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Executive Summary

Observations

- During PCM write, latency and energy are sensitive to the data to be written as well as
the content that is overwritten, which is unknown at the time to write

- Overwriting known all-0s or all-1s content improves both latency and energy by
programming the PCM cells only in one direction, i.e., using SET or RESET operations,
not both

|dea: Data Content Aware PCM Writes

- Overwrite unknown content only when necessary, and otherwise overwrite all-Os and
all-1s content == reduces latency and energy

Two Key Mechanisms

- Address translation: to translate the write address to a physical address within
memory that contains the best type of content to overwrite

- Re-Initialization: to methodically re-initialize unused memory locations with known
all-Os and all-1s content in a manner that does not interfere with regular read and
write accesses

Performance Evaluation

- Significant improvement of system performance (27%) and reduction of energy (43%)
for SPEC CPU2017, NAS Parallel, and Tensorflow Benchmarks 2



Asymmetry in PCM SET and RESET
Operations

e PCM stores data as resistance of its cells

e RESET operation (1—> 0): fast and high energy

e SET operation (0 —> 1): slow and low energy
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Baseline PCM Write Operation

e Use both SET and RESET operations

* Program and Verify (P&V) Scheme
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PreSET and PreRESET

e Use either SET and RESET operations, not both

e PreSET or PreRESET is decided at design-time and used for
all PCM writes, independent of the write data
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Qureshi et al., “PreSET: Improving performance of phase change memories by exploiting
asymmetry in write times,” in ISCA, 2012



PCM Write Related Key Observations (l)

* Energy benefit of PreSET vs. PreRESET depends on the
fraction of SET bits in the write data

10000 ~ ‘\\ overwritten content = == 3||-Os -@- .ll-1s
- - - -
=2 8000 - S
E . _
& 6000 - o<
c “\
; 4000 - -
) . "~y -~
A 2000 - @< =
O
0- ~®
1 | I I I I
0 20 40 60 80 100

Fraction of SET bits in the write data (%)



PCM Write Related Key Observations (l)

* Energy benefit of PreSET vs. PreRESET depends on the
fraction of SET bits in the write data

Idea: Use PreRESET when the fractions of SET bits in the
write data is less than 60%, otherwise use PreSET



PCM Write Related Key Observations (ll)

e The fraction of SET bits in the write data is workload

dependent
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PCM Write Related Key Observations (ll)

e The fraction of SET bits in the write data is workload
dependent

Idea: Re-initialize unused memory locations with all-Os or
all-1s based on the the PCM writes in a workload




Data Content Aware PCM Writes

e Key ldea
- To serve PCM writes

> Overwrite known all-0s or all-1s content: to improve performance and energy

> QOverwrite unknown content: only when is no all-Os or all-1s initialized location
available in PCM

* Three components

- Analysis of write data
» Analyze the fraction of SET bits in write data and estimate the energy-latency
trade-offs for SET and RESET operations in PCM
- Address translation

> Translate the write address to a physical address within memory that contains
the best type of content to overwrite, and record this translation in a table for
future accesses.

- Re-initialization

> Re-initialize unused memory locations with known all-Os or all-ones content in a
manner that does not interfere with regular read and write accesses 10



Outline

e Detailed design of DATACON
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as write cache to PCM main memory
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System Overview

e DRAM-PCM hybrid memory with embedded DRAM (eDRAM)
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System Overview

e DRAM-PCM hybrid memory with embedded DRAM (eDRAM)
as write cache to PCM main memory

One eDRAM cache line maps to
eight memory lines in a PCM rank




Detailed Design of DATACON

e DATACON adds four new components to the baseline design

- Address Translation Table (AT): to record logical-to-physical address translations, which are needed
to redirect write requests to the best overwritten content in PCM

- Lookup Table (LUT): to cache recently-used address translation information in the memory controller

- Address Status Unit (SU): to select an all-Os or all-1s initialized physical address for the logical
address of a write request

- Initialization Queue (InitQ): to record unused physical locations in PCM, such that they can be re-
initialized methodically
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Address Translation (l): Read
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Address Translation (l): Read
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Address Translation (l): Read
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Address Translation (ll): Write
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Address Translation (ll): Write
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Address Translation (ll): Write
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Address Translation (ll): Write
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Address Translation (ll): Write
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Address Translation (ll): Write
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Outline

e (Qverwritten content selection
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Overwritten Content Selection
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Overwritten Content Selection

[ Write
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DATACON overwrites unknown content only when there is no all-0s
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Re-initialization Requests

e Two queues to record the address of all-Os and all-1s content in
PCM

- SetQ and ResetQ

e Thresholding to initiate re-initialization requests
- Re-initialization requests stored in the InitQ

e Re-initialization requests serviced when
- Read and the write queues are both empty, or

- Write queue is empty and read request is to a memory
partition different from the re-initialization request

» Exploit’s PCM'’s partition-level parallelism (PALP)

