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Abstract

Indirect jump instructions are used to implement increasingly-
common programming constructs such as virtual function calls,
switch-case statements, jump tables, and interface calls. The per-
formance impact of indirect jumps is likely to increase because in-
direct jumps with multiple targets are difficult to predict even with
specialized hardware.

This paper proposes a new way of handling hard-to-predict in-
direct jumps: dynamically predicating them. The compiler (static or
dynamic) identifies indirect jumps that are suitable for predication
along with their control-flow merge (CFM) points. The hardware
predicates the instructions between different targets of the jump and
its CFM point if the jump turns out to be hard-to-predict at run time.
If the jump would actually have been mispredicted, its dynamic pred-
ication eliminates a pipeline flush, thereby improving performance.

Our evaluations show that Dynamic Indirect jump Predication
(DIP) improves the performance of a set of object-oriented appli-
cations including the Java DaCapo benchmark suite by 37.8% com-
pared to a commonly-used branch target buffer based predictor, while
also reducing energy consumption by 24.8%. We compare DIP to
three previously proposed indirect jump predictors and find that it
provides the best performance and energy-efficiency.

Categories and Subject Descriptors C.1.0 [Processor Architec-
tures]: General; C.5.3 [Computer System Implementation]: Micro-
computers - Microprocessors; D.3.4 [Programming Languages]:
Processors - Compilers

General Terms Design, Performance

Keywords Dynamic predication, indirect jumps, virtual functions,
object-oriented languages, predicated execution.

1. Introduction

Indirect jumps are becoming more common as an increasing number
of programs is written in object-oriented languages such as Java, C#,
and C++. To support polymorphism [8], these languages include vir-
tual function calls that are implemented using indirect jump instruc-
tions in the instruction set architecture (ISA). Previous research has
shown that modern object-oriented languages result in significantly
more indirect jumps than traditional languages [7]. In addition to vir-
tual function calls, indirect jumps are commonly used in the imple-
mentation of programming language constructs such as switch-case
statements, jump tables, and interface calls [2].

Unfortunately, current pipelined processors are not good at pre-
dicting the target address of an indirect jump if multiple different tar-
gets are exercised at runtime. Such hard-to-predict indirect jumps not
only limit processor performance and cause wasted energy consump-
tion but also contribute significantly to the performance difference
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between traditional and object-oriented languages [44]. The goal of
this paper is to develop new architectural support to improve the per-
formance of programming language constructs implemented using
indirect jumps.

Figure 1 demonstrates the problem of indirect jumps in object-
oriented Java (DaCapo [5]) and C++ applications. This figure shows
the indirect and conditional jump mispredictions per 1000 retired in-
structions (MPKI) on a state-of-the-art Intel Core2 Duo 6600 [22]
processor. The data is collected with hardware performance counters
using VTune [23]. Note that the Intel Core2 Duo processor includes
a specialized indirect jump predictor [16]. Despite specialized hard-
ware to predict indirect jump targets, 41% of all jump mispredictions
in the examined applications are due to indirect jumps. Hence, hard-
to-predict indirect jumps cause a large fraction of all mispredictions
in object-oriented Java and C++ applications. Therefore, more so-
phisticated architectural support than “target prediction” is needed to
reduce the negative impact of indirect jump mispredictions on per-
formance of object-oriented applications.
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Figure 1. Indirect and conditional jump mispredictions in object-oriented Java and C++

applications run using the Windows Vista operating system on an Intel Core2 Duo 6600

Basic Idea: We propose a new way of handling hard-to-predict
indirect jumps: dynamically predicating them. By dynamically predi-
cating an indirect jump, the processor increases the probability of the
correct target path of the jump to be fetched. Our technique stems
from the observation that program control-flow paths starting from
different targets of some indirect jump instructions usually merge
at some point in the program, which we call the control-flow merge
(CFM) point. The static or dynamic compiler1 identifies such indirect
jump instructions along with their CFM points and conveys them to
the hardware through modifications in the instruction set architec-
ture. When the hardware fetches such a jump, it estimates whether
or not the jump is hard to predict using a confidence estimator [25].
If the jump is hard to predict, the processor predicates the instruc-
tions between N targets of the indirect jump and the CFM point. We
evaluate performance/complexity for different N, and find N=2 is the
best trade-off. When the processor reaches the CFM point on all N
different target paths, it inserts select-µops to reconcile the data val-
ues produced on each path and continues execution on the control-
independent path. When the indirect jump is resolved, the processor

1 In the rest of the paper, we use the term “compiler” to refer to either a static or dynamic
compiler. Our scheme can be used in conjunction with both types of compilers.



stops dynamic predication and turns the instructions that correspond
to the incorrect target address(es) into NOPs as their predicate val-
ues are false. The instructions -if any- that correspond to the correct
target address commit their results. As such, if the jump would ac-
tually have been mispredicted, its dynamic predication eliminates a
full pipeline flush, thereby improving performance.

Our experimental evaluation shows that Dynamic Indirect jump
Predication (DIP) improves the performance of a set of indirect-
jump-intensive object-oriented Java and C++ applications by 37.8%
over a commonly-used branch target buffer (BTB) based indirect
jump predictor, which is employed by most current processors. We
compare DIP to three previously proposed indirect jump predic-
tors [9, 13, 30] and find that it provides significantly better perfor-
mance than all of them. Our results also show that DIP provides the
largest improvements in energy-efficiency and energy-delay product.

We analyze the hardware cost and complexity of DIP and show
that if dynamic predication is already implemented to reduce the
misprediction penalty due to conditional branches [31], DIP requires
little extra hardware. Hence, DIP can be a promising, energy-efficient
way to reduce the performance penalty of indirect jumps without
requiring large specialized hardware structures for predicting indirect
jumps.

Contributions. We make the following contributions:
1. We provide a new architectural approach to support indirect

jumps, an important performance limiter in object-oriented ap-
plications. To our knowledge, DIP is the first mechanism that en-
ables the predication of indirect jumps.

2. We extensively evaluate DIP in comparison to several previously-
proposed indirect jump prediction schemes and show that DIP
provides the highest performance and energy improvements in
modern object-oriented applications written in Java and C++.
Even when used in conjunction with sophisticated predictors,
DIP significantly improves performance and energy-efficiency.

3. We show that DIP can be implemented with little extra hardware
if dynamic predication is already implemented to reduce the mis-
prediction penalty due to conditional branches. Hence, we pro-
pose using dynamic predication as a general framework for re-
ducing the performance penalty due to unpredictability in pro-
gram control-flow (be it due to conditional branches or indirect
jumps).

2. Background on Dynamic Predication of
Conditional Branches

Compiler-based predication [1] has traditionally been used to elimi-
nate conditional branches (hence conditional branch mispredictions)
by converting control dependencies to data dependencies, but it is
not used for indirect jumps. Dynamic predication was first pro-
posed to eliminate the misprediction penalty due to simple hammock
branches [34] and later extended to handle a large set of complex
control-flow graphs [31]. Dynamic predication has advantages over
static predication because (1) it does not require significant changes
to the instruction set architecture, such as predicated instructions and
architectural predicate registers, (2) it can adapt to dynamic changes
in branch behavior, and (3) it is applicable to a much wider range of
control-flow graphs and therefore provides higher performance [31].
Unfortunately, none of these previous static or dynamic predication
approaches were applicable to indirect jumps.

We first briefly review the previous dynamic predication mech-
anisms proposed for conditional branches [34, 31] to provide suffi-
cient background and the terminology used in this paper.

