
Continuous Runahead:
Transparent Hardware Acceleration for
Memory Intensive Workloads

Milad Hashemi, Onur Mutlu, Yale N. Patt
UT Austin/Google, ETH Zürich, UT Austin

October 19th, 2016

Continuous Runahead Outline
• Overview	of	Runahead	
• Runahead	Limitations	
• Continuous	Runahead	Dependence	Chains
• Continuous	Runahead	Engine
• Continuous	Runahead	Evaluation
• Conclusions

2

Continuous Runahead Outline
• Overview	of	Runahead	
• Runahead	Limitations	
• Continuous	Runahead	Dependence	Chains
• Continuous	Runahead	Engine
• Continuous	Runahead	Evaluation
• Conclusions

3

Runahead Execution Overview
•Runahead dynamically expands the instruction window

when the pipeline is stalled [Mutlu et al., 2003]
• The core checkpoints architectural state
• The result of the memory operation that caused the stall is

marked as poisoned in the physical register file
• The core continues to fetch and execute instructions
• Operations are discarded instead of retired
• The goal is to generate new independent cache misses

4

Traditional Runahead Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Re
qu

es
t	A

cc
ur
ac
y

Runahead

GHB

Stream

Markov	+	Stream

5

Traditional Runahead Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Re
qu

es
t	A

cc
ur
ac
y

Runahead

GHB

Stream

Markov	+	Stream

6

Runahead	is	95%	Accurate

Traditional Runahead Prefetch Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
	In
de

pe
nd

en
t	C

ac
he

	M
iss
es

7

Traditional Runahead Prefetch Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
	In
de

pe
nd

en
t	C

ac
he

	M
iss
es

8

Runahead	has	only	13%	Prefetch Coverage

Traditional Runahead Performance Gain

0%

50%

100%

150%

200%

250%

300%

350%

%
	IP
C	
Im

pr
ov
em

en
t	o

ve
r	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Runahead	Performance	Gain Oracle	Performance	Gain

9

Traditional Runahead Performance Gain

0%

50%

100%

150%

200%

250%

300%

350%

%
	IP
C	
Im

pr
ov
em

en
t	o

ve
r	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Runahead	Performance	Gain Oracle	Performance	Gain

10

Runahead	has	a	12%	Performance	Gain	
Runahead	Oracle	has	an	85%	Performance	Gain

Traditional Runahead Interval Length

0

20

40

60

80

100

120

140

Cy
cl
es
	P
er
	R
un

ah
ea
d	
In
te
rv
al

128	ROB

256	ROB

512	ROB

1024	ROB

11

Traditional Runahead Interval Length

0

20

40

60

80

100

120

140

Cy
cl
es
	P
er
	R
un

ah
ea
d	
In
te
rv
al

128	ROB

256	ROB

512	ROB

1024	ROB

12

Runahead	Intervals	are	Short							Low	Performance	Gain

•Which	instructions	to	use	during	Continuous	Runahead?
• Dynamically	target	the	dependence	chains	that	lead	to	critical	cache	
misses

•What	hardware	to	use	for	Continuous	Runahead?
• How	long	should	chains	pre-execute	for?

Continuous Runahead Challenges

13

Dependence Chains

LD	[R6]	->	R8

ADD	R9,	R1	->	R6

ADD	R4,	R5	->	R9

LD	[R3]	->	R5

Cache	
Miss

14

Experiment	with	3	policies	to	determine	the	best	policy	to	use	for	
Continuous	Runahead:
• PC-Based	Policy
• Use	the	dependence	chain	that	has	caused	the	most	misses	for	the	PC	
that	is	blocking	retirement

• Maximum	Misses	Policy
• Use	a	dependence	chain	from the	PC	that	has	generated	the	most	
misses for	the	application

• Stall	Policy
• Use	a	dependence	chain	from	the	PC	that	has	caused	the	most	full-
window	stalls for	the	application

Dependence Chain Selection Policies

15

-20

0

20

40

60

80

100

%
	IP
C	
Im

pr
ov
em

en
t

Runahead	Buffer

PC-Policy

Maximum-Misses	Policy

Stall	Policy

Dependence Chain Selection Policies

16

0
100
200
300
400
500
600
700
800
900

1000

N
um

be
r	o

f	P
Cs

90%	of	Stalls

All	Stalls

All	Misses

Why does Stall Policy Work?

