
Fairness via Source Throttling:

A configurable and high-performance fairness
substrate for multi-core memory systems

Eiman Ebrahimi*

Chang Joo Lee*

Onur Mutlu‡

Yale N. Patt*

* HPS Research Group

The University of Texas at Austin

‡ Computer Architecture Laboratory

Carnegie Mellon University

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N...

2

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Chip Boundary
On-chip
Off-chip

2

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Chip Boundary
On-chip
Off-chip

2

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Chip Boundary
On-chip
Off-chip

2

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Chip Boundary
On-chip
Off-chip

2

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Chip Boundary
On-chip
Off-chip

2

Wednesday, March 17, 2010

Background and Problem

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip
Off-chip

2

Wednesday, March 17, 2010

•Applications slow down due to interference from
memory requests of other applications

3

Background and Problem

Wednesday, March 17, 2010

• A memory system is fair if slowdowns of
same-priority applications are equal
(MICRO ’06, MICRO ’07, ISCA ’08)

•Applications slow down due to interference from
memory requests of other applications

3

Background and Problem

Wednesday, March 17, 2010

• A memory system is fair if slowdowns of
same-priority applications are equal
(MICRO ’06, MICRO ’07, ISCA ’08)

•Applications slow down due to interference from
memory requests of other applications

3

Background and Problem

Shared
Ti

•Slowdown of application i =
Ti

Alone

Wednesday, March 17, 2010

• A memory system is fair if slowdowns of
same-priority applications are equal
(MICRO ’06, MICRO ’07, ISCA ’08)

•Applications slow down due to interference from
memory requests of other applications

3

Background and Problem

Shared
Ti

•Slowdown of application i =
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
(MICRO ’07)

•Unfairness =

Wednesday, March 17, 2010

4

Background and Problem

Wednesday, March 17, 2010

• Magnitude of each application’s slowdown depends on
concurrently running applications’ memory behavior

4

Background and Problem

Wednesday, March 17, 2010

0

1

2

3

4

5

zeus art

Sl
ow

do
w

n
• Magnitude of each application’s slowdown depends on

concurrently running applications’ memory behavior

4

Background and Problem

Wednesday, March 17, 2010

0

1

2

3

4

5

zeus art

Sl
ow

do
w

n
• Magnitude of each application’s slowdown depends on

concurrently running applications’ memory behavior

0
1
2
3
4
5
6
7

 lbm omnet apsi vortex
Sl

ow
do

w
n

4

Background and Problem

Wednesday, March 17, 2010

0

1

2

3

4

5

zeus art

Sl
ow

do
w

n
• Magnitude of each application’s slowdown depends on

concurrently running applications’ memory behavior

• Large disparities in slowdowns are unacceptable

0
1
2
3
4
5
6
7

 lbm omnet apsi vortex
Sl

ow
do

w
n

4

Background and Problem

Wednesday, March 17, 2010

0

1

2

3

4

5

zeus art

Sl
ow

do
w

n
• Magnitude of each application’s slowdown depends on

concurrently running applications’ memory behavior

• Large disparities in slowdowns are unacceptable
• Low system performance

0
1
2
3
4
5
6
7

 lbm omnet apsi vortex
Sl

ow
do

w
n

4

Background and Problem

Wednesday, March 17, 2010

0

1

2

3

4

5

zeus art

Sl
ow

do
w

n
• Magnitude of each application’s slowdown depends on

concurrently running applications’ memory behavior

• Large disparities in slowdowns are unacceptable
• Low system performance
• Vulnerability to denial of service attacks

0
1
2
3
4
5
6
7

 lbm omnet apsi vortex
Sl

ow
do

w
n

4

Background and Problem

Wednesday, March 17, 2010

0

1

2

3

4

5

zeus art

Sl
ow

do
w

n
• Magnitude of each application’s slowdown depends on

concurrently running applications’ memory behavior

• Large disparities in slowdowns are unacceptable
• Low system performance
• Vulnerability to denial of service attacks
• Difficult for system software to enforce priorities

0
1
2
3
4
5
6
7

 lbm omnet apsi vortex
Sl

ow
do

w
n

4

Background and Problem

Wednesday, March 17, 2010

•Background and Problem

•Motivation for Source Throttling

• Fairness via Source Throttling (FST)

•Evaluation

•Conclusion

5

Outline

Wednesday, March 17, 2010

6

Prior Approaches

Wednesday, March 17, 2010

• Primarily manage inter-application interference in
only one particular resource

• Shared Cache, Memory Controller, Interconnect, etc.