Figure 2 shows the control-flow graph (CFG) of a conditional
branch and the dynamically predicated instructions. The candidate
branches for dynamic predication are identified at runtime or marked
by the compiler. When the processor fetches a candidate branch, it
estimates whether or not the branch is hard to predict using a branch
confidence estimator [25]. If the branch prediction has low confi-
dence, the processor generates a predicate using the branch con-
dition and enters dynamic predication mode (dpred-mode). In this
mode, the processor fetches both paths after the candidate branch
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Figure 2. Dynamic predication of a conditional branch: (a) source code (b) CFG (c) as-
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and dynamically predicates the instructions with the correspond-
ing predicate id. On each path, the processor follows the outcomes
of the branch predictor. When the processor reaches a control-flow
merge (CFM) point on both paths, it inserts c-moves [29] or select-
µops [43], similar to the φ-functions in the static single-assignment
(SSA) form [10], to reconcile the register data values produced on
either side of the branch and continues fetching from a single path.
The processor exits dpred-mode either when it reaches a CFM point
on both paths of the branch or when the branch is resolved. When
the branch is resolved, the predicate value is also resolved. Instruc-
tions on the wrong path (i.e. predicated-FALSE instructions) become
NOPs, and they do not update the architectural state. If the candidate
branch is actually mispredicted, the processor does not need to flush
its pipeline and is able to make useful progress on the correct path,
which provides improved performance.

3. Dynamic Predication of Indirect Jumps (DIP)

Traditionally, only conditional branches can be predicated because
predication assumes that there are exactly two possible next instruc-
tions after a branch. This assumption does not hold for indirect
jumps. Figure 3a shows an example virtual function call in the C++
language that is implemented as an indirect call (s->area()). De-
pending on the actual runtime type of the object pointed to by s,
the corresponding overridden version of the area function will be
called. There can be many different derived classes that override the
function call and thus many different targets of the call. Even though
there could be many different targets, usually only a few of them are
concurrently used in each phase of the program. If the calls for differ-
ent targets are interleaved in a complex way, it is usually difficult to
predict exactly the correct target of each instance of the call using ex-
isting indirect jump predictors. In contrast, we found that it is much
easier to estimate the two (or three) most likely targets, i.e. a small
set of targets that includes the correct target with a high probability.

In DIP, if an indirect jump is found to be difficult to predict,
the processor estimates the most likely targets. Using dynamic pred-
ication, the processor fetches and executes from these most likely
targets until the dynamically-predicated paths eventually merge at
the instruction after the call, when the function returns (as shown
in Figure 3b,c). If one of the predicated targets is correct, the pro-
cessor avoids a pipeline flush. The performance benefit of dynami-
cally predicating the indirect jump can increase significantly if the
control flow merging point is close to the indirect jump (i.e., if the
body of the function is small), so that the overhead of fetching the
extra path(s) is not high. Figure 3b,c illustrates conceptually the dy-
namic predication process for the indirect call in Figure 3a, assuming
that circle->area() and rectangle->area() are the most
likely targets for an instance of the s->area() call.

Our approach is inspired by the dynamic predication of condi-
tional branches. However, there are two fundamental differences be-
tween the dynamic predication of conditional branches and indirect
jumps:

1. There are exactly two possible paths after a conditional branch.
In contrast, the number of possible paths after an indirect jump
depends on the number of possible targets, which can be very large.
For example, an indirect call in the Java DaCapo benchmark eclipse
exercises 101 dynamic targets. Predicating a larger number of target
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paths increases the likelihood that the correct path will be in the
pipeline when the jump is resolved, but it also requires more complex
hardware and increases the amount of wasted work due to predication
since at most one path is correct. Therefore, one important question
is how to identify how many and which targets of a jump should be
predicated.

2. The target of a conditional branch is always available at com-
pile time. On the other hand, all targets of an indirect jump may not
be available at compile-time due to techniques like dynamic linking
and dynamic class loading. Hence, a static compiler might not be able
to convey to hardware which targets of an indirect jump can profit
from dynamic predication. Another important question, therefore, is
who (the compiler -static or dynamic- or the hardware) should deter-
mine the targets that should be dynamically predicated. We explore
both options: the compiler can determine the targets to be predicated
via profiling or the hardware can determine them at runtime. Note
that the latter option can adapt to runtime changes in frequently-
executed targets of an indirect jump at the expense of higher hard-
ware cost.

In this paper we explore answers to these questions and propose
an effective and cost-efficient implementation of DIP.

4. Why does DIP work?

We first examine code examples from Java applications to provide
insights into why DIP can improve performance.

4.1 Virtual Function Call Example

Figure 4 shows a virtual function call in fop, an output-
independent print formatter Java application included in the Da-
Capo suite. The function computeValue is originally de-
fined in the class Length, and is overridden in the de-
rived classes LinearCombinationLength, MixedLength
and PercentLength. This polymorphic function is called from a
single call site 32% of the time by objects of class Length, 34%
of the time by objects of class LinearCombinationLength,
and 34% of the time by objects of class PercentLength. The
benchmark goes through two program phases. Only the first tar-
get is used at the beginning of the program, and therefore the
call is easy to predict. In the second phase the targets from
LinearCombinationLength and PercentLength are inter-
leaved in a difficult to predict way. Dynamically predicating these
two targets when the indirect call becomes hard to predict can elim-
inate most target mispredictions at the cost of executing useless in-
structions on one path. Since the bodies of the functions are small, the
number of wasted instructions with dynamic predication is smaller
than the number of wasted instructions on a pipeline flush due to a
misprediction.

4.2 Switch-Case Statement Example

Figure 5 shows a switch statement in the func-
tion jjStopStringLiteralDfa 0 of the class
JavaParserTokenManager from the DaCapo benchmark
pmd. This class parses input tokens by implementing a deterministic
finite automaton. Even though the switch statement has 11 cases,
cases 0, 1 and 2 are executed for 59%, 25%, and 12% of the dynamic
instances, respectively. The other 8 cases account for only 4% of the
dynamic instances. The control flow reconverges after the switch

1: public int mvalue() { // in Length class

2: if (!bIsComputed)

3: computeValue(); // call site

4: return millipoints;

5: }

6:

7: protected void computeValue() {

8: // in LinearCombinationLength class, short computation...

9: setComputedValue(result);

10: }

11:

12: protected void computeValue() { // in MixedLength class

13: // short computation...

14: setComputedValue(computedValue, bAllComputed);

15: }

16:

17: protected void computeValue() { // in PercentLength class

18: setComputedValue((int)(factor *
19: (double)lbase.getBaseLength()));

20: }

Figure 4. A suitable indirect jump example from fop

statement. Dynamically predicating the first three target paths when
the indirect jump is seen would eliminate almost all mispredictions
at the cost of executing useless instructions. Note, however, that the
number of instructions is relatively small (fewer than 30) in each
target path, so the amount of wasted work would be small compared
to the amount of wasted work on a full pipeline/window flush due to
a misprediction.
1: switch (pos) { // indirect jump

2: case 0: // target 1

3: if ((active1 & 0x40000000040000L) != 0L)

4: r = 4;

5: else if (...) ...

6: r = 28;

7: else

8: r = -1;

9: break;

10: case 1: // target 2

11: // code similar to case 0 (setting r on every path)

12: case 2: // target 3

13: // code similar to case 0 (setting r on every path)

14: // ... 8 other seldom executed cases

15: }

Figure 5. A suitable indirect jump example from pmd

5. Mechanism and Implementation

There are two critical issues in implementing DIP: (1) determining
which indirect jumps are candidates for dynamic predication, (2) de-
termining which targets of a candidate indirect jump should be predi-
cated. This section first explains how our mechanism addresses these
issues. Then, we describe the required hardware support, analyze its
complexity, and explain the support required from the ISA.