17

0
100
200
300
400
500
600
700
800
900

1000

N
um

be
r	o

f	P
Cs

90%	of	Stalls

All	Stalls

All	Misses

Why does Stall Policy Work?

18

19	PCs	cover	90%	of	all	Stalls

0

0.2

0.4

0.6

0.8

1

1.2

N
or
m
al
ize

d	
Pe
rfo

rm
an
ce

1	Chain

2	Chains

4	Chains

8	Chains

16	Chains

32	Chains

Constrained Dependence Chain Storage

19

0

0.2

0.4

0.6

0.8

1

1.2

N
or
m
al
ize

d	
Pe
rfo

rm
an
ce

1	Chain

2	Chains

4	Chains

8	Chains

16	Chains

32	Chains

Constrained Dependence Chain Storage

20

Storing	1	Chain	provides	95%	
of	the	Performance

Maintain	two	structures:
• 32-entry	cache	of	PCs	to	track	the	operations	that	cause	the	pipeline	to	
frequently	stall
• The	last	dependence	chain	for	the	PC	that	has	caused	the	most	full-window	
stalls

At	every	full	window	stall:
• Increment	the	counter	of	the	PC	that	caused	the	stall
• Generate	a	dependence	chain	for	the	PC	that	has	caused	the	most	stalls

Continuous Runahead Chain Generation

21

Runahead for Longer Intervals

Continuous
Runahead

Engine
(CRE)

Core 0 Core 1

Core 2 Core 3

LLC

LLC

LLC

LLC

 DRAM
Channel 0

 DRAM
Channel 1

22

• No	Front-End
• No	Register	Renaming	Hardware
• 32	Physical	Registers
• 2-Wide
• No	Floating	Point	or	Vector	Pipeline
• 4kB	Data	Cache

CRE Microarchitecture

23

SHIFT	P1	->	P9

ADD	P7	+	1	->	P1

ADD	P9	+	P1	->	P3

SHIFT	P3	->	P2

LD	[P2]	->	P8

Cycle:	012345

Register	Remapping	Table:	

ADD	E5	+	1	->	E3

SHIFT	E3	->	E4

ADD	E4	+	E3	->	E2

SHIFT	E2	->	E1

LD	[E1]	->	E0

Core	Physical
Register

CRE	Physical
Register

Search	List: P2

First	CRE	Physical
Register

EAX EBX ECX

P8

E0

E0

P2

E1

E1

P3

E2

P3

P1

E3

E3

P9

E4

P9,	P1P1P7

P7

E5
MAP	E3	->	E5

Dependence Chain Generation

24

ADD E5 + 1 -> E3

SHIFT E3 -> E4 ADD E4 + E3 -> E2

SHIFT E2 -> E1

MEM_LD [E1] -> E0

Dependence Chain Generation

25

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1k 5k 10k 25k 50k 100k 250k 500k 1M 2M
Update	Interval	(Instructions	Retired)

Continuous	Runahead	Request	Accuracy

GMean	Performance	Gain

Interval Length

26

• Single-Core/Quad-Core
• 4-wide	Issue
• 256	Entry	Reorder	Buffer
• 92	Entry	Reservation	Station

• Caches
• 32	KB	8-Way	Set	Associative	L1	I/D-Cache
• 1MB	8-Way	Set	Associative	Shared	Last	
Level	Cache	per	Core

• Non-Uniform	Memory	Access	Latency	
DDR3	System
• 256-Entry	Memory	Queue
• Batch	Scheduling

• Prefetchers
• Stream,	Global	History	Buffer
• Feedback	Directed	Prefetching:	
Dynamic	Degree	1-32

• CRE	Compute
• 2-wide	issue
• 1	Continuous	Runahead	issue	
context	with	a	32-entry	buffer	and	
32-entry	physical	register	file
• 4	kB	Data	Cache	

