops, 2) it does not need to maintain buffer 
management related state (such as Idle, Routing, VC allocation, 
Active and Transfer states) as done in the buffered network. 
However, the combinational logic area complexity of the BLESS 
network is not greatly better than that of the 1-VC buffered network: 
BLESS network uses only 7% fewer 4-input LUTs than the 1-VC 
buffered network. This is because BLESS routers need to prioritize 
flits using oldest-first arbitration, which requires significant 
combinational logic complexity. However, when the buffered 
network uses 2-VCs, combinational logic complexity of oldest-first 
arbitration is dwarfed by the combinational logic complexity of 
managing multiple virtual channels: the 3x3 BLESS network 
consumes approximately 30% of the area of a 2-VC buffered 
network, showing that BLESS has significant area-efficiency 
advantages for the entire network. 

Figure 12 shows the entire network power consumption for 
respectively 3x3 and 4x4 torus networks at 25MHz with 5% and 
10% injection rates. In the 3x3 configuration, BLESS saves 25% 
total power under 5% injection rate and 23% under 10% injection 
rate compared to the 1-VC network. For the 4x4 network, BLESS 
saves 18% and 19% total power respectively under 5% and 10% 
injection rates, compared to the 1-VC network. We can see that 
BLESS consumes slightly more logic power than the 1-VC router 

due to the complexity of oldest-first arbitration used to prioritize 
incoming flits, but it consumes significantly less signaling power 
because it does not perform buffer state management or virtual 
channel allocation. The BLESS network’s power savings is higher 
when compared to the 2-VC network, ranging from 38% to 72%. We 
conclude that BLESS leads to substantial overall network power 
savings, ranging from 18% to 72%, over buffered networks even 
though it increases arbitration complexity in each router. 

 
Fig. 12 FPGA power consumption of (a) 3x3 and (b) 4x4 torus designs 

E. Network Packet Delay and Throughput 

Figs. 13 and 14 show packet latency as injection rate (in 

flits/node/cycle) is varied with 6 different traffic patterns for 4x4 

torus and mesh networks respectively. All traffic patterns are run on 

our FPGA implementation of BLESS and 2-VC buffered networks. 

We use a 3-stage BLESS router and a 3-stage 2-VC channel router, 

which incorporates look-ahead routing. We set the latency of each 

router to 3 cycles to provide a fair comparison (Note that the 

frequency of this BLESS router is actually 2.56 times higher but we 

do not factor this into our evaluation to favor the buffered router). 

Hot spot pattern is emulated by having each router send packets to 

the router at address 0101. Several observations are in order from 

these load-latency curves. First, as expected, BLESS network’s 

latency is similar to that of the buffered network at low flit injection 

rates for all traffic patterns. However, as injection rate increases 

buffered network becomes lower latency because BLESS starts 

deflecting packets due to congestion. This happens only in those 

patterns where congestion happens. Since congestion dos not arise 

in bit complement, tornado, and transpose patterns on the torus, and 

the tornado pattern on the mesh, packet latency stays constant with 

injection rate. Buffered network is better able to tolerate congestion 

and leads to reduced latency at high injection rates because 

buffering packets leads to better bandwidth utilization than 

deflecting them. 

Second, BLESS has lower saturation throughput than the 
buffered network because deflections increase the load on the 
network links, leading to increased network utilization and saturation 
as there is no other place than the links to keep the packets at times 
of congestion. With hot spot traffic on the mesh, BLESS saturates at 
an injection rate of 0.033 flits/node/cycle whereas buffered network 
saturates at a rate of 0.058. Hot spot traffic pattern presents the worst 
case for BLESS among the evaluated patterns because it results in 
the highest congestion, leading to a high deflection rate. Third, 
BLESS’s performance (saturation throughput and latency at high 
injection rates) becomes much more comparable to the buffered 
network for all traffic patterns when the network topology is a torus 
instead of a mesh. This is because the additional links in the torus 
adds 1) path diversity, which increases the number of paths that can 
be taken by deflected packets, 2) ensure the torus does not suffer 
from congestion in edge routers. Since BLESS essentially uses links 
as “temporary buffers,” additional links enable the BLESS network 
to sustain a higher throughput. As a result, with hot spot traffic, the 
saturation throughput of BLESS on the torus is 0.055, which is close 
to the buffered network’s 0.066. We conclude that a torus topology 
is a good substrate for bufferless routing. Overall, our results show 
that BLESS has competitive latency with 2-VC buffered networks at 



low injection rates in both torus and mesh topologies, and almost-
competitive saturation throughput in the torus topology. Given that 
BLESS actually has higher frequency (2.56 times), lower network 
power consumption (by at least 38%), and lower area consumption 
(by approximately 62%) compared to the 2-VC router (as we showed 
in earlier sections), we conclude that BLESS can be an effective 
alternative to buffered networks. 