5.1 Indirect Jump and CFM Point Selection

The compiler selects indirect jump candidates for dynamic predica-
tion using control-flow analysis and profiling. Control-flow analy-
sis finds the CFM point for each indirect jump. The CFM point for
an indirect call is the instruction after the call. The CFM point for
an indirect jump implementing a switch statement is usually the in-
struction after the statement. The compiler profiles the application to
characterize the indirect jumps. Highly mispredicted indirect jumps
are good candidates for DIP even if there is no CFM point common
to all the targets or if the CFM point is so far from the jump that it
is not reached until the indirect jump is resolved. In this case, DIP
still could provide performance benefit because it executes two pos-
sible paths after the jump, one of which might be the correct path. In
other words, the benefit from DIP is similar to that of dual-path exe-
cution [17, 15] if a CFM point is not reached. For the experiments in
this paper the compiler selects all indirect jumps that result in at least
0.1% of all jump mispredictions in the profiling run on the baseline
processor.2

An indirect jump selected for dynamic predication is marked in
the binary along with its CFM point. We call such a jump a DIP-
jump.

2 We have experimented with several other profiling and selection heuristics based on
compile-time cost-benefit analyses (including the ones described in [33, 27]), but we
found that our simple selection heuristic provides the best performance.



5.1.1 Return CFM Points

In some switch statements, one or more casesmight end with a return
instruction. For an indirect jump implementing such a switch state-
ment, the first instruction after the statement might not be the CFM
point. If all predicated paths after an indirect jump implementing a
switch statement reach a return instruction that ends a case, the CFM
point is actually the instruction executed after the return instruction.
Unfortunately, the address of this CFM point is not known at code
generation time because it depends on the caller position. We intro-
duce a special type of CFM point called return CFM to handle this
case. When a DIP-jump is marked as having a return CFM point, the
processor does not look for a particular address to end dpred-mode,
but for the execution of a return instruction at the same call depth as
the DIP-jump. The processor ends dynamic predication mode when
all the predicated paths reach return instructions.

5.2 Target Selection

DIP provides performance benefit only if the correct target of a jump
is one of the predicated targets. Therefore, the choice of which tar-
gets to predicate is an important decision to make when dynamically
predicating an indirect jump since only a few targets can be predi-
cated. This choice can be made by the compiler or the hardware. We
first describe how target selection can be done assuming two targets
can be predicated. Section 5.2.3 describes the selection of more than
two targets, assuming the hardware can support the predication of all
of them.

5.2.1 Compiler-based Target Selection

Even though an indirect jump can have many dynamically-exercised
targets, we would expect the most frequently exercised targets to ac-
count for a significant fraction of the total dynamic jump instances
and mispredictions [30, 27]. This assumption suggests using a sim-
ple mechanism for target selection: the compiler profiles the program
with a representative input set, determines the most frequently exe-
cuted targets for each DIP-jump, and annotates the executable binary
with the target information. Even though this mechanism requires
more ISA support to supply the targets with an indirect jump, it does
not require extra hardware for target selection. However, our results
show that dynamic target selection mechanisms that can adapt to run-
time program behavior can be much more effective at the cost of
extra hardware (see Section 7.4).

5.2.2 Hardware-based (Dynamic) Target Selection

The correct target of an indirect jump depends on the runtime be-
havior of the application. Changes in the runtime input set, phase
behavior of the program, and the control-flow path leading to the
indirect jump affect the correct target, which is actually the reason
why some indirect jumps are hard to predict. As the compiler does
not have access to such fine-grain dynamic information, it is difficult
for the compiler to select a set of targets that includes the correct tar-
get when the jump is predicated. In contrast, hardware has access to
dynamic program information and can adapt to rapid changes in the
behavior of indirect jumps. We therefore develop a mechanism that
selects targets based on runtime information collected in hardware.

We use a hardware table called Target Selection Table (TST) for
dynamic target selection. The purpose of the TST is to track and pro-
vide the most frequently executed two targets for a given DIP-jump.
A TST entry is associated with each DIP-jump. Conceptually, each
entry in the TST contains M targets and M frequency counters. A fre-
quency counter is associated with each target and keeps track of how
many times the target was taken. When a fetched DIP-jump is esti-
mated to be hard-to-predict (low-confidence), the processor accesses
the TST entry for that jump and selects the two most frequently exe-
cuted target addresses (i.e. the two target addresses with the highest
frequency counters) in the entry.

The TST is structured as a 4-way set-associative cache with a
least-recently-used (LRU) replacement policy. We evaluated differ-
ent indexing functions for the TST: using the address (i.e., program
counter) of the DIP-jump alone or the address of the DIP-jump

XORed with the 16-bit global branch history register (GHR). We
found that the latter indexing function provides more accurate target
selection because the correct target of a jump depends on the control-
flow path leading to the jump.

To reduce the storage requirements for the TST, we: (1) limit the
number of targets to the maximum number of targets that can be
predicated plus one; (2) implement the frequency counters as 2-bit
saturating counters3; (3) limit the tag to 7 bits; (4) limit the size of
the TST to 2K entries; (5) store the targets associated with a DIP-
jump in the BTB (in different BTB entries), instead of storing them
in the TST itself. The last optimization allows TST to become a low-
cost indirection mechanism that stores only frequency-counters to
retrieve the most frequently executed targets of a branch, which are
stored in the BTB.

Operation of TST: When a fetched DIP-jump is estimated
to be hard-to-predict, the target selection mechanism starts an it-
erative process to retrieve the most frequently used two targets
from the BTB, one target per cycle.4 Figure 6 shows the basic
structure of the TST and the logic required to access the BTB
based on the information obtained from the TST.5 Algorithm 1 de-
scribes the target selection process. In each iteration iter, the con-
trol logic finds the position of the next frequency counter in de-
scending order. If there are 3 counters stored in the TST, position
can take only the values 1, 2 or 3. The value used to access the
BTB to retrieve a target is the same value used to index the TST
XORed with a randomized constant value hash value, which is spe-
cific to each position.6 For example, if f3 and f1 are the high-
est frequency counters, the targets will be retrieved by accessing
the BTB with (PC xor GHR xor hash value[3]) and (PC
xor GHR xor hash value[1]) in consecutive cycles. The it-
erative selection process stops when it has the required number of
targets to dynamically predicate the jump (PRED TARGETS), or af-
ter trying to retrieve as many targets as can be stored for one TST
entry (MAX TARGETS). PRED TARGETS is 2 and MAX TARGETS
is 3 for 2-target selection. If enough targets are selected, the proces-
sor enters dpred-mode.

f1 f2 f3

Target

PC xor GHR

Control

BTB_hit

position

Tag

hash_value

TST BTB

Figure 6. Target Selection Table (TST) used for selecting 2 targets to predicate. f1, f2,

f3 denote the frequency counters for the three targets whose information is kept in TST.

Update of TST: When a DIP-jump commits, it updates the TST
regardless of whether or not it was dynamically predicated. The TST
entry for the (PC, GHR) combination is accessed and the correspond-
ing targets are retrieved from the BTB -one per cycle- and compared
to the correct target taken by the jump. If the correct target is al-
ready stored in the BTB, the corresponding frequency counter is in-
cremented. Otherwise, the correct target is inserted in any empty slot
(i.e. for an iteration that misses in the BTB) or replacing the target
with the smallest frequency counter value. Note that the TST update

3 To dynamically select 3 to 5 targets, we use 3-bit saturating frequency counters.
4 The performance impact of the extra cycles spent to retrieve targets from the BTB is
2%, as we show in Section 7.7.
5 Figure 6 shows only the conceptual structure of the TST. In our actual implementation,
the BTB index used to retrieve a target in an iteration is precomputed in parallel with the
TST access. Therefore, our proposal does not increase the critical path of BTB access.
6 Note that the values used to access the BTB to store the TST targets can conflict with
real jump/branch addresses in the program, increasing aliasing and contention in the
BTB. Section 7.6.2 evaluates the impact of our mechanism on performance for different
BTB sizes.