System Configuration

27

0

20

40

60

80

100

120

%
	IP
C	
Im

pr
ov
em

en
t	o

ve
r	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Runahead	Buffer

Continuous	Runahead

Single-Core Performance

28

0

20

40

60

80

100

120

%
	IP
C	
Im

pr
ov
em

en
t	o

ve
r	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Runahead	Buffer

Continuous	Runahead

Single-Core Performance

29

21%	Single	Core	Performance	Increase	
over	prior	State	of	the	Art

0

20

40

60

80

100

120

140

%
	IP
C	
Im

pr
ov
em

en
t	o

ve
r	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Runahead	Buffer

Continuous	Runahead

Stream	PF

GHB	PF

Continuous	Runahead	+	Stream

Continuous	Runahead	+	GHB

Single-Core Performance + Prefetching

30

0

20

40

60

80

100

120

140

%
	IP
C	
Im

pr
ov
em

en
t	o

ve
r	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Runahead	Buffer

Continuous	Runahead

Stream	PF

GHB	PF

Continuous	Runahead	+	Stream

Continuous	Runahead	+	GHB

Single-Core Performance + Prefetching

31

Increases	Performance	over	and	
In-Conjunction	with	Prefetching

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
	In
de

pe
nd

en
t	C

ac
he

	M
iss
es
	

Pr
ef
et
ch
ed

Independent Miss Coverage

32

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
	In
de

pe
nd

en
t	C

ac
he

	M
iss
es
	

Pr
ef
et
ch
ed

Independent Miss Coverage

33

70%	Prefetch Coverage

0

0.5

1

1.5

2

2.5

N
or
m
al
ize

d	
Ba

nd
w
id
th

Continuous	Runahead

Stream	PF

GHB	PF

Bandwidth Overhead

34

0

0.5

1

1.5

2

2.5

N
or
m
al
ize

d	
Ba

nd
w
id
th

Continuous	Runahead

Stream	PF

GHB	PF

Bandwidth Overhead

35

Low	Bandwidth	Overhead

0

10

20

30

40

50

60

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 GMean

%
	W

ei
gh
te
d	
Sp
ee
du

p	
Im

pr
ov
em

en
t

Continuous	Runahead

Stream	PF

GHB	PF

Multi-Core Performance

36

0

10

20

30

40

50

60

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 GMean

%
	W

ei
gh
te
d	
Sp
ee
du

p	
Im

pr
ov
em

en
t

Continuous	Runahead

Stream	PF

GHB	PF

Multi-Core Performance

37

43%	Weighted	Speedup	Increase

0

10

20

30

40

50

60

70

80

90

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 GMean

%
	W

ei
gh
te
d	
Sp
ee
du

p	
Im

pr
ov
em

en
t

Continuous	Runahead

Stream	PF

GHB	PF

Continuous	Runahead	+	Stream

Continuous	Runahead	+	GHB

Multi-Core Performance + Prefetching

38

0

10

20

30

40

50

60

70

80

90

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 GMean

%
	W

ei
gh
te
d	
Sp
ee
du

p	
Im

pr
ov
em

en
t

Continuous	Runahead

Stream	PF

GHB	PF

Continuous	Runahead	+	Stream

Continuous	Runahead	+	GHB

Multi-Core Performance + Prefetching

39

13%	Weighted	Speedup	Gain	over	
GHB	Prefetching

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean

En
er
gy
	N
or
m
al
ize

d	
to
	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Continuous	Runahead

Stream	PF

GHB	PF

Continuous	Runahead	+	Stream

Continuous	Runahead	+	GHB

Multi-Core Energy Evaluation

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean

En
er
gy
	N
or
m
al
ize

d	
to
	

N
o-
Pr
ef
et
ch
in
g	
Ba

se
lin
e

Continuous	Runahead

Stream	PF

GHB	PF

Continuous	Runahead	+	Stream

Continuous	Runahead	+	GHB

Multi-Core Energy Evaluation

41

22%	Energy	Reduction

• Runahead	prefetch coverage	is	limited	by	the	duration	of	each	
runahead	interval
• To	remove	this	constraint,	we	introduce	the	notion	of	Continuous	
Runahead	
•We	can	dynamically	identify	the	most	critical	LLC	misses	to	target	
with	Continuous	Runahead	by	tracking	the	operations	that	cause	
the	pipeline	to	frequently	stall	
•We	migrate	these	dependence	chains	to	the	CRE	where	they	are	
executed	continuously	in	a	loop

Conclusions

42

• Continuous	Runahead	greatly	increases	prefetch coverage
• Increases	single-core	performance	by	34.4%
• Increases	multi-core	performance	by	43.3%	
• Synergistic	with	various	types	of	prefetching

Conclusions

43

Continuous Runahead:
Transparent Hardware Acceleration for
Memory Intensive Workloads

Milad Hashemi, Onur Mutlu, Yale N. Patt
UT Austin/Google, ETH Zürich, UT Austin

October 19th, 2016

44