 
Fig. 13 Packet latency with various routers on the 4x4 torus  

 

Fig. 14 Packet latency with various routers on the 4x4 mesh 

F. ASIC Implementation Results 

To explore the tradeoffs of different router microarchitectures in 

an ASIC implementation, we synthesized the same RTL Verilog 

design of each router we discussed above. Results for area, power, 

and frequency are derived from synthesizing the Verilog design to 

the TSMC 65nm standard cell library using the Synopsys Design 

Compiler with the highest level of optimization enabled.  Table IV 

shows the results. Power numbers inside the parentheses indicate 

the power consumption of each router for the maximum frequency 

it can run at. For fair comparison with BLESS, power numbers 

outside the parentheses indicate the power consumption of each 

router, assuming all routers run at the same clock frequency as the 

BLESS router. Although the exact numbers of FPGA results are 

different from ASIC results, the relative relationships between 

different routers are the same. BLESS is still the most efficient 

design with 38% area and 30% power saving compared to the 1-VC 

router, the simplest buffered router. At the same time, with our 

balanced oldest-first arbiter, BLESS is still 8% faster than the 1-VC 

router. Similarly to the FPGA results, when the number of virtual 

channels increases, BLESS’s area, power, and frequency 
advantages increase over the buffered routers. 

Table IV: 65nm ASIC results for all the routers 

Router Area (μm2) Power (mW) Max Frequency 

BLESS 12353 2.14 214.6MHz (4.66ns) 

BLESS (Buf) 16854 2.74 (2.61) 204.5MHz (4.89ns) 

1-VC 20139 3.03 (2.79) 197.2MHz (5.07ns) 

2-VC 36152 5.12 (2.40) 100.4MHz (9.93ns) 

4-VC 79900 10.11 (2.37) 50.3MHz (19.9ns) 

VI. RELATED WORK  

To our knowledge, this is the first paper that provides realistic 

and detailed FPGA and ASIC-process prototype network-on-chip 

implementations of bufferless routing and compares them 

extensively with that of buffered routing. We briefly describe 

related work in both buffered and bufferless routing domains. 

On-chip network prototypes: Several prototype chip 

implementations incorporated on-chip networks. These include the 

MIT RAW chip [39], the UT TRIPS chip [20], the Intel 80-core 

TeraFlops Polaris chip [23], and the Tilera TILE64 processor [42]. 

All of these NoC implementations used buffered routers on a 2D 

mesh topology. Buffered on-chip networks were shown to consume 

30% of the system power in the Intel 80-core TeraFlops Polaris chip 

[23] and 40% of the system power in the MIT RAW chip [39]. 

Gratz et al. [20] showed that router input buffers occupy 75% of the 

total on-chip network area in the TRIPS chip. While these works 

provided a good characterization of buffered routers, they have not 

implemented bufferless routers and their characteristics. Our work 

leverages the insights developed in these works to build a baseline 

state-of-the-art router, which we comparatively evaluate with 

bufferless routing in our FPGA-based network-on-chip prototype. 

Recent bufferless routers: Recent works provided various 

algorithms for and forms of bufferless routing [30, 27, 18, 19, 11, 

12, 13, 5, 2, 28, 14, 15, 32, 33], but most of these works did not 

study the feasibility and advantages/disadvantages in detail in an 

implemented bufferless router prototype as our work does.  

Moscibroda and Mutlu [30] described livelock-free algorithms 

for bufferless routing and evaluated these algorithms in simulation 

of 2D mesh networks. They found that for low injection rates, the 

common case in most realistic applications, bufferless routing 

provides similar performance as buffered routing while reducing the 

on-chip network energy consumption by 40%. They performed 

back-of-the-envelope calculations to evaluate the area benefits of 

bufferless routing. However, they did not study the implementation 

complexity of bufferless routers. Our work builds upon [30] by 

implementing the algorithms developed in [30] for both 2D mesh 

and torus topologies, evaluating their complexity, area, power, and 

latency in a realistic implementation, and providing extensive 

comparisons to buffered routing. By using a real FPGA/ASIC 

implementation, we find that 1) the frequency of a bufferless router 

exceeds that of a buffered router, via careful design of the oldest-

first arbiter, 2) bufferless routing provides significant area and 

power benefits over buffered routing on an FPGA/ASIC. 