Algorithm 1 TST target selection algorithm. Inputs: PC, GHR

iter← 1
num targets← 0
while ((iter ≤MAX TARGETS) and

(num targets < PRED TARGETS)) do

position← position descending order(iter)
target← access BTB(PC xor GHR xor hash value[position])
if (BTB hit) then

next target to predicate← target
num targets← num targets + 1

end if
iter++

end while

is not on the critical path of execution and can take multiple cycles
as necessary.

The purpose of a TST entry is to provide a list of targets approxi-
mately ordered by recent execution frequency. As the saturating fre-
quency counters are updated, if more than two counters saturate at
the maximum value, it becomes impossible to distinguish the two
most frequent targets. To avoid this problem, we implement a sim-
ple aging mechanism: if two of the frequency counters are found to
be saturated when a TST entry is updated, all counters in the entry
are right shifted by one bit. In addition to avoiding the saturation
problem, this aging mechanism also demotes the targets that have
not been recently used, keeping the TST content up to date for the
current program phase.

5.2.3 Selecting More Than Two Targets

Unlike conditional branches, indirect jumps can have more than two
targets that are frequently executed. When the likelihood of having
the correct target in a set of two targets is not high enough, it
might be profitable to predicate multiple targets, even though the
overhead of predication would be higher. If we allow predication
of more than two targets, we have to select which targets and how
many targets to use for each low-confidence indirect jump. The TST
holds one frequency counter for each of the targets that have been
more frequently used in the recent past. The aging mechanism keeps
these counters representative of the current phase of the program.
Therefore, it is reasonable to select the targets with higher frequency
count.

To select multiple targets, the processor uses a greedy algorithm.
It starts with the two targets with the highest frequency. Then, it
chooses the i-th target in descending frequency order only if its
frequency still adds significantly to the sum of the frequencies of the
targets already selected. This happens when the following expression
is satisfied:

Select Targeti if Freqi ∗ i >=

i−1
X

j=1

Freqj (1)

5.2.4 Overriding the BTB-based Target Prediction

The TST has more information than a conventional BTB-based in-
direct jump predictor for DIP-jumps, because: (1) the TST distin-
guishes between targets based on the different control-flow paths
leading to a jump because it is indexed with PC and branch history,
while a BTB-based prediction simply provides the last seen target
for the jump; (2) each entry in the TST can hold multiple targets
for each combination of PC and branch history (i.e. multiple targets
per jump), while a BTB-based predictor can hold only one target per
jump; (3) the TST contains entries for only the DIP-jumps selected
by the compiler, which reduces contention, whereas a BTB contains
one entry for every indirect jump and taken conditional branch.

Our main purpose for designing the TST is to use it as a mech-
anism to select two or more targets for dynamic predication. How-
ever, we also found that if a TST entry contains only one target
or if the most frequent target in the entry is significantly more fre-
quent7 than the other targets, dynamic predication provides less ben-

7 We found that a difference of at least 2 units in the 2-bit frequency counters is
significant.

efit than simply predicting the most frequent target as the target of
the jump. Therefore, if one of these conditions holds when a DIP-
jump is fetched, the processor, instead of entering dynamic predi-
cation mode, simply overrides the BTB-based prediction for the in-
direct jump and uses the single predominant target specified by the
TST as the predicted target for the jump.

5.2.5 Dynamic Target Selection vs. Target Prediction

Dynamic target selection using the TST is conceptually different
from dynamic target prediction. A TST selects more than one tar-
get to predicate for an indirect jump. In contrast, an indirect jump
predictor chooses a single target and uses that as the prediction for
the fetched indirect jump. DIP increases the probability of having the
correct target in the processor by selecting extra targets and dynami-
cally predicating multiple paths. Nevertheless, the proposed dynamic
target selection mechanism can be viewed as both a target selector
and target predictor especially since we sometimes use it to override
target predictions as described in the previous section. As such, we
envision future indirect jump predictors designed to work directly
with DIP, selecting either a single target for speculative execution, or
multiple targets for dynamic predication.

5.3 Hardware Support for Predicated Execution

Once the targets to be predicated are selected, the dynamic predi-
cation process in DIP is similar to that in dynamic predication of
conditional branches, which was described briefly in Section 2 and
in detail by Kim et al. [31]. Here we describe the additional support
required for DIP. If two targets are predicated in DIP, the additional
support required is only in 1) the generation of the predicate values,
2) the handling of a possible pipeline flush when the predicate values
are resolved.

When a low-confidence DIP-jump is fetched, the processor enters
dpred-mode. Figure 7 shows an example of indirect jump predication
with two targets. First, the processor assigns a predicate id to each
path to be predicated (i.e. each selected target). Unlike in conditional
branch predication in which a single predicate value (and its comple-
ment) is generated based on the branch direction, there are multiple
predicate values based on the addresses of the predicated targets in
DIP. The predicate value for a path is generated by comparing the
predicated target address to the correct target address. The processor
inserts compare micro-operations (µops) to generate predicate values
for each path as shown in Figure 7b.

Unlike in conditional branch predication where one of the predi-
cated paths is always correct, both of the predicated paths might be
incorrect in DIP. As a result, the processor has to flush the whole
pipeline when none of the predicated target addresses is the correct
target. To this end, the processor generates a flush µop. The flush
µop checks the predicate values and triggers a pipeline flush if none
of the predicate values turns out to be TRUE (i.e., if the correct tar-
get was not predicated). If any of the predicates is TRUE, the flush
µop functions as a NOP. In the example of Figure 7b, the proces-
sor inserts a flush µop to check whether or not any of the predicated
targets (TARGET1 or TARGET2) is correct.

All instructions fetched during dpred-mode carry a predicate id
just like in dynamic predication for a conditional branch. Since
select-µops are executed only if either TARGET1 or TARGET2 is
the correct target, the select-µops can be controlled by just one
of the two predicates. Note that the implementation of the select-
µops is the same as in dynamic predication for conditional branches.
We refer the reader to [34, 31] for details on the generation and
implementation of select-µops.

5.3.1 Supporting More Than Two Targets

As we found that the predication of more than two targets does not
provide significant benefits (shown and explained in Section 7.4), we
only very briefly touch on hardware support for it solely for com-
pleteness. Each predicated path requires its own context: PC (pro-
gram counter), GHR (global history register), RAS (return address
stack), and RAT (register alias table). Since each path follows the



pr11  = MEM [pr21]

return

r1 = MEM[r2]
call r1 flush (p1 NOR p2) 

add r1 <− r2, #2

return

add r1 <− r1, #1

add r1 <− r2, #−1

return

add r1 <− r1, #1

add pr12 <− pr11, #1

add pr13 <− pr21, #−1

add pr14 <− pr21, #2

return

(p1)

(p1)

(p1)

(p1)

(p2)

(p2)

(p2)

TARGET1: TARGET2:

p1 = cmp pr11, TARGET1

p2 = cmp pr11, TARGET2

call TARGET1

call TARGET2

select−uop pr15 <− p1? pr13 : pr14

add pr16 <− pr15, #1

(a) (b)

Figure 7. An example of how the instruction stream is dynamically predicated (a)

control flow graph (b) dynamically predicated instructions after register renaming

outcomes of the branch predictor and does not fork more paths, i.e.
the processor cannot be in dpred-mode for two or more nested indi-
rect jumps at the same time, the complexity of predicating more than
two targets is significantly less than the complexity of multi-path (i.e.
eager) execution [37, 35]. The predication of more than two targets
requires 1) storage of more frequency counters in the TST and addi-
tional combinational logic for target selection, 2) generation of more
than two predicates using more than two compare instructions, 3) mi-
nor changes to the flush µop semantics to handle multiple paths, and
4) extension of the select-µop generation mechanism to handle the
reconvergence of more than two paths.

