Exploiting Compressed Block Size
as an Indicator of Future Reuse

Gennady Pekhimenko, Phillip B. Gibbons,

Tyler Huberty, Rui Cai, Michael A. Kozuch

Onur Mutlu, Todd C. Mowry

SAFARI Carnegie Mellon University (i@

Executive Summary

In a compressed cache, compressed block size is an
additional dimension

Problem: How can we maximize cache performance
utilizing both block reuse and compressed size?

Observations:
— Importance of the cache block depends on its compressed size
— Block size is indicative of reuse behavior in some applications

Key Idea: Use compressed block size in making cache
replacement and insertion decisions

Results:
— Higher performance (9%/11% on average for 1/2-core)

— Lower energy (12% on average)

Potential for Data Compression

8-14 cycles

1-2 cycles

0.5 1.0 1.5 2.0
Compression Ratio 3

Size-Aware Cache Management

1. Compressed block size matters
2. Compressed block size varies

3. Compressed block size can indicate reuse

#1: Compressed Block Size Matters

Cache: large small Belady’s OPT Replacement
| Yy FBC

Access stream:

saved cycles .
TRV - time

Size-Aware Replacement

Size-aware policies could yield fewer misses

5

#2: Compressed Block Size Varies
BDI compression algorithm [Pekhimenko+, PACT’12]

M size: 0-7 M size: 8-15 size: 16-23 MW size: 24-31 " size: 32-39
size: 40-47 M size: 48-5 M size: 56-63 u 5564 Block size, bytes

0
o
X

100%] —
-
40% — .

I B
||

Cache Coverage, %

20% . \ l | \E/ I
0% —— T\ | | \U/ | | \e —
mcf lom astar tpch2 calculixh264ref wrf povray gcc

Compressed block size varies within and between

applications

#3: Block Size Can Indicate Reuse
bzip2

’* /H\
1 8 162074 40

Block size, bytes

Different sizes have different dominant reuse distances

Reuse Distance
(# of memory accesses)
N S @)
o o o
o o o
o o o o
: E

D

Code Example to Support Intuition

int A[N]; // small indices: compressible
double B[16]; // FP coefficients: incompressible
for (int i=0; i<N; i++) {
int idx =< long reuse, compressible
for (int j=0; j<N; j++) {
sum +=[I§[(idx+;)%16]i]

J

short reuse, incompressible
Compressed size can be an indicator of reuse distance

Size-Aware Cache Management

1. Compressed block size matters
2. Compressed block size varies

3. Compressed block size can indicate reuse

Outline

* Key Ideas:
* Minimal-Value Eviction (MVE)
 Size-based Insertion Policy (SIP)

e Evaluation
 Conclusion

10

Compression-Aware Management
Policies (CAMP)

MVE: SIP:

Minimal-Value Size-based
Eviction Insertion Policy

Minimal-Value Eviction (MVE):

Set:

Block #0

Block #1

Observations

Highest yebrery: MRU

Importance of the block depends

on both the likelihood of reference
| and the compressed block size

lowest patuéy: LRU

12

Minimal-Value Eviction (MVE): Key Idea

Probability of reuse

Value
Compressed block size

Probability of reuse:

 (Can be determined in many different ways

 Ourimplementation is based on re-reference
interval prediction value (RRIP [Jaleel+, ISCA’10])

Compression-Aware Management
Policies (CAMP)

MVE: SIP:

Minimal-Value Size-based
Eviction Insertion Policy

Size-based Insertion Policy (SIP):
Observations

e Sometimes there is a relation between the
compressed block size and reuse distance

[compressed J
[data]

block size
structure |

reuse
distance
* This relation can be detected through the
compressed block size

e Minimal overhead to track this relation

(compressed block information is a part of
design)

Size-based Insertion Policy (SIP):
Key Idea

* |[nsert blocks of a certain size with higher
priority if this improves cache miss rate

* Use dynamic set sampling (4, esni 1scaos7 tO
detect which size to insert with higher priority

