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Executive Summary

In a compressed cache, compressed block size is an
additional dimension

Problem: How can we maximize cache performance
utilizing both block reuse and compressed size?

Observations:
— Importance of the cache block depends on its compressed size
— Block size is indicative of reuse behavior in some applications

Key Idea: Use compressed block size in making cache
replacement and insertion decisions

Results:
— Higher performance (9%/11% on average for 1/2-core)

— Lower energy (12% on average)



Potential for Data Compression
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Size-Aware Cache Management

1. Compressed block size matters
2. Compressed block size varies

3. Compressed block size can indicate reuse



#1: Compressed Block Size Matters
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Size-aware policies could yield fewer misses
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#2: Compressed Block Size Varies
BDI compression algorithm [Pekhimenko+, PACT’12]
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#3: Block Size Can Indicate Reuse
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Code Example to Support Intuition

int A[N]; // small indices: compressible
double B[16];  // FP coefficients: incompressible
for (int i=0; i<N; i++) {
int idx =< long reuse, compressible
for (int j=0; j<N; j++) {
sum +=[I§[(idx+;)%16]i]

J

short reuse, incompressible
Compressed size can be an indicator of reuse distance



Size-Aware Cache Management

1. Compressed block size matters
2. Compressed block size varies

3. Compressed block size can indicate reuse



Outline

* Key Ideas:
* Minimal-Value Eviction (MVE)
 Size-based Insertion Policy (SIP)

e Evaluation
 Conclusion
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Compression-Aware Management
Policies (CAMP)

MVE: SIP:

Minimal-Value Size-based
Eviction Insertion Policy




Minimal-Value Eviction (MVE):

Set:

Block #0

Block #1

Observations

Highest yebrery: MRU

Importance of the block depends

on both the likelihood of reference
| and the compressed block size

lowest patuéy: LRU
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Minimal-Value Eviction (MVE): Key Idea

Probability of reuse

Value
Compressed block size

Probability of reuse:

 (Can be determined in many different ways

 Ourimplementation is based on re-reference
interval prediction value (RRIP [Jaleel+, ISCA’10])



Compression-Aware Management
Policies (CAMP)

MVE: SIP:

Minimal-Value Size-based
Eviction Insertion Policy




Size-based Insertion Policy (SIP):
Observations

e Sometimes there is a relation between the
compressed block size and reuse distance

[ compressed J
[ data ]

block size
structure |

reuse
distance
* This relation can be detected through the
compressed block size

e Minimal overhead to track this relation

(compressed block information is a part of
design)




Size-based Insertion Policy (SIP):
Key Idea

* |[nsert blocks of a certain size with higher
priority if this improves cache miss rate

* Use dynamic set sampling (4, esni 1scaos7 tO
detect which size to insert with higher priority
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Outline

e Evaluation
 Conclusion
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Methodology

e Simulator
— Xx86 event-driven simulator (MemSim [Seshadri+, PACT'12])

 Workloads
— SPEC2006 benchmarks, TPC, Apache web server
— 1 -4 core simulations for 1 billion representative instructions

* System Parameters
— L1/L2/L3 cache latencies from CACTI
— BDI (1-cycle decompression) [Pekhimenko+, PACT’12]
— 4GHz, x86 in-order core, cache size (1MB - 16 MB)



Evaluated Cache Management Policies

LRU Baseline LRU policy
- Size-unaware

RRIP Re-reference Interval Prediction [Jaleel+, ISCA’10]
- Size-unaware

19



Evaluated Cache Management Policies

LRU Baseline LRU policy
- Size-unaware

RRIP Re-reference Interval Prediction [Jaleel+, ISCA’10]
- Size-unaware

ECM Effective Capacity Maximizer [Baek+, HPCA’13]
+ size-aware
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Evaluated Cache Management Policies

LRU

RRIP

ECM

CAMP

Baseline LRU policy
- Size-unaware

Re-reference Interval Prediction [Jaleel+, ISCA’10]
- Size-unaware

Effective Capacity Maximizer [Baek+, HPCA’13]
+ Size-aware

Compression-Aware Management Policies

(MVE + SIP)
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Size-Aware Replacement

e Effective Capacity Maximizer (ECM)

[Baek+, HPCA’13]

— Inserts “big” blocks with lower priority
— Uses heuristic to define the threshold

e Shortcomings
— Coarse-grained
— No relation between block size and reuse
— Not easily applicable to other cache organizations
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CAMP Single-Core
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Multi-Core Results

* Classification based on the compressed block
size distribution

— Homogeneous (1 or 2 dominant block size(s))
— Heterogeneous (more than 2 dominant sizes)

 We form three different 2-core workload
groups (20 workloads in each):

— Homo-Homo
— Homo-Hetero
— Hetero-Hetero



Multi-Core Results (2)
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Effect on Memory Subsystem Energy

L1/L2 caches, DRAM, NoC, compression/decompression
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CAMP for Global Replacement

CAMP with V-Way [Qureshi+, ISCA’05] cache design

G-MVE: G-SIP:

Global Minimal- Global Size-based
Value Eviction Insertion Policy
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G-CAMP Single-Core

SPEC2006, databases, web workloads, 2MB L2 cache
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Storage Bit Count Overhead

Over uncompressed cache with LRU

LRU CAMP G-CAMP

tag-entry +14b +14b +15b +19b
data-entry +0b +0b +16b +32b
total [+9% ] +11% E+12.5%] +17%

2% 4.5%
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Cache Size Sensitivity
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Other Results and Analyses in the Paper

* Block size distribution for different applications
e Sensitivity to the compression algorithm
 Comparison with uncompressed cache

* Effect on cache capacity

* S|P vs. PC-based replacement policies

* More details on multi-core results



Conclusion

In a compressed cache, compressed block size is an
additional dimension

Problem: How can we maximize cache performance
utilizing both block reuse and compressed size?