5.3.2 Nested Indirect Jumps

If the processor fetches another low-confidence DIP-jump during
dpred-mode, it has two options: it can follow the low-confidence pre-
dicted target or it can exit dpred-mode for the earlier jump and reenter
dpred-mode for the later jump. If the jumps are nested, the overhead
of predicating the later DIP-jump is usually smaller than the over-
head of predicating the earlier jump. Also, if the processor decides
to continue in dpred-mode for the earlier jump and the later jump is
mispredicted, a potentially significant part of the benefit of predica-
tion can be lost when the pipeline is flushed. Therefore, our policy
(called reentry policy) is to exit dpred-mode for the earlier jump and
reenter dpred-mode for the later DIP-jump. Our experimental results
show that this choice provides significantly higher performance ben-
efits (see Section 7.3).

5.3.3 Other Implementation Issues

We briefly discuss other important issues in implementing DIP. Note
that the same issues exist in architectures that implement static or
dynamic predication for conditional branches [36, 34, 31].
Stores and Loads: A dynamically predicated store is not sent to

the memory system unless its predicate is known to be TRUE. The
basic rule for the forwarding logic is that a store can forward to any
younger load except for stores guarded by an unresolved predicate
register, which can only forward to younger loads with the same
predicate id.
Interrupts and Exceptions: No special support is needed to han-

dle interrupts and exceptions because dynamic predication state is
speculative and is flushed before servicing the interrupt or exception.
Predicate registers do not have to be saved and restored because they
are not part of the ISA. Instructions with FALSE predicate values do
not cause exceptions.

5.4 Hardware Cost and Complexity

The hardware required to dynamically predicate indirect jumps is
very similar to that of the diverge-merge processor (DMP) [31, 32],
which dynamically predicates conditional branches. The hardware
support needed for dynamic predication (including the predicate reg-
isters, fetch/decode/rename/retirement support, and select-µops) and

its cost are already described in detail by previous work [31]. We
assume DIP would be cost-efficiently implemented on a baseline
processor that already supports dynamic predication for conditional
branches, which was shown to provide very large performance and
energy benefits [31, 32]. DIP requires the following hardware modi-
fications in addition to the required support for dynamic predication:

1. Target Selection Table (TST, Section 5.2.2): a 2K-entry, 4-way
set associative table with 3 2-bit saturating counters per entry, i.e. a
1.5 KB data store and a 2.1 KB tag store (using 7-bit tags and a valid
bit per entry, plus 2 bits per set for pseudo-LRU replacement).

2. A simple finite state machine to implement accessing and up-
dating the targets in the BTB (block labeled as Control in Figure 6).

3. A 3-entry table with 32-bit constants (hash value in Figure 6).
4. Modified predicate generation logic and flush µops (Section

5.3).
5. Optionally, support for more than 2 targets (see Section 5.3.1).

Hardware Cost: If dynamic predication hardware is already imple-
mented for conditional branches, the cost of adding dynamic predica-
tion of indirect jumps with dynamic 2-target selection -our most effi-
cient result- is 3.6KB of storage8 and simple extra logic. We believe
that it is not cost-effective to implement dynamic predication only for
indirect jumps. On the contrary, dynamic predication hardware is a
substrate that should be used for both conditional and indirect jumps.

5.5 ISA Support

The indirect jumps selected for dynamic predication are identified
in the executable binary with a different opcode for each flavor
of DIP-jump (jumps or calls). The instruction format uses one bit
to indicate whether or not the jump has a return CFM point. The
instruction format also includes the CFM point encoded in 16-bit
2’s complement relative to the DIP-jump, which we determined
is enough to encode all the CFM points we found in our set of
benchmarks. When we use static target selection, the selected 32-bit
targets follow the instruction in the binary. Even though these special
instructions increase the code size and the pressure on the instruction
cache, their impact is not significant because the number of static
jumps selected for dynamic predication in our benchmarks is small
(fewer than 100, as shown in Table 2).

6. Experimental Methodology

6.1 Simulation Methodology

We use an iDNA-based [3] cycle-accurate x86 simulator to evalu-
ate dynamic indirect jump predication. Table 1 shows our baseline
processor’s parameters. The baseline uses a 4K-entry BTB to pre-
dict indirect jumps [40, 18]. The simulator includes a Wattch-based
power model [6] using 100nm technology at 4GHz, that faithfully
accounts for the power consumption of all the additional structures
needed by DIP.

Table 1. Baseline processor configuration

64KB, 2-way, 2-cycle I-cache; fetch ends at the first predicted-takenFront End
branch; fetch up to 3 conditional branches or 1 indirect branch
64KB (64-bit history, 1021-entry) perceptron branch predictor [26];Branch
4K-entry, 4-way BTB with pseudo-LRU replacement;Predictors
64-entry return address stack; min. branch mispred. penalty is 30 cycles
8-wide fetch/issue/execute/retire; 512-entry ROB; 384 physical registers;Execution
128-entry LD-ST queue; 4-cycle pipelined wake-up and selection logic;Core
scheduling window is partitioned into 8 sub-windows of 64 entries each

On-chip L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports; L2 unified cache: 1MB,
Caches 8-way, 8 banks, 10-cycle latency; All caches: LRU repl. and 64B lines
Buses and 300-cycle minimum memory latency; 32 DRAM banks;
Memory 32B-wide core-to-memory bus at 4:1 frequency ratio
Prefetcher Stream prefetcher [42] (32 streams and 16 cacheline prefetch distance)
Dyn. pred. 2KB (12-bit history, threshold 14) enhanced JRS confidence
support estimator [25], 32 predicate registers, 1 CFM register

We evaluate DIP using benchmarks over multiple platforms. Most
of the experiments are run using the 11 DaCapo benchmarks [5]

8 Extra storage can be further reduced to 1.5KB with an alternative design that stores
a frequency counter and a there-is-next-target bit directly in each BTB entry, thus
eliminating the need for a separate TST. To keep the implementation conceptually
simple, we do not describe this option.



(Java), Matlab R2006a (C), M5 simulator [4] (C++), and the in-
terpreters perlbmk (C) and perlbench (C) from the SPEC CPU
2000/2006 suites. We also show results for a set of 5 SPEC CPU2000
INT benchmarks written in C, 3 SPEC CPU2006 INT benchmarks
written in C, and 1 SPEC CPU2006 FP benchmark written in C++.
We use those benchmarks in SPEC 2000 INT and 2006 INT/C++
suites that gain at least 5% performance with a perfect indirect jump
predictor. Each benchmark is run for 200 million x86 instructions
with the reference input set (SPEC CPU), small input set (DaCapo)
or a custom input set (Matlab and M5)9.

The DaCapo benchmarks are run with Sun J2SE 1.4.2 15 JRE on
Windows Vista.10 Matlab is run on Windows Vista. M5 is compiled
with its default options using gcc 3.4.4, and run on Cygwin 1.5.24
on Windows Vista. All SPEC binaries are compiled with Intel’s
production compiler (ICC) [21] using -O3 optimizations and run
on Linux Fedora Core 5. Table 2 shows the characteristics of the
simulated portions of our main set of benchmarks on the baseline
processor.

6.2 Compilation and Profiling Methodology

Our methodology targets an adaptive JIT compiler that is able to use
recent profiling information to recompile the hot methods to improve
performance. For the experiments in this paper, we developed a
dynamic profiling tool that collects edge profiling information and
computes the CFM points during the 200M instructions preceding
the simulation points for each application. The algorithms to find the
CFM points are similar to those algorithms described in [33]. After
profiling, our tool applies the jump selection algorithm described in
Section 5.1.11

7. Results

7.1 Dynamic Target Distribution

Table 2 shows that the average number of dynamic targets for an indi-
rect jump in the simulated benchmarks is 42.9. We found that in our
set of object-oriented benchmarks 61% of all dynamic indirect jumps
have 16 or more targets, which is significantly higher than what was
reported in previous work for SPEC CPU C/C++ applications [30].
Even though indirect jumps have many targets, the most frequently
executed targets (over the whole run of the program) are taken by
a significant fraction of all dynamic indirect jumps, as we show in
Figure 8. On average, the two most frequent targets cover 59.9%
of the dynamic indirect jumps, but only 39.5% of the indirect jump
mispredictions. The contribution of less frequently executed targets
steadily drops. This data shows that statically selecting two targets
for dynamic predication would likely not be very successful in these
object-oriented applications where indirect jumps have a very large
number of targets.

