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(MICRO ’06, MICRO ’07, ISCA ’08)

•Applications slow down due to interference from 
memory requests of other applications
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Shared
Ti

•Slowdown of application i = 
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
(MICRO ’07)

•Unfairness =

Wednesday, March 17, 2010



4

Background and Problem

Wednesday, March 17, 2010



• Magnitude of each application’s slowdown depends on 
concurrently running applications’ memory behavior
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•Background and Problem

•Motivation for Source Throttling

• Fairness via Source Throttling (FST)

•Evaluation

•Conclusion
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• Primarily manage inter-application interference in 
only one particular resource 

• Shared Cache, Memory Controller, Interconnect, etc.

• Combining techniques for the different resources can 
result in negative interaction

• Approaches that coordinate interaction among 
techniques for different resources require 
complex implementations

Our Goal: Enable fair sharing of
the entire memory system by dynamically detecting 
and controlling interference in a coordinated manner
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• Manage inter-application interference at 
the cores, not at the shared resources

• Dynamically estimate unfairness in the 
memory system 

• If unfairness > system-software-specified 
target then
throttle down core causing unfairness & 
throttle up core that was unfairly treated
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•Runtime Unfairness Evaluation
• Dynamically estimates the unfairness in the 

memory system

•Dynamic Request Throttling
• Adjusts how aggressively each core makes 

requests to the shared resources
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Shared
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•Slowdown of application i = 
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
•Unfairness =

Estimating System Unfairness
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Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness 
2- Find app. with the highest 
slowdown (App-slowest)
3- Find app. causing most 
interference for App-slowest 
(App-interfering)

if (Unfairness Estimate >Target) 
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering
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Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness 
2- Find app. with the highest 
slowdown (App-slowest)
3- Find app. causing most 
interference for App-slowest 
(App-interfering)

if (Unfairness Estimate >Target) 
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering
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• Goal: Adjust how aggressively each core 
makes requests to the shared resources

•Mechanisms:
• Miss Status Holding Register (MSHR) quota
• Controls the number of concurrent requests 

accessing shared resources from each application

• Request injection frequency
• Controls how often memory requests are issued 

to the last level cache from the MSHRs
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• Throttling level assigned to each core determines 
both MSHR quota and request injection rate
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• Throttling level assigned to each core determines 
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection 
Rate

100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
10% 12 Once every 10 cycles
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
3% 3 Once every 30 cycles
2% 2 Once every 50 cycles

Total # of
MSHRs: 128
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Runtime Unfairness
Evaluation Dynamic
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•Different fairness objectives can be 
configured by system software
• Estimated Unfairness > Target Unfairness

• Estimated Max Slowdown > Target Max Slowdown

• Estimated Slowdown(i) > Target Slowdown(i)

•Support for thread priorities
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•Different fairness objectives can be 
configured by system software
• Estimated Unfairness > Target Unfairness

• Estimated Max Slowdown > Target Max Slowdown

• Estimated Slowdown(i) > Target Slowdown(i)

•Support for thread priorities
• Weighted Slowdown(i) = 

        Estimated Slowdown(i) x Weight(i)
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•Total storage cost required 
for 4 cores is ! 12KB

• FST does not require any structures or 
logic that are on the processor’s critical 
path
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•Background and Problem

•Motivation for Source Throttling

• Fairness via Source Throttling (FST)

•Evaluation

•Conclusion
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• x86 cycle accurate simulator

• Baseline processor configuration
• Per-core
• 4-wide issue, out-of-order, 256 entry ROB

• Shared (4-core system)
• 128 MSHRs 
• 2 MB, 16-way L2 cache

• Main Memory
• DDR3 1333 MHz
• Latency of 15ns per command (tRP, tRCD, CL)
• 8B wide core to memory bus

26
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• Fairness via Source Throttling (FST) 
is a new fair and high-performance 
shared resource management approach for CMPs

• Dynamically monitors unfairness and throttles down 
sources of interfering memory requests

• Eliminates the need for and complexity of 
multiple per-resource fairness techniques

• Improves both system fairness and performance

• Incorporates thread weights and enables 
different fairness objectives

29
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