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Runahead Execution Overview
•Runahead dynamically expands the instruction window 

when the pipeline is stalled [Mutlu et al., 2003]
• The core checkpoints architectural state
• The result of the memory operation that caused the stall is 

marked as poisoned in the physical register file
• The core continues to fetch and execute instructions
• Operations are discarded instead of retired
• The goal is to generate new independent cache misses
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Runahead	is	95%	Accurate



Traditional Runahead Prefetch Coverage
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Traditional Runahead Prefetch Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
	In
de

pe
nd

en
t	C

ac
he

	M
iss
es

8

Runahead	has	only	13%	Prefetch Coverage



Traditional Runahead Performance Gain
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Runahead	has	a	12%	Performance	Gain	
Runahead	Oracle	has	an	85%	Performance	Gain



Traditional Runahead Interval Length
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Traditional Runahead Interval Length
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Runahead	Intervals	are	Short							Low	Performance	Gain



•Which	instructions	to	use	during	Continuous	Runahead?
• Dynamically	target	the	dependence	chains	that	lead	to	critical	cache	
misses

•What	hardware	to	use	for	Continuous	Runahead?
• How	long	should	chains	pre-execute	for?

Continuous Runahead Challenges
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Dependence Chains

LD	[R6]	->	R8

ADD	R9,	R1	->	R6

ADD	R4,	R5	->	R9

LD	[R3]	->	R5

Cache	
Miss
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Experiment	with	3	policies	to	determine	the	best	policy	to	use	for	
Continuous	Runahead:
• PC-Based	Policy
• Use	the	dependence	chain	that	has	caused	the	most	misses	for	the	PC	
that	is	blocking	retirement

• Maximum	Misses	Policy
• Use	a	dependence	chain	from the	PC	that	has	generated	the	most	
misses for	the	application

• Stall	Policy
• Use	a	dependence	chain	from	the	PC	that	has	caused	the	most	full-
window	stalls for	the	application

Dependence Chain Selection Policies
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19	PCs	cover	90%	of	all	Stalls
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Storing	1	Chain	provides	95%	
of	the	Performance



Maintain	two	structures:
• 32-entry	cache	of	PCs	to	track	the	operations	that	cause	the	pipeline	to	
frequently	stall
• The	last	dependence	chain	for	the	PC	that	has	caused	the	most	full-window	
stalls

At	every	full	window	stall:
• Increment	the	counter	of	the	PC	that	caused	the	stall
• Generate	a	dependence	chain	for	the	PC	that	has	caused	the	most	stalls

Continuous Runahead Chain Generation
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Runahead for Longer Intervals

Continuous
Runahead

Engine
(CRE)

Core 0 Core 1

Core 2 Core 3

LLC

LLC

LLC

LLC

  DRAM
Channel 0

  DRAM
Channel 1
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• No	Front-End
• No	Register	Renaming	Hardware
• 32	Physical	Registers
• 2-Wide
• No	Floating	Point	or	Vector	Pipeline
• 4kB	Data	Cache

CRE Microarchitecture
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SHIFT	P1	->	P9

ADD	P7	+	1	->	P1

ADD	P9	+	P1	->	P3

SHIFT	P3	->	P2

LD	[P2]	->	P8

Cycle:	012345

Register	Remapping	Table:	

ADD	E5	+	1	->	E3

SHIFT	E3	->	E4

ADD	E4	+	E3	->	E2

SHIFT	E2	->	E1

LD	[E1]	->	E0

Core	Physical
Register

CRE	Physical
Register

Search	List: P2

First	CRE	Physical
Register
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E1

E1

P3

E2

P3

P1

E3

E3

P9

E4

P9,	P1P1P7

P7

E5
MAP	E3	->	E5

Dependence Chain Generation
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ADD E5 + 1 -> E3

SHIFT E3 -> E4 ADD E4 + E3 -> E2

SHIFT E2 -> E1

MEM_LD [E1] -> E0

Dependence Chain Generation
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• Single-Core/Quad-Core
• 4-wide	Issue
• 256	Entry	Reorder	Buffer
• 92	Entry	Reservation	Station

• Caches
• 32	KB	8-Way	Set	Associative	L1	I/D-Cache
• 1MB	8-Way	Set	Associative	Shared	Last	
Level	Cache	per	Core

• Non-Uniform	Memory	Access	Latency	
DDR3	System
• 256-Entry	Memory	Queue
• Batch	Scheduling

• Prefetchers
• Stream,	Global	History	Buffer
• Feedback	Directed	Prefetching:	
Dynamic	Degree	1-32

• CRE	Compute
• 2-wide	issue
• 1	Continuous	Runahead	issue	
context	with	a	32-entry	buffer	and	
32-entry	physical	register	file
• 4	kB	Data	Cache	

System Configuration
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21%	Single	Core	Performance	Increase	
over	prior	State	of	the	Art
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Increases	Performance	over	and	
In-Conjunction	with	Prefetching
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70%	Prefetch Coverage
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Low	Bandwidth	Overhead
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43%	Weighted	Speedup	Increase
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13%	Weighted	Speedup	Gain	over	
GHB	Prefetching
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22%	Energy	Reduction



• Runahead	prefetch coverage	is	limited	by	the	duration	of	each	
runahead	interval
• To	remove	this	constraint,	we	introduce	the	notion	of	Continuous	
Runahead	
•We	can	dynamically	identify	the	most	critical	LLC	misses	to	target	
with	Continuous	Runahead	by	tracking	the	operations	that	cause	
the	pipeline	to	frequently	stall	
•We	migrate	these	dependence	chains	to	the	CRE	where	they	are	
executed	continuously	in	a	loop

Conclusions
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• Continuous	Runahead	greatly	increases	prefetch coverage
• Increases	single-core	performance	by	34.4%
• Increases	multi-core	performance	by	43.3%	
• Synergistic	with	various	types	of	prefetching

Conclusions
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