Observations:
— Importance of the cache block depends on its compressed size
— Block size is indicative of reuse behavior in some applications

Key Idea: Use compressed block size in making cache
replacement and insertion decisions

Two technigues: Minimal-Value Eviction and Size-based
Insertion Policy
Results:

— Higher performance (9%/11% on average for 1/2-core)
— Lower energy (12% on average)
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Potential for Data Compression

Compression algorithms for on-chip caches:

* Frequent Pattern Compression (FPC) [Alameldeent, 1SCA'04]
— performance: +15%, comp. ratio: 1.25-1.75

¢ C'PaCk [Chen+, Trans. on VLSI’10]
— comp. ratio: 1.64

* Base-Delta-Immediate (BDI) joiimentor, pacriz;

— performance: +11.2%, comp. ratio: 1.53

* Statistical Compression s+ 1scarza)

— performance: +11%, comp. ratio: 2.1



Potential for Data Compression (2)

* Better compressed cache management
— Decoupled Compressed Cache (DCC) 1/cro137
— Skewed Compressed Cache ;;cro147



# 3: Block Size Can Indicate Reuse
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Conventional Cache Compression
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CAMP = MVE +SIP

Minimal-Value eviction (MVE)

_ Probability of reuse
Value Function =

Compressed block size

— Probability of reuse based on RRIP [ISCA’10]

Size-based insertion policy (SIP)

— Dynamically prioritizes blocks based on their
compressed size (e.g., insert into MRU position for

LRU policy)



Overhead Analysis

Base BDI CAMP | V-Way | V-Way+C | G-CAMP
tag-entry(bits) 21 35( |37])) 35 36 " 40° 40
data-entry(bits) | 512 512 512 528 7 544 544
% tag entries | 32768 | 65536 | 73728° | 65536 65536 65536
# data entries | 32768 | 32768 32768 | 32768 32768 32768
tag-store (kB) 86 287 323 205 325 325
data-store (kB) | 2097 2097 2097 2163 2228 2228
other 0 0 216 ° 0 0 816
total (kB) 2183 2384 2420 2458 2556 2556

Table 1: Storage overhead of different mechanisms for a 2MB
L2 cache. "V-Way+C"” means V-Way with compression.

2115 forward ptr; ¥ +16 reverse ptr: “+1/8 set sampling in SIP; “CTR’s in SIP:
¢ +4 for comp. encoding; [ +32 (2 reverse ptrs per data entry, 13 bits each, and
2 extended validity bits, 3 bits each)

40



CAMP and Global Replacement

CAMP with V-Way cache design

64 bytes

A

S\ |
Cd

Set,

Set;

status | tag | fptr | comp
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G-MVE

Two major changes:

* Probability of reuse based on Reuse
Replacement policy
— On insertion, a block’s counter is set to zero
— On a hit, the block’s counter is incremented by one
indicating its reuse

* Global replacement using a pointer (PTR) to a
reuse counter entry
— Starting at the entry PTR points to, the reuse counters

of 64 valid data entries are scanned, decrementing
each non-zero counter



G-SIP

e Use set dueling instead of set sampling (SIP) to
decide best insertion policy:

— Divide data-store into 8 regions and block sizes into
8 ranges

— During training, for each region, insert blocks of a
different size range with higher priority

— Count cache misses per region

* |n steady state, insert blocks with sizes of top
performing regions with higher priority in all
regions



Size-based Insertion Policy (SIP):
Key Idea

* |[nsert blocks of a certain size with higher

priority if this improves cache miss rate
Set:

64 Highest priority

32
16

16

32

32
16

64 Lowest priority




Evaluated Cache Management Policies

LRU Baseline LRU policy
RRIP Re-reference Interval Prediction ;... isca‘10;
ECM Effective Capacity Maximizer g e, Hpcari3;

V-Way Variable-Way Cachesc0s;
CAMP Compression-Aware Management (Local)

G-CAMP Compression-Aware Management (Global)
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Performance and MPKI Correlation

Performance improvement / MPKI reduction

CAMP 8.1%/-13.3% 2.7%/-5.6% 2 1%/-5. 9%

CAMP performance improvement correlates with
MPKI reduction
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Performance and MPKI Correlation

Performance improvement/ MPKI reduction

CAMP 8.1%/-13.3%  2.7%/-5.6% 2.1%/-5.9%

G-CAMP 14.0%/-21.9% 8.3%/-15.1% | 7.7%/-15.3%| | 4.9%/-8.7%

CAMP performance improvement correlates with
MPKI reduction
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Multi-core Results (2)
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G-CAMP outperforms LRU, RRIP and V-Way policies
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Effect on Memory Subsystem Energy
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CAMP/G-CAMP reduces energy consumption in the

memory subsystem
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