
© 2017 VMware Inc. All rights reserved.

Concurrent Data Structures for
Near-Memory Computing

Zhiyu Liu (Brown)

Irina Calciu (VMware Research)

Maurice Herlihy (Brown)

Onur Mutlu (ETH)

Concurrent Data Structures

2

Are used everywhere: kernel, libraries, applications

Issues:
• Difficult to design and implement
• Data layout and memory/cache hierarchy

play crucial role in performance
Cache

Memory

The Memory Wall

3

CPU

L1 cache

L2 cache

L3 cache

Memory

< 10 ns

Tens of ns

Hundreds

of ns

2.2 GHz = 220K cycles during this timeData
movement

Near Memory Computing

4

• Also called Processing In Memory (PIM)

• Avoid data movement by doing computation in memory

• Old idea

• New advances in 3D integration and die-stacked memory

• Viable in the near future

Near Memory Computing: Architecture

5

• Vaults: memory partitions
• PIM cores: lightweight

• Fast access to its own vault
• Communication

• Between a CPU and a PIM
• Between PIMs
• Via messages sent to

buffers

CPU

C
ro

ss
ba

rN
et

w
or

k

CPU

PIM core
Vault

PIM memory

PIM core

PIM core

CPU

CPU

Vault

Vault

DRAM

Data Structures + Hardware

6

• Tight integration between algorithmic design
and hardware characteristics

• Memory becomes an active component in managing data

• Managing data structures in PIM

• Old work: pointer chasing for sequential data structures

• Our work: concurrent data structures

CONTENTION

7

LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

CONTENTION

8

LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., uniform distribution
skiplist & linkedlist

9

1

1

1

1 3 4 6 7 8 10 11 14

4

4 7

10

10

108

12

14

12 14

7 16

16

16

16

Pointer Chasing Data Structures

CONTENTION

10

LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., uniform distribution
skiplist & linkedlist

Naïve PIM Skiplist

11

CPUCPU CPU

add(30) add(5) delete(80)

PIM Memory Vault

PIM core

1
1

1
1 3 4 6 7 8 10 11 14

4
4 7

10
10

108
12

14
12 14

7 16
16

16
16

Low Latency

Concurrent Data Structures

12

CPUCPU CPU

add(30) add(5) delete(80)

1
1

1
1 3 4 6 7 8 10 11 14

4
4 7

10
10

108
12

14
12 14

7 16
16

16
16

DRAM

High Latency

Flat Combining

13

CPUCPU CPU

add(30) add(5) delete(80)

1
1

1
1 3 4 6 7 8 10 11 14

4
4 7

10
10

108
12

14
12 14

7 16
16

16
16

Sequential access

Combiner
lock

DRAM

High Latency

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 5 10 15 20 25 30

14

Skiplist Throughput

Lock-free

FC

O
ps

/s

Threads

Intel Xeon E7-4850v3
28 hardware threads,

2.2 GHz

PIM Performance

15

N Size of the skiplist

p Number of processes

LCPU Latency of a memory access from the CPU

LLLC Latency of a LLC access

LATOMIC Latency of an atomic instruction (by the CPU)

LPIM Latency of a memory access from the PIM core

LMSG Latency of a message from the CPU to the PIM core

PIM Performance

16

LCPU = r1 LPIM = r2 LLLC

LMSG = LCPU

r1 = r2 = 3

PIM Performance

17

Algorithm Throughput
Lock-free p / (B * LCPU)

Flat Combining (FC) 1 / (B * LCPU)

PIM 1 / (B * LPIM + LMSG)

B = average number of nodes accessed
during a skiplist operation

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 5 10 15 20 25 30

18

Skiplist Throughput

Lock-free

O
ps

/s

Threads

PIM
(expected)

FC

CONTENTION

19

LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., uniform distribution
skiplist & linkedlist

New PIM algorithm: Exploit Partitioning

20

CPU

C
ro

ss
ba

rN
et

w
or

k

CPU

PIM core
Vault

PIM memory

PIM core

PIM core

CPU

CPU

Vault

Vault

DRAM

PIM Skiplist w/ Partitioning

21

1

1

1

1 3 4 6 7 8 10 11 20 26

4

4 7

10

10

108

12

20

20

12 20

7

CPUCPU CPU 1 10 20

CPU cache

Vault 1 Vault 2 Vault 3

PIM core PIM core PIM core

PIM Memory

PIM Performance

22

Algorithm Throughput
Lock-free p / (B * LCPU)

Flat Combining (FC) 1 / (B * LCPU)

PIM 1 / (B * LPIM + LMSG)

FC + k partitions k / (B * LCPU)

PIM + k partitions k / (B * LPIM + LMSG)

B = average number of nodes accessed
during a skiplist operation

23

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 5 10 15 20 25 30

Lock-free

FC

O
ps

/s

Threads

FC w/ 16 partitions

FC w/ 8 partitions

FC w/ 4 partitions

Skiplist Throughput

24

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 5 10 15 20 25 30

Lock-free

FC

O
ps

/s

Threads

FC w/ 16 partitions

FC w/ 8 partitions
FC w/ 4 partitions

PIM w/ 8 partitions (expected)

PIM w/ 16 partitions (expected)

Skiplist Throughput

CONTENTION

25

LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., FIFO queue

26

HEAD TAIL

enqueue dequeue

FIFO Queue

PIM FIFO Queue

27

Tail

CPU CPU

PIM core

Deq()Deq()

1

dequeues a node2

retrieves
request

3 sends back
the node

1 retrieves
request

PIM Memory Vault

Pipelining

28

1 2

Timeline

3Deq()

Deq()

Deq()

1 2 3

1 2 3

Can overlap the execution of the next request

Parallelize Enqs and Deqs

29

Head Tail

CPUCPU CPU

Vault 2

PIM core

Vault 1

PIM core

enqs deqs

Conclusion

30

PIM is becoming feasible in the near future

We investigate Concurrent Data Structures (CDS) for PIM

Results:

• Naïve PIM data structures are less efficient than CDS

• New PIM algorithms can leverage PIM features

• They outperform efficient CDS

• They are simpler to design and implement

Thank you!

https://research.vmware.com/

icalciu@vmware.com

© 2017 VMware Inc. All rights reserved.

Concurrent Data Structures for
Near-Memory Computing

Zhiyu Liu (Brown)

Irina Calciu (VMware Research)

Maurice Herlihy (Brown)

Onur Mutlu (ETH)

33