6

Prior Approaches

Wednesday, March 17, 2010

• Primarily manage inter-application interference in
only one particular resource

• Shared Cache, Memory Controller, Interconnect, etc.

• Combining techniques for the different resources can
result in negative interaction

6

Prior Approaches

Wednesday, March 17, 2010

• Primarily manage inter-application interference in
only one particular resource

• Shared Cache, Memory Controller, Interconnect, etc.

• Combining techniques for the different resources can
result in negative interaction

• Approaches that coordinate interaction among
techniques for different resources require
complex implementations

6

Prior Approaches

Wednesday, March 17, 2010

• Primarily manage inter-application interference in
only one particular resource

• Shared Cache, Memory Controller, Interconnect, etc.

• Combining techniques for the different resources can
result in negative interaction

• Approaches that coordinate interaction among
techniques for different resources require
complex implementations

Our Goal: Enable fair sharing of
the entire memory system by dynamically detecting
and controlling interference in a coordinated manner

6

Prior Approaches

Wednesday, March 17, 2010

7

Our Approach

Wednesday, March 17, 2010

• Manage inter-application interference at
the cores, not at the shared resources

7

Our Approach

Wednesday, March 17, 2010

• Manage inter-application interference at
the cores, not at the shared resources

• Dynamically estimate unfairness in the
memory system

7

Our Approach

Wednesday, March 17, 2010

• Manage inter-application interference at
the cores, not at the shared resources

• Dynamically estimate unfairness in the
memory system

• If unfairness > system-software-specified
target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

7

Our Approach

Wednesday, March 17, 2010

Wednesday, March 17, 2010

A:
B:

Unmanaged
Interference

A:

B:
Fair Source
Throttling

Wednesday, March 17, 2010

Oldest ⎧｜｜⎩

Shared Memory
Resources

A:
B:

Unmanaged
Interference

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute

ComputeB:
Unmanaged
Interference

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute

ComputeB:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute

ComputeB:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

ComputeB:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

ComputeB:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resourcesB:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A:

B:
Fair Source
Throttling

queue of requests to
shared resources

Intensive application A generates many requests and
causes long stall times for less intensive application B

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A: Compute

ComputeB:
Fair Source
Throttling

Request Generation Order
A1, A2, A3, A4, B1

queue of requests to
shared resources

Intensive application A generates many requests and
causes long stall times for less intensive application B

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A: Compute

ComputeB:
Fair Source
Throttling

Request Generation Order
A1, A2, A3, A4, B1

queue of requests to
shared resources

Intensive application A generates many requests and
causes long stall times for less intensive application B

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A: Compute

ComputeB:
Fair Source
Throttling

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

⎧｜｜⎩

Shared Memory
Resources

A: Compute

ComputeB:
Fair Source
Throttling

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute

ComputeB:
Fair Source
Throttling

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1

Compute Stall wait.B:
Fair Source
Throttling

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1

Compute Stall wait. Stall on B1B:
Fair Source
Throttling

Stall wait.

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1

Compute Stall wait. Stall on B1B:

Core B’s stall time

Fair Source
Throttling

Stall wait.

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2

Compute Stall wait. Stall on B1B:

Core B’s stall time

Fair Source
Throttling

Stall wait.

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Stall on A4Stall on A3

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2

Compute Stall wait. Stall on B1B:

Core A’s stall time

Core B’s stall time

Fair Source
Throttling

Stall wait.

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Stall on A4Stall on A3

Extra Cycles
Core A

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2

Compute Stall wait. Stall on B1B:

Core A’s stall time

Core B’s stall time

Fair Source
Throttling

Stall wait.