7.2 Performance of DIP

The first set of bars in Figure 9 shows the performance improvement
of DIP over the baseline, using dynamic 2-target selection with a
3.6KB TST and all the techniques described in Section 5. The aver-
age IPC improvement of DIP is 37.8% and is analyzed in Section 7.3.

We also include five idealized experiments in Figure 9 to show
the potential of DIP. The IPC improvement increases to 51% if an
unrealistically large TST is used (64K-entry TST with local storage
for 255 targets and 32-bit frequency counters, which has a total data
storage size of 128MB). If the 128MB TST always ideally provides
the correct target for predication among the 2 selected targets (2T
perfect target), the performance improves only by 0.2%. This means
that the principles of the TST are adequate for selecting the correct

9 Matlab performs convolution on two images; M5 simulates the performance of gcc
using its complex out-of-order processor model.
10 At the time of this writing, iDNA [3] worked for only 7 of the 11 DaCapo benchmarks
running on Sun Java SE 6 (version 1.6.0 01). The average indirect jump MPKI for these
benchmarks on Java 6 is 37% higher than on Java 1.4, but since we cannot use the full
suite, we report the results for Java 1.4. We expect DIP would perform better on Java 6.
11 For the static target selection experiments, our dynamic profiling tool also applies the
target selection algorithm described in Section 5.2.1.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

t 
o
f 

E
x
ec

u
te

d
 I

n
d

ir
ec

t 
J
u

m
p

s 
(%

) 16+

11-15

6-10

5

4

3

2

1

an
tlr

bl
oa

t

ch
ar

t

ec
lip

se
fo

p
hs

ql
db

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n
m

5
m

at
la

b

pe
rlb

en
ch

pe
rlb

m
k

am
ea

n

Figure 8. Fraction of dynamic indirect jumps taking the most frequently executed N

targets

target among the two that are predicated. If the DIP mechanism were
used ideally only when the DIP-jump is actually mispredicted (2T
perfect confidence) IPC improves by an additional 2%. The combi-
nation of perfect confidence estimation and perfect target selection
(2T perfect targ./conf.) adds only an extra 0.5%, showing that the
maximum potential performance benefit of 2-target DIP is 53.8%.
Perfect indirect jump prediction (perfect IJP) provides 72.2% perfor-
mance improvement over baseline, which is significantly higher than
the maximum potential of DIP, because it does not have the over-
head of dynamic predication. Our realistic implementation achieves
52% of the potential with perfect indirect jump prediction and 70%
of the potential with the ideal 2-target DIP (2T perfect targ./conf.).
Xalan and matlab do not get as much of the potential as the other
benchmarks because the TST miss rate is significantly high (43% for
both).
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Figure 9. DIP performance and potential

7.3 Analysis of the Performance Improvement

The performance improvement of DIP comes from avoiding the full
pipeline flushes caused by indirect jump mispredictions. DIP can
improve performance only if it selects the correct target as one of the
targets to predicate. Therefore, most of our design effort for DIP is
focused on mechanisms to improve target selection. On average, DIP
eliminates 47% of the pipeline flushes that occur with a BTB-based
predictor (as shown in Table 3, row 8). Furthermore, the overhead of
executing the extra path is low: the average number of dynamically
predicated wrong-path instructions is only 73.9 (Table 3, row 7),
which is significantly smaller than the instruction window size of
the processor. Hence, in the steady state, dynamic predication of a
mispredicted jump would result in only 73.9 instruction slots to be
wasted whereas the misprediction itself would have resulted in all
instruction slots in the window plus those in the front-end pipeline
stages to be wasted.

The benefit of DIP depends on the combination of target selec-
tion and confidence estimation. We classify dynamic predication in-
stances into four cases based on whether or not the correct target is
predicated and whether or not the jump was actually mispredicted:

1. Useful: A dynamic predication instance is useful (i.e. success-
fully avoids a pipeline flush) if it predicates the correct target and the



Table 2. Characteristics of the evaluated benchmarks
antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan m5 matlab perlbench perlbmk AVG

Baseline IPC 0.97 0.90 0.76 1.18 0.77 1.19 1.17 1.13 1.10 0.99 0.75 1.49 1.20 0.81 1.11 1.00
Dynamic indirect jumps (K) 4917 5390 4834 3523 7112 3054 3565 3744 4054 4557 6923 2501 2163 3614 3024 -

Indirect jump MPKI 12.50 12.40 11.60 8.50 19.70 8.30 8.60 9.10 9.80 11.40 19.20 5.60 5.70 15.40 11.30 11.27
Avg. number of dynamic targets 37.3 37.6 45.9 41.1 37.6 30.3 41.0 40.6 39.9 39.8 39.8 46.3 74.0 52.1 40.1 42.9

Table 3. DIP-related statistics for the evaluated benchmarks (CT/IT:correct/incorrect target in dpred-mode; CP/IP:correctly/incorrectly predicted)
Metric antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan m5 matlab perlbench perlbmk AVG

1 ind. jumps selected for 2T DP 79 80 96 78 89 67 78 79 81 78 86 22 91 4 8 -
2 % DP instances (CT, IP) 89.0 88.7 89.6 92.1 88.4 93.1 91.6 91.7 93.5 91.3 80.1 84.8 83.0 97.6 96.1 90.0
3 % DP instances (IT, IP) 5.8 5.7 6.0 4.1 7.7 2.9 4.4 4.4 3.2 4.6 13.5 10.4 12.2 1.7 2.3 5.9
4 % DP instances (CT, CP) 4.0 4.3 3.1 2.9 2.6 3.2 3.0 2.9 2.6 3.0 3.9 3.3 2.7 0.6 1.4 2.9
5 % DP instances (IT, CP) 1.2 1.4 1.3 0.9 1.3 0.8 1.0 1.1 0.7 1.2 2.6 1.5 2.0 0.0 0.3 1.2
6 avg select-µops per DP 4.2 4.5 3.6 3.8 3.8 3.8 3.9 3.7 3.9 3.8 3.5 4.9 3.9 5.7 6.6 4.2
7 avg wrong-path instr. per DP 54.9 56.5 57.7 59.7 69.7 54.3 56.7 60.2 59.3 63.1 62.2 81.5 62.6 114.5 194.8 73.9
8 ∆ pipeline flushes (%) -47.82 -45.71 -37.74 -44.98 -46.84 -53.92 -43.86 -43.51 -49.88 -45.12 -29.06 -38.91 -22.20 -89.07 -83.73 -47.07
9 ∆ fetched instr. (%) -39.87 -41.20 -39.85 -34.28 -40.22 -41.46 -34.25 -34.40 -39.54 -37.16 -26.07 -27.20 -16.89 -62.97 -58.30 -39.32
10 ∆ executed instr. (%) -8.12 -9.46 -8.73 -5.40 -10.53 -6.31 -5.46 -5.63 -6.60 -7.18 -6.43 -2.80 -2.82 -21.64 -17.06 -8.91
11 ∆ energy (%) -26.99 -27.08 -25.32 -20.69 -28.62 -23.63 -20.15 -20.50 -24.61 -23.05 -16.02 -14.92 -5.50 -42.12 -40.18 -24.81
12 ∆ energy-delay product (%) -49.96 -49.33 -45.36 -40.17 -51.46 -44.76 -39.14 -39.56 -46.23 -43.17 -30.97 -31.33 -11.35 -66.30 -66.11 -45.54

jump was originally mispredicted. On average, this happens for 90%
of the dynamic predication instances (Table 3, row 2).

