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Executive Summary
 Phase-change memory (PCM) is a promising emerging technology

− More scalable than DRAM, faster than flash
− Multi-level cell (MLC) PCM = multiple bits per cell → high density

 Problem: Higher latency/energy compared to non-MLC PCM
 Observation: MLC bits have asymmetric read/write characteristics

− Some bits can be read quickly but written slowly and vice versa
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Executive Summary
 Goal: Read data from fast-read bits; write data to fast-write bits
 Solution:

− Decouple bits to expose fast-read/write memory regions
− Map read/write-intensive data to appropriate memory regions
− Split device row buffers to leverage decoupling for better locality

 Result:
– Improved performance (+19.2%) and energy efficiency (+14.4%)
– Across SPEC CPU2006 and data-intensive/cloud workloads
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Outline
 Background
 Problem and Goal
 Key Observations

– MLC-PCM cell read asymmetry
– MLC-PCM cell write asymmetry

 Our Techniques
– Decoupled Bit Mapping (DBM)
– Asymmetric Page Mapping (APM)
– Split Row Buffering (SRB)

 Results
 Conclusions
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Background: PCM
 Emerging high-density memory technology

– Potential for scalable DRAM alternative
• Projected to be 3 to 12x denser than DRAM
• Access latency within an order or magnitude of DRAM

 Stores data in the form of resistance of cell material
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PCM Resistance → Value

Cell resistance

1 0Cell value:
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Background: MLC-PCM
 Multi-level cell: more than 1 bit per cell

− Further increases density by 2 to 4x [Lee+,ISCA'09]

 But MLC-PCM also has drawbacks
− Higher latency and energy than single-level cell PCM
− Let's take a look at why this is the case
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MLC-PCM Resistance → Value

Cell resistance

11 000110Cell value:

Bit 1 Bit 0
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MLC-PCM Resistance → Value

Cell resistance

11 000110Cell value:

Less margin between values
→ need more precise sensing/modification of cell contents
→ higher latency/energy (~2x for reads and 4x for writes)
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Problem and Goal
 Want to leverage MLC-PCM's strengths

– Higher density
– More scalability than existing technologies (DRAM)

 But, also want to mitigate MLC-PCM's weaknesses
– Higher latency/energy

 Our goal in this work is to design new hardware/software 
optimizations designed to mitigate the weaknesses of MLC-PCM
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Observation 1: Read Asymmetry
 The read latency/energy of Bit 1 is lower than that of Bit 0

 This is due to how MLC-PCM cells are read
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Observation 1: Read Asymmetry

Capacitor filled 
with reference 

voltage

MLC-PCM cell 
with unknown 

resistance

Simplified example
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Observation 1: Read Asymmetry

Simplified example



15

Observation 1: Read Asymmetry

Simplified example Infer data value
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Observation 1: Read Asymmetry

Voltage

Time
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Observation 1: Read Asymmetry

Voltage

Time

11 000110



18

Observation 1: Read Asymmetry

Voltage

Time

Initial voltage (fully charged capacitor)

11 000110
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Observation 1: Read Asymmetry

Voltage

Time

PCM cell connected → draining capacitor

11 000110
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10

Observation 1: Read Asymmetry

Voltage

Time

Capacitor drained → data value known (01)

11 0001
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Observation 1: Read Asymmetry
 In existing devices

– Both MLC bits are read at the same time
– Must wait maximum time to read both bits

 However, we can infer information about Bit 1 before this time



22

Observation 1: Read Asymmetry

Voltage

Time

11 000110
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Observation 1: Read Asymmetry

Voltage

Time

11 000110
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Observation 1: Read Asymmetry

Voltage

Time

11 000110

Time to determine 
Bit 1's value
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Observation 1: Read Asymmetry

Voltage

Time

11 000110

Time to determine 
Bit 0's value
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Observation 2: Write Asymmetry
 The write latency/energy of Bit 0 is lower than that of Bit 1

 This is due to how PCM cells are written

 In PCM, cell resistance must physically be changed
– Requires applying different amounts of current
– For different amounts of time



27

Observation 2: Write Asymmetry
 Writing both bits in an MLC cell: 250ns
 Only writing Bit 0: 210ns
 Only writing Bit 1: 250ns

 Existing devices write both bits simultaneously (250ns)
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Key Observation Summary
 Bit 1 is faster to read than Bit 0
 Bit 0 is faster to write than Bit 1

 We refer to Bit 1 as the fast-read/slow-write bit (FR)
 We refer to Bit 0 as the slow-read/fast-write bit (FW)

 We leverage read/write asymmetry to enable several optimizations
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Technique 1:
Decoupled Bit Mapping (DBM)

 Key Idea:  Logically decouple FR bits from FW bits
– Expose FR bits as low-read-latency regions of memory
– Expose FW bits as low-write-latency regions of memory
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Technique 1:
Decoupled Bit Mapping (DBM)

MLC-PCM cell
Bit 1 (FR)

Bit 0 (FW)
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Technique 1:
Decoupled Bit Mapping (DBM)
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Technique 1:
Decoupled Bit Mapping (DBM)
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Technique 1:
Decoupled Bit Mapping (DBM)
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Technique 1:
Decoupled Bit Mapping (DBM)

