Efficient Data Mapping and Buffering Techniques for Multi-Level Cell **Phase-Change Memories**

HanBin Yoon, Justin Meza, Naveen Muralimanohar^{*}, Onur Mutlu, Norm Jouppi^{*†}

* Hewlett-Packard Labs [†] Google, Inc. Carnegie Mellon University

Carnegie Mellon University SAFARI

Executive Summary

- Phase-change memory (PCM) is a promising emerging technology
 - More scalable than DRAM, faster than flash
 - Multi-level cell (MLC) PCM = multiple bits per cell \rightarrow high density
- Problem: Higher latency/energy compared to non-MLC PCM
- Observation: MLC bits have *asymmetric* read/write characteristics
 - Some bits can be read quickly but written slowly and vice versa

Executive Summary

- Goal: Read data from *fast-read* bits; write data to *fast-write* bits
- Solution:
 - **Decouple** bits to expose fast-read/write memory regions
 - Map read/write-intensive data to appropriate memory regions
 - **Split** device row buffers to leverage decoupling for better locality
- Result:
 - Improved performance (+19.2%) and energy efficiency (+14.4%)
 - Across SPEC CPU2006 and data-intensive/cloud workloads

Outline

- Background
- Problem and Goal
- Key Observations
 - MLC-PCM cell read asymmetry
 - MLC-PCM cell write asymmetry
- Our Techniques
 - Decoupled Bit Mapping (DBM)
 - Asymmetric Page Mapping (APM)
 - Split Row Buffering (SRB)
- Results
- Conclusions

Background: PCM

- Emerging high-density memory technology
 - Potential for scalable DRAM alternative
 - Projected to be 3 to 12x denser than DRAM
 - Access latency within an order or magnitude of DRAM
- Stores data in the form of *resistance* of cell material

PCM Resistance \rightarrow Value

Cell value:

Cell resistance

Background: MLC-PCM

• Multi-level cell: more than 1 bit per cell

- Further increases density by 2 to 4x [Lee+,ISCA'09]

- But MLC-PCM also has drawbacks
 - Higher latency and energy than single-level cell PCM
 - Let's take a look at why this is the case

MLC-PCM Resistance \rightarrow Value

Cell resistance

MLC-PCM Resistance \rightarrow Value

Less margin between values

 \rightarrow need more precise sensing/modification of cell contents

 \rightarrow higher latency/energy (~2x for reads and 4x for writes)

Cell value:

Cell resistance

Problem and Goal

- Want to leverage MLC-PCM's strengths
 - Higher density
 - More scalability than existing technologies (DRAM)
- But, also want to mitigate MLC-PCM's weaknesses
 - Higher latency/energy
- Our goal in this work is to design new hardware/software optimizations designed to mitigate the weaknesses of MLC-PCM

Outline

- Background
- Problem and Goal
- Key Observations
 - MLC-PCM cell read asymmetry
 - MLC-PCM cell write asymmetry
- Our Techniques
 - Decoupled Bit Mapping (DBM)
 - Asymmetric Page Mapping (APM)
 - Split Row Buffering (SRB)
- Results
- Conclusions

- The <u>read</u> latency/energy of Bit 1 is lower than that of Bit 0
- This is due to how MLC-PCM cells are read

Simplified example

Capacitor filled with reference voltage

MLC-PCM cell with unknown resistance

Simplified example

Voltage

- In existing devices
 - Both MLC bits are read at the same time
 - Must wait maximum time to read both bits
- However, we can infer information about Bit 1 before this time

Time to determine Bit 0's value

Time

Observation 2: Write Asymmetry

- The write latency/energy of Bit 0 is lower than that of Bit 1
- This is due to how PCM cells are written
- In PCM, cell resistance must physically be changed
 - Requires applying different amounts of current
 - For different amounts of time

Observation 2: Write Asymmetry

- Writing both bits in an MLC cell: 250ns
- Only writing Bit 0: **210ns**
- Only writing Bit 1: 250ns
- Existing devices write both bits simultaneously (250ns)

Key Observation Summary

- Bit 1 is faster to **read** than Bit 0
- Bit 0 is faster to write than Bit 1
- We refer to Bit 1 as the *fast-read/slow-write* bit (FR)
- We refer to Bit 0 as the *slow-read/fast-write* bit (FW)
- We leverage read/write asymmetry to enable several optimizations

Outline

- Background
- Problem and Goal
- Key Observations
 - MLC-PCM cell read asymmetry
 - MLC-PCM cell write asymmetry
- Our Techniques
 - Decoupled Bit Mapping (DBM)
 - Asymmetric Page Mapping (APM)
 - Split Row Buffering (SRB)
- Results
- Conclusions

SAFARI

- Key Idea: Logically *decouple* FR bits from FW bits
 - Expose FR bits as low-read-latency regions of memory
 - Expose FW bits as low-write-latency regions of memory