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Saved Cycles Core B
Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Stall on A4Stall on A3

Extra Cycles
Core A

Wednesday, March 17, 2010

A4
B1

A1

A2

A3

Oldest ⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2 Stall on A3 Stall on A4

Compute Stall waiting for shared resources Stall on B1B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

A4

B1

A1

A2

A3

⎧｜｜⎩

Shared Memory
Resources

A: Compute Stall on A1 Stall on A2

Compute Stall wait. Stall on B1B:

Dynamically detect application A’s interference for
application B and throttle down application A

Core A’s stall time

Core B’s stall time

Fair Source
Throttling

Stall wait.

Request Generation Order
A1, B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Saved Cycles Core B
Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Stall on A4Stall on A3

Extra Cycles
Core A

Wednesday, March 17, 2010

•Background and Problem

•Motivation for Source Throttling

• Fairness via Source Throttling (FST)

•Evaluation

•Conclusion

9

Outline

Wednesday, March 17, 2010

10

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

•Runtime Unfairness Evaluation
• Dynamically estimates the unfairness in the

memory system

10

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

•Runtime Unfairness Evaluation
• Dynamically estimates the unfairness in the

memory system

•Dynamic Request Throttling
• Adjusts how aggressively each core makes

requests to the shared resources

10

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

FST

Time
Interval 1 Interval 2 Interval 3

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

FST

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness

FST

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime Unfairness
Evaluation

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)

FST

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime Unfairness
Evaluation

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

FST

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime Unfairness
Evaluation

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

FST
Unfairness Estimate

App-slowest
App-interfering

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Dynamic
Request Throttling

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{

FST
Unfairness Estimate

App-slowest
App-interfering

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Dynamic
Request Throttling

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering

FST
Unfairness Estimate

App-slowest
App-interfering

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Dynamic
Request Throttling

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

｜ ⎨ ｜ ⎧⎩
Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Dynamic
Request Throttling

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

12

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

13

Shared
Ti

•Slowdown of application i =
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
•Unfairness =

Estimating System Unfairness

Wednesday, March 17, 2010

•How can be estimated in shared mode?Ti
Alone

13

Shared
Ti

•Slowdown of application i =
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
•Unfairness =

Estimating System Unfairness

Wednesday, March 17, 2010

•How can be estimated in shared mode?Ti
Alone

13

Shared
Ti

•Slowdown of application i =
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
•Unfairness =

Ti
Excess

• is the number of extra cycles it takes
application i to execute due to interference

Estimating System Unfairness

Wednesday, March 17, 2010

•How can be estimated in shared mode?Ti
Alone

13

Shared
Ti

•Slowdown of application i =
Ti

Alone

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i
•Unfairness =

Ti
Excess

• is the number of extra cycles it takes
application i to execute due to interference

Ti
Shared

=Ti
Alone

- Ti
Excess

•

Estimating System Unfairness

Wednesday, March 17, 2010

14

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

14

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:

14

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache

14

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank

14

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

14

Bank 2

Tracking Inter-Core Interference

Row

Wednesday, March 17, 2010

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

14

Bank 2

Tracking Inter-Core Interference

Row

Wednesday, March 17, 2010

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

FST hardware

14

Bank 2

Tracking Inter-Core Interference

Row

Wednesday, March 17, 2010

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

FST hardware

14

Bank 2

Tracking Inter-Core Interference

Row

Wednesday, March 17, 2010

Core 0 Core 1

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Bank 2Bank 0 Bank 1 Bank 7...