 By decoupling, we've created regions with distinct characteristics
– We examine the use of 4KB regions (e.g., OS page size)

 Want to match frequently read data to FR pages and vice versa
 Toward this end, we propose a new OS page allocation scheme

Fast read page Fast write page

Physical address
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Technique 2:
Asymmetric Page Mapping (APM)

 Key Idea: predict page read/write intensity and map accordingly
– Measure write intensity of instructions that access data
– If instruction has high write intensity and first touches page

»OS allocates FW page, otherwise, allocates FR page
 Implementation (full details in paper)

– Small hardware cache of instructions that often write data
– Updated by cache controller when data written to memory
– New instruction for OS to query table for prediction
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Technique 3:
Split Row Buffering (SRB)

 Row buffer stores contents of currently-accessed data
– Used to buffer data when sending/receiving across I/O ports

 Key Idea:  With DBM, buffer FR bits independently from FW bits
– Coupled (baseline): must use large monolithic row buffer (8KB)
– DBM: can use two smaller associative row buffers (2x4KB)
– Can improve row buffer locality, reducing latency and energy

 Implementation (full details in paper)
– No additional SRAM buffer storage
– Requires multiplexer logic for selecting FR/FW buffers



38

Outline
 Background
 Problem and Goal
 Key Observations

– MLC-PCM cell read asymmetry
– MLC-PCM cell write asymmetry

 Our Techniques
– Decoupled Bit Mapping (DBM)
– Asymmetric Page Mapping (APM)
– Split Row Buffering (SRB)

 Results
 Conclusions



39

Evaluation Methodology
 Cycle-level x86 CPU-memory simulator

– CPU: 8 cores, 32KB private L1/512KB private L2 per core
– Shared L3: 16MB on-chip eDRAM
– Memory: MLC-PCM, dual channel DDR3 1066MT/s, 2 ranks

 Workloads
– SPEC CPU2006, NASA parallel benchmarks, GraphLab

 Performance metrics
– Multi-programmed (SPEC):  weighted speedup
– Multi-threaded (NPB, GraphLab):  execution time
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Comparison Points
 Conventional: coupled bits (slow read, slow write)
 All-FW: hypothetical all-FW memory (slow read, fast write)
 All-FR: hypothetical all-FR memory (fast read, slow write)
 DBM: decouples bit mapping (50% FR pages, 50% FW pages)
 DBM+: techniques that leverage DBM (APM and SRB)
 Ideal: idealized cells with best characteristics (fast read, fast write)
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System Performance
+19%

+10% +16% +13%

+31%

Conventional

All fast write
All fast read

DBM             
DBM+APM+SRB

Ideal                  

Normalized 
Speedup
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System Performance
+19%

+10% +16% +13%

+31%

Conventional

All fast write
All fast read

DBM             
DBM+APM+SRB

Ideal                  

All-FR > All-FW → dependent on 
workload access patterns

Normalized 
Speedup
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System Performance
+19%

+10% +16% +13%

+31%

Conventional

All fast write
All fast read

DBM             
DBM+APM+SRB

Ideal                  

DBM allows systems to take 
advantage of reduced read latency 

(FR region) and reduced write 
latency (FW region)

Normalized 
Speedup
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Memory Energy Efficiency
+14%

+5%
+12% +8%

+30%

Conventional

All fast write
All fast read

DBM             
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Ideal                  
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Memory Energy Efficiency
+14%

+5%
+12% +8%

+30%

Conventional

All fast write
All fast read

DBM             
DBM+APM+SRB

Ideal                  

Benefits from lower read 
energy by exploiting read 

asymmetry (dominant case) 
and from lower write energy by 

exploiting write asymmetry

Normalized 
Performance 
per Watt
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Other Results in the Paper
 Improved thread fairness (less resource contention)

– From speeding up per-thread execution

 Techniques do not exacerbate PCM wearout problem
– ~6 year operational lifetime possible
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Outline
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Conclusions
 Phase-change memory (PCM) is a promising emerging technology

− More scalable than DRAM, faster than flash
− Multi-level cell (MLC) PCM = multiple bits per cell → high density

 Problem: Higher latency/energy compared to non-MLC PCM
 Observation: MLC bits have asymmetric read/write characteristics

− Some bits can be read quickly but written slowly and vice versa
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Conclusions
 Goal: Read data from fast-read bits; write data to fast-write bits
 Solution:

− Decouple bits to expose fast-read/write memory regions
− Map read/write-intensive data to appropriate memory regions
− Split device row buffers to leverage decoupling for better locality

 Result:
– Improved performance (+19.2%) and energy efficiency (+14.4%)
– Across SPEC CPU2006 and data-intensive/cloud workloads
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Thank You!
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Backup Slides
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PCM Cell Operation
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Integrating ADC
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APM Implementation

ProgCounter Instruction

Cache

Write 
access Writeback

Memory

PC WBs
0x0040100f 7279
0x00400fbd 11305
0x00400f94 5762
0x00400fc1 4744

PC table

+

0x00400f91 mov %r14d,%eax
0x00400f94 movq $0xff..,0xb8(%r13)
0x00400f9f mov %edx,0xcc(%r13)
0x00400fa6 neg %eax
0x00400fa8 lea 0x68(%r13),%rcx

00
01
10
11

10

Program execution                  .
PC table 
indices

index
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