Song et al., “Enabling and Exploiting Partition-Level Parallelism (PALP) in Phase Change
Memories,” in CASES, 2019
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System Configuration

e A cycle-level in-house x86 multi-core simulator, whose front-
end is based on Pin

- To simulate 8 out-of-order cores

e A main memory simulator, closely matching the JEDEC

Nonvolatile Dual In-line Memory Module (NVDIMM)- N/F/P
Specifications

- Ramulator to simulate DRAM
- NVMain to simulate PCM

Ramulator: Kim et al. “Ramulator: A fast and extensible DRAM simulator” CAL, 2016.
NVMain: Poremba et al. “Nvmain 2.0: A user-friendly memory simulator to model (non-)
volatile memory systems” CAL, 2015
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Simulation Parameters

Processor 8 cores per socket, 3.32 GHz, out-of-order
L1 cache Private 32KB per core, 8-way

L2 cache Private 512KB per core, 8-way

L3 cache Shared 8MB, 16-way

eDRAM cache Shared 64MB per socket, 16-way, on-chip

Main memory

128GB PCM.

4 channels, 4 ranks/channel, 8 banks/rank, 8 parti-
tions/bank, 128 tiles/partition, 4096 rows/tile.
Memory interface = DDR4

Memory clock = 1066MHz

PCM Timings = See Table 1
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Simulation Parameters

Baseline Timing Parameters
tRCD tRAS tRP tRC

Read 3.75ns  55.25ns 1ns 56.25ns
tRCD tBURST tWR tRP tRC
Write 75ns 15ns 190ns Ins 209.75ns

DATACON Timing Parameters
tRCD tRAS tRP tRC

Read 3.75ns  55.25ns Ins  56.25ns
tRCD tBURST tWR tRP tRC
SET (all-0s) 3.751s 15ns 150ns Ins 169.75ns
RESET (all-1s) 3.75ns 15ns 40ns Ins 59.75ns
Write (unknown)  75ns 15ns 190ns Ins 209.75ns

34



Evaluated Systems

Baseline: services PCM writes by overwriting unknown content

- Lee et al., “Architecting phase change memory as a
scalable DRAM alternative,” in ISCA, 2009

PreSET: services PCM writes by always overwriting all-1s

- Qureshi et al., “PreSET: Improving performance of phase
change memories by exploiting asymmetry in write times,” in
ISCA, 2012

Flip-N-Write: services PCM writes by finding out the memory
content using additional reads and programming only bits that
are different from the write data

- Cho et al., “Flip-N-Write: a simple deterministic technique to
improve PRAM write performance, energy and endurance,”
in MICRO, 2009
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Workloads

o SPEC CPU2017

e NAS Parallel Benchmarks
e JTensorflow workloads
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Execution time
normalized to Baseline

Overall System Performance

e Execution time normalized to Baseline

1.5
[ FlipN-Write [ZZ] PreSET [l DATACON
1.0 4 ] []
N j
0.0
¢ z ° % & § £ f 85 % £ £ = £ g £ g * T g u
> 2 & £ g ¢ 5 & T & X
P o0 c o o o 0 £ T o
5% % : ~ N
"d T
s SPEC X NAS] ” TensorFlow <

37




Overall System Performance

Average Execution time of DATACON is
40% lower than Baseline,
47% lower than Flip-N-Write, and
27% lower than PreSET
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e Energy normalized to Baseline
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Memory System Energy

e Energy normalized to Baseline

Average Energy of DATACON is
27% lower than Baseline,
26% lower than Flip-N-Write, and
43% lower than PreSET




Total PCM writes (%)

Overwritten Content

e Qverwritten content in DATACON and PreSET
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Overwritten Content

e Qverwritten content in DATACON and PreSET

DATACON overwrites unknown content for only 4% of PCM writes.
PreSET overwrites unknown content for 59% of PCM writes.




Re-initialization Overhead

Total PCM energy distributed into energy to service reads,
writes, and re-initialization requests in DATACON
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Re-initialization Overhead

e Total PCM energy distributed into energy to service reads,
writes, and re-initialization requests in DATACON

Re-initialization requests constitute, on average,
11% of the total PCM energy
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Conclusion

Observations

- During PCM write, latency and energy are sensitive to the data to be written as well as
the content that is overwritten, which is unknown at the time to write

- Overwriting known all-0s or all-1s content improves both latency and energy by
programming the PCM cells only in one direction, i.e., using SET or RESET operations,
not both

|dea: Data Content Aware PCM Writes

- Overwrite unknown content only when necessary, and otherwise overwrite all-Os and
all-1s content == reduces latency and energy

Two Key Mechanisms

- Address translation: to translate the write address to a physical address within
memory that contains the best type of content to overwrite

- Re-Initialization: to methodically re-initialize unused memory locations with known
all-Os and all-1s content in a manner that does not interfere with regular read and
write accesses

Performance Evaluation

- Significant improvement of system performance (27%) and reduction of energy (43%)
for SPEC CPU2017, NAS Parallel, and Tensorflow Benchmarks 46
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