Core 0 Core 1

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A
queue of requests to bank 2

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A
queue of requests to bank 2

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A
queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A

Interference
per core
bit vector

0 0
Core # 0 1

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A

Shadow Row Address Register
(SRAR) Core 0 :

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A

Shadow Row Address Register
(SRAR) Core 0 :

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row Hit

Row A

Shadow Row Address Register
(SRAR) Core 0 :

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row Hit

Row A

Row B
Shadow Row Address Register
(SRAR) Core 0 :

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row Conflict
Row A

Row B
Shadow Row Address Register
(SRAR) Core 0 :

Row A

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row B

Row A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row Conflict
Row A

Row B
Row B

Shadow Row Address Register
(SRAR) Core 0 :

Row A

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row BRow A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A

Row Hit

Row B
Row B

Shadow Row Address Register
(SRAR) Core 0 :

Row A

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row BRow A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A
Row Conflict

Row B

Row B
Shadow Row Address Register
(SRAR) Core 0 :

Row A

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row BRow A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A
Row Conflict

Row B

Row B
Shadow Row Address Register
(SRAR) Core 0 :

Row A

Interference induced
row conflict

Interference
per core
bit vector

0 0
Core # 0 1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

Row BRow A

Bank 2

Row B

Bank 0 Bank 1 Bank 7...

Core 0 Core 1

Row A
Row Conflict

Row B

Row B
Shadow Row Address Register
(SRAR) Core 0 :

Row A

Interference induced
row conflict

Interference
per core
bit vector

0
Core # 0 1

1

Shadow Row Address Register
(SRAR) Core 1 :

queue of requests to bank 2

FST additions

Row Buffer:

15

Tracking DRAM Row-Buffer
Interference

Wednesday, March 17, 2010

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

FST hardware
Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles
Counters per core

FST hardware
Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles
Counters per core

TCycle Count

FST hardware
Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles
Counters per core

1

TCycle Count

FST hardware
Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles
Counters per core

1

TCycle Count

FST hardware
Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

Excess Cycles
Counters per core

1

Cycle Count T+2

2
FST hardware

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

Excess Cycles
Counters per core

1

Cycle Count T+2

2
FST hardware

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

Excess Cycles
Counters per core

1

Cycle Count T+2

2
FST hardware

1

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

Excess Cycles
Counters per core

1

Cycle Count T+2

2
FST hardware

1

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

Excess Cycles
Counters per core

1

Cycle Count T+2

2
FST hardware

1

T+3

3

1

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7...

Memory Controller

Shared Cache

16

Ti
Excess

｜
⎨
｜⎧

⎩

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

17

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

• To identify App-interfering, for each core i

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0

Interference per core
bit vector

Core # 0 1 2 3

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 0

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 00
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

0

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

0
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

0
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 2,1

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

0
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 2,1

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1

0
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 2,1

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered
with

core 1

0
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered
with

core 1

Cnt 2,1++

0
1
2
3

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered
with

core 1

Cnt 2,1++

0
1
2
3

App-slowest = 2

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

• To identify App-interfering, for each core i
• FST separately tracks interference

caused by each core j (j ! i)

0 0 - 0

0 - 0 0

- 0 0 0

｜⎨｜⎧ ⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered
with

core 1

Cnt 2,1++

0
1
2
3

Row with largest count
determines App-interfering

App-slowest = 2

18

Tracking Inter-Core Interference

Wednesday, March 17, 2010

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

19

Fairness via Source Throttling (FST)

Wednesday, March 17, 2010

20

Dynamic Request Throttling

Wednesday, March 17, 2010

• Goal: Adjust how aggressively each core
makes requests to the shared resources

20

Dynamic Request Throttling

Wednesday, March 17, 2010

• Goal: Adjust how aggressively each core
makes requests to the shared resources

•Mechanisms:
• Miss Status Holding Register (MSHR) quota

20

Dynamic Request Throttling

Wednesday, March 17, 2010

• Goal: Adjust how aggressively each core
makes requests to the shared resources

•Mechanisms:
• Miss Status Holding Register (MSHR) quota
• Controls the number of concurrent requests

accessing shared resources from each application

20

Dynamic Request Throttling

Wednesday, March 17, 2010

• Goal: Adjust how aggressively each core
makes requests to the shared resources

•Mechanisms:
• Miss Status Holding Register (MSHR) quota
• Controls the number of concurrent requests

accessing shared resources from each application

• Request injection frequency

20

Dynamic Request Throttling

Wednesday, March 17, 2010

• Goal: Adjust how aggressively each core
makes requests to the shared resources

•Mechanisms:
• Miss Status Holding Register (MSHR) quota
• Controls the number of concurrent requests

accessing shared resources from each application

• Request injection frequency
• Controls how often memory requests are issued

to the last level cache from the MSHRs

20

Dynamic Request Throttling

Wednesday, March 17, 2010

• Throttling level assigned to each core determines
both MSHR quota and request injection rate