2. Neutral: If the jump was mispredicted but DIP does not predi-
cate the correct target, DIP has no impact on performance. This case
is no different from a misprediction because the pipeline is flushed,
but it would have been flushed anyway because the jump is mispre-
dicted. This case accounts for 5.9% of the dynamic predication in-
stances (row 3).

3. Moderately harmful: If DIP decides to predicate a jump that
was correctly predicted, there is performance degradation. If the
correct target is one of the predicated targets, the degradation is less
severe (it is only due to the overhead of executing the extra predicated
path). This happens for 2.9% of the dynamic predication instances
(row 4).

4. Harmful: The worst case is dynamically predicating a
correctly-predicted jump without predicating the correct target,
which introduces a new pipeline flush that would not have happened
without dynamic predication. However, this worst case occurs only
in 1.2% of the dynamic predication instances (row 5).

Figure 10 shows the outcomes of all executed indirect jumps
with DIP: 46.8% were correctly predicted by the BTB, 39.9% were
dynamically predicated and fall into one of the four cases described
above, and 14.3% were mispredicted but not predicated by DIP.
Hence, DIP is effective at eliminating most of the indirect jump
mispredictions.
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Figure 10. Breakdown of all executed indirect jumps

Effect of Different DIP Mechanisms

Figure 11 shows the performance improvement due to the cumula-
tive application of the different mechanisms included in DIP for dy-
namic 2-target selection. Basic DIP using only regular CFM points
provides 12.5% average performance improvement. Including return
CFM points slightly increases the IPC improvement to 13.9%. The
reentry policy for nested indirect jumps (Section 5.3.2) significantly
increases the benefit to 29% because it enables the benefit of DIP for

the innermost low-confidence jumps, which are more likely to have
merging control flow without being disrupted by further mispredic-
tions than the outermost jumps. Finally, overriding the indirect jump
prediction when there is one dominant target in the TST increases the
average IPC improvement to 37.8% because it reduces the overhead
of DIP. The last set of bars show that overriding alone, i.e. using the
TST as an indirect jump predictor, provides about 70% of the benefit
of full DIP.
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Figure 11. Performance improvement of different DIP mechanisms

7.4 Effect of Target Selection Policies

Static selection: Figure 12 shows the performance improvement of
DIP over the baseline for different number of predicated targets and
target selection techniques. The average IPC improvement with two
statically selected targets is 6.6%. Increasing the number of static
targets improves performance by up to 14.1% (for 5 targets). The 2
most frequently executed targets account for 59.9% of the executed
indirect jumps (Figure 8) but only 39.5% of the indirect jump mis-
predictions. Even though 5 static targets cover 77% of the executions
and 64% of the mispredictions, this is still not high enough to pre-
vent most of the mispredictions. Additionally, the benefit of having
the correct target is offset by the overhead of always predicating the
extra paths. Therefore, static target selection does not provide high
performance.
Dynamic selection: Dynamic 2-target selection with a 3.6KB

Target Selection Table improves IPC much more significantly (by
37.8%) than static 2-target selection because the TST (1) keeps the
most likely targets for the current phase and context of the program
thereby increasing the probability of predicating the correct target
and (2) avoids the overhead of predication when one target is dom-
inant by overriding the jump prediction (Section 5.2.4). Increasing
the maximum number of targets that can be predicated (using the
dynamic target selection algorithm of Section 5.2.3) improves IPC
by more than 2% only for chart. In the other benchmarks, there
is almost no effect on IPC or there is performance degradation due



to the overhead of the extra paths. The two most frequent targets in
the recent past provide most of the benefit, as already shown by the
experiment with perfect targets in Section 7.2. We conclude that the
most efficient implementation of DIP is with dynamic 2-target selec-
tion and use this implementation in the rest of our evaluations.
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Figure 12. Performance of DIP with different target selection policies

7.5 DIP versus Indirect Jump Predictors

Figure 13(top) compares the performance of DIP with the tagged
target cache (TTC) predictor [9]. Our TTC is 4-way set associative
and uses full tags, but its size is computed assuming only 2-byte tags
and 4-byte targets per entry, plus pseudo-LRU and valid bits. Since
an entry in the TTC is created only when the BTB mispredicts, the
monomorphic or easy-to-predict indirect jumps do not contend for
TTC space, unlike previous work [9]. On average, DIP with a 3.6KB
TST performs 6.2% better than a 12.4KB TTC and within 1.8% of a
24.8KB TTC. For four of the benchmarks, DIP performs better than
a 24.8KB TTC. Figure 13(bottom) shows the IPC improvement of
DIP on a baseline with a TTC of the indicated size. DIP improves
IPC for every TTC size, from 18.6% on a processor with a 3.1KB
TTC to 3.8% on a processor with a very large, 24.8KB TTC.

Figure 13(top) also shows (in the fourth bars from the left) that
DIP performs 12.2% better than the recently proposed VPC predic-
tor [30], configured to perform up to 12 prediction iterations. If VPC
is used in the baseline to predict indirect jumps, DIP still improves
IPC by 6.6% (Figure 13(bottom)).

Figure 13(top) also compares (in the rightmost two bars) the per-
formance of DIP with a 3-stage cascaded predictor [13].12 On aver-
age, DIP performs 4.5% better than an 11.3KB cascaded predictor
and within 2.4% of a 22.6KB cascaded predictor. Figure 13(bottom)
shows that DIP can improve performance significantly even on base-
line processors with very large cascaded predictors.

Summary: Our comparisons of DIP with three of the best
previously-proposed indirect jump predictors show that: 1) DIP can
provide significantly higher performance than that provided by pre-
dictors with larger storage cost, 2) DIP can significantly improve per-
formance even when used in conjunction with a large indirect jump
predictor, and 3) DIP is very effective in reducing the performance
impact of indirect jumps that are difficult to predict even with so-
phisticated indirect jump predictors. As such, we conclude that DIP
is an effective indirect jump handling technique that can replace or
be used in conjunction with previously-proposed indirect jump pre-
dictors.

7.6 Sensitivity to Microarchitectural Parameters

7.6.1 Less Aggressive Baseline Processor

Figure 14 shows the performance of DIP along with TTC, VPC and
3-stage cascaded predictors on a less aggressive processor with 4-
wide fetch/issue/retire rate, 20-stage pipeline, 128-entry instruction
window, 16KB perceptron branch predictor and 200-cycle memory

12 The size of the cascaded predictor is the sum of the sizes of the data store and tag
store tables, assuming 2-byte tags and 4-byte targets, although we simulate full tags. An
11.3KB cascaded predictor performs 1.2% better than a 12.4KB TTC.
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Figure 13. Performance of DIP vs. Indirect Jump Predictors

latency. Improving indirect jump handling on a less aggressive pro-
cessor provides a smaller performance improvement due to the re-
duced jump misprediction penalty. However, DIP (with a 3.6KB
TST) still improves performance by 25.2%, very close to the perfor-
mance with a 24.8KB TTC predictor or a 22.6KB cascaded predictor.
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Figure 14. Performance of DIP on a less aggressive processor

7.6.2 BTB Sizes

Table 4 shows average results for DIP with different BTB sizes from
1K to 16K entries. The performance improvement of DIP increases
with BTB size because contention due to storing extra targets in the
BTB for target selection becomes less of a problem. However, DIP’s
performance improvement is still significant (18.1%) with a small
1K-entry BTB. Our baseline 4K-entry BTB -similar to the one in
Pentium 4 [18]- allows most of the benefit of DIP that can be obtained
with larger BTBs.