Coupled (baseline): Contiguous **bits** alternate between FR and FW

Coupled (baseline): Contiguous **bits** alternate between FR and FW

Coupled (baseline): Contiguous **bits** alternate between FR and FW

Decoupled: Contiguous regions alternate between FR and FW

- By decoupling, we've created regions with distinct characteristics
 - -We examine the use of 4KB regions (e.g., OS page size)

Physical address

Fast read page Fast write page

- Want to match frequently read data to FR pages and vice versa
- Toward this end, we propose a new **OS page allocation** scheme

Technique 2: Asymmetric Page Mapping (APM)

- Key Idea: predict page read/write intensity and map accordingly
 - Measure write intensity of instructions that access data
 - If instruction has high write intensity and first touches page
 »OS allocates FW page, otherwise, allocates FR page
- Implementation (full details in paper)
 - Small hardware cache of instructions that often write data
 - Updated by cache controller when data written to memory
 - New instruction for OS to query table for prediction

APM) ordingly data nes page

te data memory າ

Technique 3: Split Row Buffering (SRB)

- Row buffer stores contents of currently-accessed data
 - Used to buffer data when sending/receiving across I/O ports
- Key Idea: With DBM, buffer FR bits *independently* from FW bits
 - Coupled (baseline): must use large *monolithic* row buffer (8KB)
 - DBM: can use two smaller *associative* row buffers (2x4KB)
 - Can improve row buffer locality, reducing latency and energy
- Implementation (full details in paper)
 - No additional SRAM buffer storage

Requires multiplexer logic for selecting FR/FW buffers

Outline

- Background
- Problem and Goal
- Key Observations
 - MLC-PCM cell read asymmetry
 - MLC-PCM cell write asymmetry
- Our Techniques
 - Decoupled Bit Mapping (DBM)
 - Asymmetric Page Mapping (APM)
 - Split Row Buffering (SRB)
- Results
- Conclusions

Evaluation Methodology

- Cycle-level x86 CPU-memory simulator
 - CPU: 8 cores, 32KB private L1/512KB private L2 per core
 - Shared L3: 16MB on-chip eDRAM
 - Memory: MLC-PCM, dual channel DDR3 1066MT/s, 2 ranks
- Workloads
 - SPEC CPU2006, NASA parallel benchmarks, GraphLab
- Performance metrics
 - Multi-programmed (SPEC): weighted speedup

Multi-threaded (NPB, GraphLab): execution time

Comparison Points

- **Conventional**: coupled bits (slow read, slow write)
- All-FW: hypothetical all-FW memory (slow read, fast write)
- All-FR: hypothetical all-FR memory (fast read, slow write)
- **DBM**: decouples bit mapping (50% FR pages, 50% FW pages)
- **DBM+**: techniques that leverage DBM (APM and SRB)
- *Ideal*: idealized cells with best characteristics (fast read, fast write)

System Performance

Conventional

- All fast write
- All fast read
- DBM+APM+SRB

System Performance

Conventional

- All fast write
- All fast read

■ DBM+APM+SRB

System Performance

Conventional

- All fast write
- All fast read

DBM+APM+SRB

Memory Energy Efficiency

Conventional

All fast write

All fast read

DBM+APM+SRB

Memory Energy Efficiency

Conventional

All fast write

All fast read

DBM+APM+SRB

Other Results in the Paper

- Improved thread fairness (less resource contention) From speeding up per-thread execution
- Techniques do not exacerbate PCM wearout problem ~6 year operational lifetime possible

Outline

- Background
- Problem and Goal
- Key Observations
 - MLC-PCM cell read asymmetry
 - MLC-PCM cell write asymmetry
- Our Techniques
 - Decoupled Bit Mapping (DBM)
 - Asymmetric Page Mapping (APM)
 - Split Row Buffering (SRB)
- Results
- Conclusions

Conclusions

- Phase-change memory (PCM) is a promising emerging technology
 - More scalable than DRAM, faster than flash
 - Multi-level cell (MLC) PCM = multiple bits per cell \rightarrow high density
- Problem: Higher latency/energy compared to non-MLC PCM
- Observation: MLC bits have *asymmetric* read/write characteristics
 - Some bits can be read quickly but written slowly and vice versa

Conclusions

- Goal: Read data from *fast-read* bits; write data to *fast-write* bits
- Solution:
 - **Decouple** bits to expose fast-read/write memory regions
 - Map read/write-intensive data to appropriate memory regions
 - **Split** device row buffers to leverage decoupling for better locality
- Result:
 - Improved performance (+19.2%) and energy efficiency (+14.4%)
 - Across SPEC CPU2006 and data-intensive/cloud workloads

Thank You!

Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories

HanBin Yoon, **Justin Meza**, Naveen Muralimanohar^{*}, Onur Mutlu, Norm Jouppi^{*†}

Carnegie Mellon University * Hewlett-Packard Labs † Google, Inc.

Carnegie Mellon University SAFARI

Backup Slides

PCM Cell Operation

SAFARI

APM Implementation