The closest work to ours is that of Michelogiannakis et al. [28], 

which evaluated bufferless and buffered routers using RTL 

implementations. They found that the bufferless routers are only 

marginally more energy efficient than a carefully designed buffered 

router. We believe our work provides another data point in open 

literature to complement their implementation and results by 

optimizing both the bufferless and the buffered router designs on 

the same FPGA or ASIC process.  

Several other previous works [29, 27, 18, 19, 21, 40] also studied 

the use of bufferless routing in on-chip networks. [18, 19, 21] 

require packet dropping when congestion arises, a complexity that 

is not present in the bufferless routing techniques we implement and 

evaluate. [40] does not seem to provide livelock freedom. These 

previous studies mainly consist of simulation-based evaluation of 

deflection routing and packet dropping algorithms on performance. 

As such, they do not evaluate 1) the energy consumption, routing 



latency, and area of deflection-based bufferless routers, 2) describe 

the implementation advantages/disadvantages encountered in 

designing BLESS and BLESS with buffers.  

Improvements in bufferless routers: Recent works proposed 

mechanisms to improve the efficiency of bufferless routers by 

providing simpler livelock and deadlock freedom mechanisms as 

well as deflection routing implementations [12], source throttling 

based congestion control techniques [5, 32, 33], and the use of 

minimal buffering mechanisms [13]. Using these techniques can 

improve results we show for bufferless routers. Recent work also 

devised deflection based bufferless router designs for hierarchical 

ring networks [2, 14, 15], showing significant energy efficiency 

benefits, but did not evaluate such designs using real FPGA or 

ASIC-synthesis implementations. A summary of recent progress in 

bufferless deflection routing can be found in [11]. 

Deflection routing: Buffered or bufferless versions of deflection 

routing had been proposed for distributed systems [3] and used in 

massively parallel machines such as the HEP [36, 37], the Tera [1], 

and the Connection Machine [22] in their large-scale 

interconnection networks that connect different chips. These 

techniques are not disclosed in detail and, to our knowledge, have 

not been publicly evaluated in terms of energy consumption or 

performance. Some of these deflection routing algorithms do not 

eliminate buffers [38]. The Chaos router [26], which was proposed 

to connect multiple chips, uses a form of deflection routing when a 

node is congested, but it still buffers packets in the router. An 

implementation of the Chaos router was realized as an ASIC. 

However, its evaluation consisted of performance studies and did 

not quantify area, power consumption, latency optimizations, and 

complexity of buffered deflection routing. 

Other buffered router prototypes: Many prototype routing 

chips with buffered routers were designed and evaluated for off-

chip interconnection networks. Examples include the torus routing 

chip [8], the SGI routing chip [17], and TRIPS [20].  

Buffered router optimizations: Virtual channels [7], wormhole 

routing [8], speculation [35], and other latency optimizations for 

buffered routers [31] have been studied in the past. Our buffered 

router design incorporates these optimizations, thereby providing a 

state-of-the-art baseline to which we compared bufferless routing. 

Bufferless routing in theory and optical networks: Theoretical 
studies [16, 4] have evaluated static algorithms for deflection routing 
and did not provide implementations. Deflection routing has been 
implemented in optical transmission networks [41], which have very 
different energy and performance characteristics than the on-chip 
electrical networks we examine. 

VII. CONCLUSION  

Bufferless routing promises large reductions in network area, 

power, and complexity compared to buffered routing commonly 

employed in existing on-chip networks. This paper investigates if 

this promise translates to real benefits in on-chip network designs 

by comparatively evaluating bufferless and buffered network 

prototypes using FPGA and ASIC-synthesis implementations.  

Our extensive experiments and analyses on different types of 

network topologies, different network sizes, and a large number of 

traffic patterns suggest that while bufferless routing can increase 

implementation complexity of routers by requiring more complex 

oldest-first arbitration, this complexity can be overcome with 

careful design of the arbiter. Overall, bufferless routing leads to 

significant power, area, and router cycle time savings in both mesh 

and torus topologies against buffered routing in real 

implementations. Two trends likely increase the advantages of 

bufferless routing. First, as path diversity in the network increases 

with richer topologies, bufferless routing starts performing similarly 

to its buffered counterpart. Second, the trend in existing network-

on-chip design is to have multiple virtual channels. As the number 

of virtual channels increases in the buffered design, bufferless 

routing provides even higher frequency, higher area savings, and 

lower power consumption in real implementations. We conclude 

that bufferless routing can provide an efficient way of designing 

future interconnects.  
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