Main Tags

set A
set B
set C
setD
set E
set F
set G
set H
set |

om TEm Em Em Em O

A
4

uxiliary Tags

set Al 8B

S

N\

set D _643

—-— e o = E—

set A set A

:miss(_ + CTRgg - Jmiss i

8B

set F set F

8B

decides policy
for steady state

16

Outline

e Evaluation
 Conclusion

17

Methodology

e Simulator
— Xx86 event-driven simulator (MemSim [Seshadri+, PACT'12])

 Workloads
— SPEC2006 benchmarks, TPC, Apache web server
— 1 -4 core simulations for 1 billion representative instructions

* System Parameters
— L1/L2/L3 cache latencies from CACTI
— BDI (1-cycle decompression) [Pekhimenko+, PACT’12]
— 4GHz, x86 in-order core, cache size (1MB - 16 MB)

Evaluated Cache Management Policies

LRU Baseline LRU policy
- Size-unaware

RRIP Re-reference Interval Prediction [Jaleel+, ISCA’10]
- Size-unaware

19

Evaluated Cache Management Policies

LRU Baseline LRU policy
- Size-unaware

RRIP Re-reference Interval Prediction [Jaleel+, ISCA’10]
- Size-unaware

ECM Effective Capacity Maximizer [Baek+, HPCA’13]
+ size-aware

20

Evaluated Cache Management Policies

LRU

RRIP

ECM

CAMP

Baseline LRU policy
- Size-unaware

Re-reference Interval Prediction [Jaleel+, ISCA’10]
- Size-unaware

Effective Capacity Maximizer [Baek+, HPCA’13]
+ Size-aware

Compression-Aware Management Policies

(MVE + SIP)
21

Size-Aware Replacement

e Effective Capacity Maximizer (ECM)

[Baek+, HPCA’13]

— Inserts “big” blocks with lower priority
— Uses heuristic to define the threshold

e Shortcomings
— Coarse-grained
— No relation between block size and reuse
— Not easily applicable to other cache organizations

22

CAMP Single-Core

%

L (|lyuesaND
. ! 9SUlU|UBSIND
d ayoede
|
ZYods
wq|
W wnuenbq)
m ddisuwo
o][V8
. exuiyds
youaqjad

[pPEDIl|SO|

_ _ s3eWwoJs
dldd4swsan
¢dizq
dwsnaz
x9|dos

— JaIp92Y
ywqo3d
203

! ! INQVYSh1oed
Jejse

89

CAMP

ECM ® MVE ®SIP

31%l RRIP

SPEC2006, databases, web workloads, 2MB L2 cache

_
T T B)
i i i o

Jd| pazijew.oN

1
®
o

™
N

CAMP improves performance over LRU, RRIP, ECM

Multi-Core Results

* Classification based on the compressed block
size distribution

— Homogeneous (1 or 2 dominant block size(s))
— Heterogeneous (more than 2 dominant sizes)

 We form three different 2-core workload
groups (20 workloads in each):

— Homo-Homo
— Homo-Hetero
— Hetero-Hetero

Multi-Core Results (2)

W RRIP FECM EMVE ESIP = CAMP

=
[N
o

1.05

1.00 -

Normalized Weighted Speedup

o

O

o
|

Homo-Homo Homo-Hetero Hetero-Hetero GeoMean

Higher benefits with higher heterogeneity in size

Effect on Memory Subsystem Energy

L1/L2 caches, DRAM, NoC, compression/decompression

bo ® RRIP ECM = CAMP
—
o 11
c
w1 5%
> i
Q |
S WO S s UMM W
£ 0 M ACATRCA AW D AR RN W
30'7_ O X 4% x anNAOQ W M X O a “ N O W w
g = @S = = —=
Z FOBESSESREEQES5SEESS8EEEE g2
5 oL o s ouw 5 o Ve o c S - 5 a s 3
3 o N Vv O w O g = o C © ~ c
o < N EED_QL) v © E 5 EE
(@] v o © ©c T oc O
S O X = v
=
O

CAMP reduces energy consumption in the memory
subsystem .