21

Dynamic Request Throttling

Wednesday, March 17, 2010

• Throttling level assigned to each core determines
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection
Rate

100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
10% 12 Once every 10 cycles
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
3% 3 Once every 30 cycles
2% 2 Once every 50 cycles

Total # of
MSHRs: 128

21

Dynamic Request Throttling

Wednesday, March 17, 2010

• Throttling level assigned to each core determines
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection
Rate

100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
10% 12 Once every 10 cycles
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
3% 3 Once every 30 cycles
2% 2 Once every 50 cycles

Total # of
MSHRs: 128

21

Dynamic Request Throttling

Wednesday, March 17, 2010

Time

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
Interval i

Interval i + 1
Interval i + 2

Core 0 Core 2

System software
fairness goal: 1.4

22

FST at Work

Wednesday, March 17, 2010

Time
Interval i

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%Interval i

Interval i + 1
Interval i + 2

Core 0 Core 2

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%Interval i

Interval i + 1
Interval i + 2

Core 0 Core 2

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%Interval i

Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%Interval i

Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%Interval i

Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2
Throttle down Throttle up

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i Interval i+1

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%
25% 100% 25% 100%

Interval i
Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2
Throttle down Throttle up

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i Interval i+1

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%
25% 100% 25% 100%

Interval i
Interval i + 1
Interval i + 2

Core 0 Core 2

2.5

Core 2

Core 1

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i Interval i+1

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%
25% 100% 25% 100%

Interval i
Interval i + 1
Interval i + 2

Core 0 Core 2

2.5

Core 2

Core 1

Throttle down Throttle up

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

Time
Interval i Interval i+1 Interval i+2

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%
25% 100% 25% 100%
25% 50% 50% 100%

Interval i
Interval i + 1
Interval i + 2

Core 0 Core 2

2.5

Core 2

Core 1

Throttle down Throttle up

System software
fairness goal: 1.4

22

FST at Work

Slowdown
Estimation

｜ ⎨ ｜ ⎧⎩

Wednesday, March 17, 2010

23

System Software Support

Wednesday, March 17, 2010

•Different fairness objectives can be
configured by system software

23

System Software Support

Wednesday, March 17, 2010

•Different fairness objectives can be
configured by system software
• Estimated Unfairness > Target Unfairness

23

System Software Support

Wednesday, March 17, 2010

•Different fairness objectives can be
configured by system software
• Estimated Unfairness > Target Unfairness

• Estimated Max Slowdown > Target Max Slowdown

23

System Software Support

Wednesday, March 17, 2010

•Different fairness objectives can be
configured by system software
• Estimated Unfairness > Target Unfairness

• Estimated Max Slowdown > Target Max Slowdown

• Estimated Slowdown(i) > Target Slowdown(i)

23

System Software Support

Wednesday, March 17, 2010

•Different fairness objectives can be
configured by system software
• Estimated Unfairness > Target Unfairness

• Estimated Max Slowdown > Target Max Slowdown

• Estimated Slowdown(i) > Target Slowdown(i)

•Support for thread priorities

23

System Software Support

Wednesday, March 17, 2010

•Different fairness objectives can be
configured by system software
• Estimated Unfairness > Target Unfairness

• Estimated Max Slowdown > Target Max Slowdown

• Estimated Slowdown(i) > Target Slowdown(i)

•Support for thread priorities
• Weighted Slowdown(i) =

 Estimated Slowdown(i) x Weight(i)

23

System Software Support

Wednesday, March 17, 2010

•Total storage cost required
for 4 cores is ! 12KB

• FST does not require any structures or
logic that are on the processor’s critical
path

24

Hardware Cost

Wednesday, March 17, 2010

•Background and Problem

•Motivation for Source Throttling

• Fairness via Source Throttling (FST)

