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Runahead Execution Overview

* Runahead dynamically expands the instruction window
when the pipeline is stalled [Mutlu et al., 2003]
* The core checkpoints architectural state

* The result of the memory operation that caused the stall is
marked as poisoned in the physical register file

* The core continues to fetch and execute instructions
» Operations are discarded instead of retired
* The goal is to generate new independent cache misses
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Traditional Runahead Accuracy
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Traditional Runahead Prefetch Coverage
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Traditional Runahead Prefetch Coverage
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Traditional Runahead Performance Gain
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Traditional Runahead Performance Gain
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Traditional Runahead Interval Length
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Traditional Runahead Interval Length
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Continuous Runahead Challenges

* Which instructions to use during Continuous Runahead?

* Dynamically target the dependence chains that lead to critical cache
misses

 What hardware to use for Continuous Runahead?
* How long should chains pre-execute for?



The University of Texas at Austin

Electrical and Computer

Engineering
Cockrell School of Engineering

Dependence Chains

LD [R3] -> R5

\

ADD R4, R5 ->R9

\

ADD R9, R1 ->R6

4

LD [R6] -> RS
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Dependence Chain Selection Policies

Experiment with 3 policies to determine the best policy to use for
Continuous Runahead:

* PC-Based Policy

* Use the dependence chain that has caused the most misses for the PC
that is blocking retirement

 Maximum Misses Policy

* Use a dependence chain from the PC that has generated the most
misses for the application

 Stall Policy

* Use a dependence chain from the PC that has caused the most full-
window stalls for the application
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Dependence Chain Selection Policies
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Why does Stall Policy Work?
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Why does Stall Policy Work?
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Constrained Dependence Chain Storage
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Constrained Dependence Chain Storage
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Continuous Runahead Chain Generation

Maintain two structures:

» 32-entry cache of PCs to track the operations that cause the pipeline to
frequently stall

* The last dependence chain for the PC that has caused the most full-window
stalls

At every full window stall:
* Increment the counter of the PC that caused the stall
* Generate a dependence chain for the PC that has caused the most stalls
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Runahead for Longer Intervals
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CRE Microarchitecture

Runahead
Issue Buffer

Runahead
Physical - Result Data
Register
File
— ALU 0 ¢ & <
9
Reservation
ALU 1 |—»
Station =~ ! L. Data
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Queue

No Front-End

No Register Renaming Hardware

32 Physical Registers

2-Wide

No Floating Point or Vector Pipeline
4kB Data Cache
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Dependence Chain Generation

Cycle: @ | ADD P7 +1->P1 |—> ADD E5 + 1 -> E3
Search List: P3, P1

SHIFT P1 -> P9 =P SHIFT E3 ->E4
Register Remapping Table: ADD P9 + P1 -> P3 —— ADDE4+E3->E2
EAX EBX  ECX 7
Colgz;i:’\clzlrcal PI P8 P2 SHIFT P3 -> P2 =) SHIFT E2 ->E1
e ES E0O | E2 LD [P2] -> P8 —+ LD[E1]->EO
FirStlgRE- ihySical E3 EO E1 %/////////////A MAP E3 ->E5
egister
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Dependence Chain Generation

ADDE5 +1->E3

/\

SHIFTE3->E4 |—>|ADDE4 + E3->E2

/

SHIFT E2 -> E1

:

MEM_LD [E1] -> EO




The University of Texas at Austin

Electrical and Computer

Engineering
Cockrell School of Engineering

Interval Length
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System Configuration

* Single-Core/Quad-Core * Prefetchers
* 4-wide Issue * Stream, Global History Buffer
* 256 Entry Reorder Buffer » Feedback Directed Prefetching:
* 92 Entry Reservation Station Dynamic Degree 1-32

e Caches

* CRE Compute

* 32 KB 8-Way Set Associative L1 I/D-Cache o
* 2-wide issue

* 1MB 8-Way Set Associative Shared Last . _
Level Cache per Core * 1 Continuous Runahead issue

 Non-Uniform Memory Access Latency context with a 32-entry buffer and
DDR3 System 32-entry physical register file

* 256-Entry Memory Queue * 4 kB Data Cache
* Batch Scheduling
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Single-Core Performance
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Single-Core Performance
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Single-Core Performance + Prefetching
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Single-Core Performance + Prefetching
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Independent Miss Coverage

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

% Independent Cache Misses
Prefetched




The University of Texas at Austin

Electrical and Computer

Engineering
Cockrell School of Engineering

Independent Miss Coverage
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Bandwidth Overhead
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Bandwidth Overhead
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Multi-Core Performance
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Multi-Core Performance
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Multi-Core Performance + Prefetching
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Multi-Core Performance + Prefetching
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Multi-Core Energy Evaluation
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Multi-Core Energy Evaluation
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Conclusions

* Runahead prefetch coverage is limited by the duration of each
runahead interval

* To remove this constraint, we introduce the notion of Continuous
Runahead

* We can dynamically identify the most critical LLC misses to target
with Continuous Runahead by tracking the operations that cause
the pipeline to frequently stall

* We migrate these dependence chains to the CRE where they are
executed continuously in a loop
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Conclusions

* Continuous Runahead greatly increases prefetch coverage
* Increases single-core performance by 34.4%
* Increases multi-core performance by 43.3%
* Synergistic with various types of prefetching
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