CAMP for Global Replacement

CAMP with V-Way [Qureshi+, ISCA’05] cache design

G-MVE: G-SIP:

Global Minimal- Global Size-based
Value Eviction Insertion Policy

[BetiBai B pipicesveatt af Setshoh BIR1E J

G-CAMP Single-Core

SPEC2006, databases, web workloads, 2MB L2 cache

V-WAY B G-MVE = G-SIP = G-CAMP

H RRIP

63%-97%

. 9%

S (|Yues|AD
9SUdlU|UBI|ND

. 9yoede
S 9yody
ZYody
L P
~ = wq]
wniuenbqi
ddisuwo
o][V8
ywgoue|ex
. gxulyds
-~ 3uals
- Yyouaqjad
. PpE3ls9|
.. Ssoewous
e dlddswen
¢dizq
- dwsnaz

G x9dos

| }9ly9¢Yy
| Jwgos
S 208

S INgYYSNIOeD
Jejse

G-CAMP improves performance over LRU, RRIP, V-Way

28

Storage Bit Count Overhead

Over uncompressed cache with LRU

LRU CAMP G-CAMP

tag-entry +14b +14b +15b +19b
data-entry +0b +0b +16b +32b
total [+9%] +11% E+12.5%] +17%

2% 4.5%
29

Cache Size Sensitivity

1.6
1.5

WLRU ERRIP " ECM " CAMP EV-WAY E G-CAMP

1.4
1.3
1.2

Normalized IPC

1M 2M 4M SM 16M

A
G-CAMP outperforms LRU with 2X cache sizes

30

Other Results and Analyses in the Paper

* Block size distribution for different applications
e Sensitivity to the compression algorithm
 Comparison with uncompressed cache

* Effect on cache capacity

* S|P vs. PC-based replacement policies

* More details on multi-core results

Conclusion

In a compressed cache, compressed block size is an
additional dimension

Problem: How can we maximize cache performance
utilizing both block reuse and compressed size?

Observations:
— Importance of the cache block depends on its compressed size
— Block size is indicative of reuse behavior in some applications

Key Idea: Use compressed block size in making cache
replacement and insertion decisions

Two technigues: Minimal-Value Eviction and Size-based
Insertion Policy
Results:

— Higher performance (9%/11% on average for 1/2-core)
— Lower energy (12% on average)

32

Exploiting Compressed Block Size
as an Indicator of Future Reuse

Gennady Pekhimenko, Phillip B. Gibbons,

Tyler Huberty, Rui Cai, Michael A. Kozuch

Onur Mutlu, Todd C. Mowry

SAFARI Carnegie Mellon University (i@

Backup Slides

Potential for Data Compression

Compression algorithms for on-chip caches:

* Frequent Pattern Compression (FPC) [Alameldeent, 1SCA'04]
— performance: +15%, comp. ratio: 1.25-1.75

¢ C'PaCk [Chen+, Trans. on VLSI’10]
— comp. ratio: 1.64

* Base-Delta-Immediate (BDI) joiimentor, pacriz;

— performance: +11.2%, comp. ratio: 1.53

* Statistical Compression s+ 1scarza)

— performance: +11%, comp. ratio: 2.1

Potential for Data Compression (2)

* Better compressed cache management
— Decoupled Compressed Cache (DCC) 1/cro137
— Skewed Compressed Cache ;;cro147

3: Block Size Can Indicate Reuse
soplex

W
o
o
o

N
-
o
o

RN
o

o\ -
8 16 20 24 3436 40 64

Reuse Distance
(# of memory accesses)

Block size, bytes

Different sizes have different dominant reuse distances

37

Conventional Cache Compression

U o L JdA LC JI C B oV
L]

Set; Tag,

Way, Way, Way, Way,

Compressed 4-way cache with 8-byte segmented data

Tag Storage: 8 bytes

Set,

Set

Set1Sq | 31 (5 &ff QONPI. €NABCING

Set; Tag,

S

Way, Way, Way, Way,

‘ v Twice Iasv(ﬁ'agys agp|to multiple adjacent segments
38

CAMP = MVE +SIP

Minimal-Value eviction (MVE)

_ Probability of reuse
Value Function =

Compressed block size

— Probability of reuse based on RRIP [ISCA’10]

Size-based insertion policy (SIP)

— Dynamically prioritizes blocks based on their
compressed size (e.g., insert into MRU position for

LRU policy)

Overhead Analysis

Base BDI CAMP | V-Way | V-Way+C | G-CAMP
tag-entry(bits) 21 35(|37])) 35 36 " 40° 40
data-entry(bits) | 512 512 512 528 7 544 544
% tag entries | 32768 | 65536 | 73728° | 65536 65536 65536
data entries | 32768 | 32768 32768 | 32768 32768 32768
tag-store (kB) 86 287 323 205 325 325
data-store (kB) | 2097 2097 2097 2163 2228 2228
other 0 0 216 ° 0 0 816
total (kB) 2183 2384 2420 2458 2556 2556

Table 1: Storage overhead of different mechanisms for a 2MB
L2 cache. "V-Way+C"” means V-Way with compression.