•Evaluation

•Conclusion

25

Outline

Wednesday, March 17, 2010

• x86 cycle accurate simulator

• Baseline processor configuration
• Per-core
• 4-wide issue, out-of-order, 256 entry ROB

• Shared (4-core system)
• 128 MSHRs
• 2 MB, 16-way L2 cache

• Main Memory
• DDR3 1333 MHz
• Latency of 15ns per command (tRP, tRCD, CL)
• 8B wide core to memory bus

26

Evaluation Methodology

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

44.4%

27

System Unfairness Results

Wednesday, March 17, 2010

0

1

2

3

4

5

6

7

Sy
st

em
 U

nf
ai

rn
es

s

No Fairness
Fair Cache Capacity (VPC)
Parallelism-Aware Batch Scheduling+VPC
Fairness via Source Throttling (FST)

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

gm
ea

n

44.4%

36%

27

System Unfairness Results

Wednesday, March 17, 2010

0

0.4

0.8

1.2

1.6

2

Sy
st

em
 P

er
f.

N
or

m
al

iz
ed

 t
o

N
o

Fa
ir

ne
ss Fair Cache Capacity (VPC)

Parallelism-Aware Batch Scheduling + VPC
Fairness via Source Throttling (FST)

gm
ea

n

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

28

System Performance Results

Wednesday, March 17, 2010

0

0.4

0.8

1.2

1.6

2

Sy
st

em
 P

er
f.

N
or

m
al

iz
ed

 t
o

N
o

Fa
ir

ne
ss Fair Cache Capacity (VPC)

Parallelism-Aware Batch Scheduling + VPC
Fairness via Source Throttling (FST)

gm
ea

n

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

28

System Performance Results

Wednesday, March 17, 2010

0

0.4

0.8

1.2

1.6

2

Sy
st

em
 P

er
f.

N
or

m
al

iz
ed

 t
o

N
o

Fa
ir

ne
ss Fair Cache Capacity (VPC)

Parallelism-Aware Batch Scheduling + VPC
Fairness via Source Throttling (FST)

gm
ea

n

25.6%

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

28

System Performance Results

Wednesday, March 17, 2010

0

0.4

0.8

1.2

1.6

2

Sy
st

em
 P

er
f.

N
or

m
al

iz
ed

 t
o

N
o

Fa
ir

ne
ss Fair Cache Capacity (VPC)

Parallelism-Aware Batch Scheduling + VPC
Fairness via Source Throttling (FST)

gm
ea

n

25.6%

14%

gro
m+a

rt+
ast

ar
+h

26
4

ar
t+

ga
mes

+G
em

s+
h2

64

lbm
+o

mne
t+

ap
si+

vo
rte

x

ar
t+

les
lie

+g
am

es
+g

ro
m

ar
t+

ast
ar

+le
sli

e+
cr

aft
y

ar
t+

milc
+v

or
tex

+c
alc

uli
x

luc
as+

am
mp+

xa
lan

c+
gro

m

lbm
+G

em
s+

ast
ar

+m
es

a

mgr
id+

pa
rse

r+
so

ple
x+

pe
rlb

gc
c0

6+
xa

lan
c+

lbm
+c

ac
tu

s

28

System Performance Results

Wednesday, March 17, 2010

• Fairness via Source Throttling (FST)
is a new fair and high-performance
shared resource management approach for CMPs

• Dynamically monitors unfairness and throttles down
sources of interfering memory requests

• Eliminates the need for and complexity of
multiple per-resource fairness techniques

• Improves both system fairness and performance

• Incorporates thread weights and enables
different fairness objectives

29

Conclusion

Wednesday, March 17, 2010

Fairness via Source Throttling:

A configurable and high-performance fairness
substrate for multi-core memory systems

Eiman Ebrahimi*

Chang Joo Lee*

Onur Mutlu‡

Yale N. Patt*

* HPS Research Group

The University of Texas at Austin

‡ Computer Architecture Laboratory

Carnegie Mellon University

Wednesday, March 17, 2010