7.7 Effect of Dynamic Target Selection Hardware

Figure 15 shows the effect of the design parameters of the Target Se-
lection Table (TST) for dynamic 2-target selection. We start from an
unrealistic TST that achieves most of the potential for perfect target
selection, as discussed in Section 7.2. The rest of the experiments in-
troduce realistic limits on the TST. Reducing the size of the counters
to 2-bit saturating counters actually helps in most of the benchmarks



Table 4. Effect of different BTB sizes
Baseline DIP 2-target

BTB entries cond. br. indi. cond. br.
(size) BTB miss% MPKI

IPC
BTB miss%

IPC IPC ∆

1K (6.4 KB) 4.57% 11.68 0.95 5.89% 1.12 18.1%

2K (12.9 KB) 1.86% 11.40 0.98 2.53% 1.29 30.7%

4K (25.8 KB) 0.74% 11.27 1.00 1.14% 1.37 37.8%

8K (51.5 KB) 0.23% 11.20 1.00 0.45% 1.41 41.5%
16K (103 KB) 0.07% 11.19 1.00 0.15% 1.41 41.2%
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Figure 15. Effect of TST hardware budget on DIP performance

because the aging mechanism improves the ability to track the cur-
rent phase behavior. The realistic constraints that reduce the IPC im-
provement most significantly are: (1) storing the targets in the BTB
instead of in the TST (because this creates contention for BTB en-
tries); and (2) reducing the number of TST entries to 2K (because the
TST hit rate drops from 97% to 87%). The effects of these two per-
formance limiters mostly overlap because both the TST and the BTB
use the LRU replacement policy. Since we cannot add extra ports to
the BTB to access all the targets in one cycle, we model one access
to the BTB per cycle, which reduces the IPC improvement by 2%.
The results show that a realistic 3.6KB TST performs only 13% be-
low the unrealistic 128MB TST. We conclude that our TST design is
efficient and effective for our purposes.

Figure 16 shows the performance improvement for different TST
configurations (number of entries and associativity). Our 3.6KB con-
figuration (2K entries, 4-way set associative) is a good trade-off be-
cause it provides most of the performance of a larger TST.
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Figure 16. Performance of DIP with different TST configurations

7.8 Performance on SPEC Integer Benchmarks

Figure 17 shows the performance of DIP on the subset of SPEC CPU
2000 and 2006 benchmarks described in Section 6. Even though the
SPEC benchmarks are not as indirect jump intensive as the object-
oriented Java DaCapo benchmarks, DIP still increases performance
by 26% on average, more than the VPC predictor and very close to a
12.4KB TTC predictor or a 22.6KB cascaded predictor.

7.9 Effect on Energy and Power Consumption

DIP reduces energy consumption by 24.8% (Table 3, row 11) and
energy-delay product by 45.5% on average (row 12). The signifi-
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Figure 17. DIP performance on SPEC CPU integer benchmarks

cant decrease in energy reduction is because of the large reduction
in fetched instructions (39.3%, row 9) and executed instructions13

(8.9%, row 10). The reduction in fetched/executed instructions is due
to the elimination of pipeline flushes. When DIP eliminates a flush
by predicating the correct target for an otherwise mispredicted jump,
it eliminates 1) the waste of all pipeline and instruction window slots
for the execution of wrong-path instructions and 2) the need to re-
fetch and re-execute instructions on the control-independent path af-
ter a predicated indirect jump.

Table 5 shows a power/energy comparison of DIP and indirect
jump predictors that perform close to it. DIP reduces energy con-
sumption and energy-delay product significantly more than any of
the indirect jump predictors. DIP increases maximum power slightly
more than the predictors due to the hardware required for dynamic
predication. However, note that this hardware can also be used to
dynamically predicate conditional branches to further increase per-
formance and reduce energy consumption. If dynamic predication is
already implemented for conditional branches [31], additional struc-
tures required for DIP would increase maximum power consump-
tion by only 1.3%.We conclude that DIP is the most energy-efficient
mechanism for handling indirect jumps.

Table 5. Performance, power, energy comparison of DIP and indirect jump predictors

DIP TTC 12.4KB VPC Casc. 11.3KB

IPC ∆ 37.8% 33.8% 26.0% 34.8%
Max power ∆ 2.27% 1.06% 0.87% 1.09%

Energy ∆ -24.8% -21.0% -19.6% -21.7%
Energy × Delay ∆ -45.5% -38.9% -40.8% -39.9%

8. Related Work

We have already discussed related work on compiler-based predica-
tion and dynamic predication of conditional branches in Sections 2
and 3. Previously proposed static or dynamic predication approaches
were not applicable to indirect jumps.

Most current processors use the BTB [40, 18] to predict the target
addresses of indirect jumps. A BTB predicts the last taken target of
the indirect jump as the current target and is therefore inaccurate
at predicting “polymorphic” indirect jumps that frequently switch
between different targets. Specialized indirect jump predictors [9,
12, 28, 39] were proposed to predict the target addresses of indirect
jumps that switch between different target addresses in a predictable
manner. Recently, VPC prediction [30] was proposed to use the
existing conditional branch prediction hardware to predict indirect
jump targets. These previous approaches work well if the target is
predictable based on past history. In contrast, DIP can reduce the
performance impact of an indirect jump even if the jump is difficult
to predict. We have provided extensive comparisons to indirect jump
predictors. Evaluations in Section 7.5 show that DIP provides larger
performance and energy improvements than indirect jump predictors
that use much larger hardware storage budgets.

13 The number of executed instructions includes all instructions and µops introduced by
the DIP mechanism: predicate definitions, flush µops and select-µops.



Dependence-based pre-computation [38] improves indirect call
prediction by pre-computing targets for future virtual function calls
as soon as an object reference is created, avoiding a misprediction if
the result of the computation is correct and ready to be used in time.
In contrast, DIP does not require any pre-computation logic, and is
applicable to any indirect jump.

Pure software approaches to mitigate the performance penalty of
virtual function calls include the method cache in Smalltalk-80 [11],
polymorphic inline caches [19] and type feedback/devirtualization
[20, 24]. Devirtualization converts an indirect jump into multiple
conditional branches based on extensive program analysis or accu-
rate profiling. The benefit of devirtualization is limited by its lack of
adaptivity (as shown in [30]), very much like our static target selec-
tion mechanism. Therefore, most state-of-the-art compilers either do
not use devirtualization or implement a limited form of it [41]. Code
replication and superinstructions [14] were proposed to improve in-
direct jump prediction accuracy on virtual machine interpreters. Our
approach is not specific to any platform and can be used for any in-
direct jump.

9. Conclusion

This paper proposed the dynamic predication of indirect jumps (DIP)
as a new architectural approach to improve the performance of pro-
gramming language constructs implemented using indirect jumps.
DIP is a cooperative hardware/software (architecture/compiler) tech-
nique that combines the strengths of both. The key idea of DIP is
that the processor follows multiple target paths of a hard-to-predict
indirect jump by dynamically predicating them instead of predict-
ing only one target for the jump. This significantly improves the
likelihood that the correct target path is in the processor and there-
fore reduces the likelihood of a full pipeline flush due to an indirect
jump with multiple dynamically-exercised targets. We showed that
the hardware cost of DIP is very small if dynamic predication is al-
ready implemented for conditional branches. Therefore, we believe
that dynamic predication is a substrate that should be used for both
conditional and indirect jumps.

We evaluated DIP on modern object-oriented applications, in-
cluding the full set of Java DaCapo benchmarks. Our results show
that DIP improves performance by 37.8% over a commonly-used
BTB-based indirect jump predictor, while also reducing energy con-
sumption by 24.8%. We also evaluated DIP in comparison with three
previously proposed indirect jump predictors and found that DIP pro-
vides better performance and better energy efficiency, while requir-
ing smaller hardware storage cost. As such, DIP could be an enabler
that improves the performance of modular object-oriented applica-
tions that heavily make use of indirect jumps. We believe the impor-
tance of DIP will increase in the future as more programs will likely
be written in object-oriented styles to reduce software development
costs and to improve ease of programming.
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