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Concurrent Data Structures
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Are used everywhere: kernel, libraries, applications

Issues:
• Difficult to design and implement 
• Data layout and memory/cache hierarchy 

play crucial role in performance
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The Memory Wall
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Near Memory Computing
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• Also called Processing In Memory (PIM)

• Avoid data movement by doing computation in memory

• Old idea 

• New advances in 3D integration and die-stacked memory

• Viable in the near future  



Near Memory Computing: Architecture
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• Vaults: memory partitions
• PIM cores: lightweight

• Fast access to its own vault
• Communication

• Between a CPU and a PIM
• Between PIMs
• Via messages sent to 

buffers
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Data Structures + Hardware 
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• Tight integration between algorithmic design
and hardware characteristics

• Memory becomes an active component in managing data 

• Managing data structures in PIM 

• Old work: pointer chasing for sequential data structures

• Our work: concurrent data structures



CONTENTION
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LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?
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Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., uniform distribution 
skiplist & linkedlist
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Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., uniform distribution 
skiplist & linkedlist



Naïve PIM Skiplist
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Concurrent Data Structures
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Flat Combining
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PIM Performance
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N Size of the skiplist

p Number of processes

LCPU Latency of a memory access from the CPU

LLLC Latency of a LLC access 

LATOMIC Latency of an atomic instruction (by the CPU)

LPIM Latency of a memory access from the PIM core 

LMSG Latency of a message from the CPU to the PIM core



PIM Performance
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LCPU = r1 LPIM = r2 LLLC

LMSG = LCPU

r1 = r2 = 3



PIM Performance

17

Algorithm Throughput
Lock-free p / ( B * LCPU )

Flat Combining (FC) 1 / ( B * LCPU )

PIM 1 / ( B * LPIM + LMSG )

B = average number of nodes accessed 
during a skiplist operation



0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 5 10 15 20 25 30

18

Skiplist Throughput

Lock-free

O
ps

/s

Threads

PIM 
(expected)

FC 



CONTENTION
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LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., uniform distribution 
skiplist & linkedlist



New PIM algorithm: Exploit Partitioning
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PIM Skiplist w/ Partitioning

21

1

1

1

1 3 4 6 7 8 10 11 20 26

4

4 7

10

10

108

12

20

20

12 20

7

CPUCPU CPU 1 10 20

CPU cache

Vault 1 Vault 2 Vault 3

PIM core PIM core PIM core

PIM Memory



PIM Performance
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Algorithm Throughput
Lock-free p / ( B * LCPU )

Flat Combining (FC) 1 / ( B * LCPU )

PIM 1 / ( B * LPIM + LMSG )

FC + k partitions k / ( B * LCPU )

PIM + k partitions k / ( B * LPIM + LMSG )

B = average number of nodes accessed 
during a skiplist operation
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LOW HIGH

Cacheable Pointer-chasing

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

e.g., FIFO queue
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PIM FIFO Queue
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Pipelining
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Parallelize Enqs and Deqs
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Conclusion
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PIM is becoming feasible in the near future

We investigate Concurrent Data Structures (CDS) for PIM

Results:

• Naïve PIM data structures are less efficient than CDS

• New PIM algorithms can leverage PIM features 

• They outperform efficient CDS

• They are simpler to design and implement
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