2115 forward ptr; ¥ +16 reverse ptr: “+1/8 set sampling in SIP; “CTR’s in SIP:
¢ +4 for comp. encoding; [+32 (2 reverse ptrs per data entry, 13 bits each, and
2 extended validity bits, 3 bits each)

40

CAMP and Global Replacement

CAMP with V-Way cache design

64 bytes

A

S\ |
Cd

Set,

Set;

status | tag | fptr | comp

41

G-MVE

Two major changes:

* Probability of reuse based on Reuse
Replacement policy
— On insertion, a block’s counter is set to zero
— On a hit, the block’s counter is incremented by one
indicating its reuse

* Global replacement using a pointer (PTR) to a
reuse counter entry
— Starting at the entry PTR points to, the reuse counters

of 64 valid data entries are scanned, decrementing
each non-zero counter

G-SIP

e Use set dueling instead of set sampling (SIP) to
decide best insertion policy:

— Divide data-store into 8 regions and block sizes into
8 ranges

— During training, for each region, insert blocks of a
different size range with higher priority

— Count cache misses per region

* |n steady state, insert blocks with sizes of top
performing regions with higher priority in all
regions

Size-based Insertion Policy (SIP):
Key Idea

* |[nsert blocks of a certain size with higher

priority if this improves cache miss rate
Set:

64 Highest priority

32
16

16

32

32
16

64 Lowest priority

Evaluated Cache Management Policies

LRU Baseline LRU policy
RRIP Re-reference Interval Prediction ;... isca‘10;
ECM Effective Capacity Maximizer g e, Hpcari3;

V-Way Variable-Way Cachesc0s;
CAMP Compression-Aware Management (Local)

G-CAMP Compression-Aware Management (Global)

45

Performance and MPKI Correlation

Performance improvement / MPKI reduction

CAMP 8.1%/-13.3% 2.7%/-5.6% 2 1%/-5. 9%

CAMP performance improvement correlates with
MPKI reduction

46

Performance and MPKI Correlation

Performance improvement/ MPKI reduction

CAMP 8.1%/-13.3% 2.7%/-5.6% 2.1%/-5.9%

G-CAMP 14.0%/-21.9% 8.3%/-15.1% | 7.7%/-15.3%| | 4.9%/-8.7%

CAMP performance improvement correlates with
MPKI reduction

47

Multi-core Results (2)

o)
Q
£ "7 | WRRIP WV-WAY BG-MVE WG-SIP " G-CAMP
‘O
= -%.15
© .10 -
'T; (7
£ 1.05
>
- 1. I
0.95 - ' ' '

Homo-Homo Homo-Hetero Hetero-Hetero GeoMean

G-CAMP outperforms LRU, RRIP and V-Way policies
48

Effect on Memory Subsystem Energy

= [IVUESIND
@) 9SUIIU|UBIIAID
‘n

n o

m S ayoede

Q m 9yada

E S ZYyoda

w O Jow

Q wq|
N M wniuenbqi|
- ddjauwo
cm.. W o][[80]

% O ywagoue|ex
— exuiyds
Q

c S 3uals

O < youaq|4ad
@ O SICTIRET

o = soew o043
m S dLgd4swsn

~ O ¢dizq

S W dwsnaz
MRn xa|dos

N = $9479¢Y
o mnn ywqos

UV m

|m INQVYSN1oed
O Jejse

O EEEE L LS

N qccdoo~ond
SN~ "+ O0O0O0O0O

i

—

A319u3 pazijewoN

CAMP/G-CAMP reduces energy consumption in the

memory subsystem

49

