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ABSTRACT
On-chip contention increases memory access latency for multi-
core processors. We identify that this additional latency has
a substantial e�ect on performance for an important class of
latency-critical memory operations: those that result in a cache
miss and are dependent on data from a prior cache miss. We
observe that the number of instructions between the �rst cache
miss and its dependent cache miss is usually small. To minimize
dependent cache miss latency, we propose adding just enough
functionality to dynamically identify these instructions at the
core and migrate them to the memory controller for execution
as soon as source data arrives from DRAM. This migration
allows memory requests issued by our new Enhanced Memory
Controller (EMC) to experience a 20% lower latency than if
issued by the core. On a set of memory intensive quad-core
workloads, the EMC results in a 13% improvement in system
performance and a 5% reduction in energy consumption over
a system with a Global History Bu�er prefetcher, the highest
performing prefetcher in our evaluation.

1. Introduction
On-Chip Latency. The large latency disparity between per-
forming computation at the core and accessing data from
o�-chip DRAM has been a major performance bottleneck for
decades. However, in the current multi-core era, the e�ective
latency of accessing memory has increased due to on-chip in-
terference. Figure 1 separates the delay incurred by a DRAM
request into (a) the average time that the request takes to
access DRAM and return data to the chip and (b) all other
on-chip delays that the request incurs after missing in the
LLC, for the SPEC CPU2006 benchmark suite. We simulate a
quad-core processor where each core has a 256-entry reorder
bu�er (ROB) and 1 MB of last level cache (LLC).

In Figure 1, benchmarks are sorted in ascending memory
intensity. For the memory intensive applications to the right
of leslie, de�ned as having an MPKI (misses per thousand
instructions) of over 10, the actual DRAM access is less than
half of the total latency of the memory request. Most of the
e�ective memory latency is due to on-chip delay.

The on-chip latency overhead shown in Figure 1 is due to
shared resource contention among the multiple cores. This
contention happens in the shared on-chip interconnect, cache,
and DRAM buses, row-bu�ers, and banks. Others [12, 15–17,
30, 31, 41, 42] have pointed out the e�ect of such interference
on performance, and noted that this e�ect will increase as
the number of cores increases [5, 27, 35].
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Figure 1: Breakdown of total memory access latency into
DRAM latency and on-chip delay.

Criticality of Dependent Cache Misses. The impact of
on-chip latency on processor performance is magni�ed when
a cache miss has a dependent load that also results in a cache
miss. These dependent cache misses are common in pointer
chasing applications and prevent the core from making for-
ward progress since the e�ective memory access latencies
of both misses are serialized. Figure 2 shows the percentage
of total LLC misses that are dependent on a prior LLC miss
for SPEC CPU2006. The application with the highest fraction
of dependent cache misses (mcf ) has an IPC of just 0.3, the
lowest performance of all benchmarks in the suite.
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Figure 2: Percentage of LLCmisses dependent on a prior LLC
miss and the performance increase if the miss is a LLC hit.

Figure 2 also shows the performance increase of these
benchmarks if all of the dependent cache misses had been
LLC hits. The memory intensive benchmarks with a sig-
ni�cant number of dependent cache misses experience large
performance gains. For example, mcf’s performance increases
by 95%. Hence, decreasing the latency of these dependent
cache misses is critically important to performance.



Prefetching. Several techniques have attempted to reduce
the e�ect of dependent cache misses on performance. The
most common is prefetching. Figure 3 shows the percent of all
dependent cache misses that are prefetched by three di�erent
prefetchers: a global history bu�er (GHB) prefetcher [43], a
stream prefetcher [57], and a Markov prefetcher [25] for the
memory intensive SPEC CPU2006 benchmarks. The average
percentage of all dependent cache misses that are prefetched
is small, under 20% on average.
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Figure 3: Percentage of dependent cache misses that are
prefetched with a GHB, stream, and Markov prefetcher.

There are good reasons for this. Prefetchers have di�culty
with dependent cache misses because their addresses are
data dependent, leading to patterns that are hard to capture.
Moreover, inaccurate and untimely prefetch requests lead
to a large increase in bandwidth consumption, a signi�cant
drawback in a bandwidth constrained multi-core system. The
GHB, stream, and Markov prefetchers increase bandwidth
consumption by 20%, 22%, and 42% respectively.

Note that pre-execution techniques such as Runahead Ex-
ecution [14, 38] and Continual Flow Pipelines [58] target
prefetching independent cache misses. Unlike dependent
cache misses, independent misses only require source data
that is available on chip. These operations can be issued and
executed by an out-of-order processor as long as the ROB
is not full. Runahead/CFP discard or defer slices of opera-
tions that are dependent on a miss (including any dependent
cache misses) to generate memory level parallelism with new
independent cache misses.
1.1. The Enhanced Memory Controller (EMC)
The observations above suggest that dependent cache misses
require a di�erent acceleration mechanism. We have found
that the number of operations between a cache miss and its
dependent cache miss is usually small. If a dependent cache
miss is likely, we propose using a dynamic data�ow walk
to identify these operations. This dependence chain is then
migrated to an enhanced memory controller (EMC) where it
is executed immediately after the source data arrives from
DRAM. This allows the EMC to generate cache misses faster
than the core, thereby reducing the on-chip delay observed
by the memory requests.

With this mechanism, some of the operations in the ROB
are executed at the core, while others are executed remotely

at the EMC. Figure 4 provides a high level view of partitioning
a sequence of instructions between the EMC and the core.

On Core On Enhanced Memory Controller

                   (EMC)
Op 0: MEM_LD ( 0xc[R3] -> R1)

Op 1: ADD (R2+1 -> R2)

Op 2: MOV (R3 -> R5)

Op 6: MEM_ST (R1 -> [R3])  

Op 3: MEM_LD ( [R1] -> R1 )

Op 4: SUB ( R1 - [R4] -> R1]

Op 5: MEM_LD ( [R1] -> R3)

Figure 4: A sequence of 7 instructions. Instruction 0 is a
cache miss and is surrounded by a dashed box. Dependent
cache misses to be executed at the EMC are shaded gray.

In Figure 4, instruction 0 is the �rst cache miss. Instruc-
tions 1 and 2 are independent of instruction 0 and therefore
execute at the core while instruction 0 is waiting for data from
memory. Instructions 3, 4, and 5 are dependent on instruction
0. The core recognizes that instructions 3 and 5 will likely
miss in the LLC, i.e., they are dependent cache misses, and
so transmits instructions 3, 4, and 5 to execute at the EMC.
When EMC execution completes, R1 and R3 are returned to
the core so that execution can continue. To maintain the
sequential execution model, operations sent to the EMC are
not retired at the EMC, only executed. Retirement state is
maintained at the ROB of the core and physical register data
is transmitted back to the core for in-order retirement.

We make the following contributions in this paper:

• We propose the �rst mechanism to identify the chains of
instructions that generate dependent cache misses at run-
time and migrate their execution to a compute capable,
enhanced memory controller (EMC). The EMC is motivated
by the combination of three observations: 1) dependent
cache misses are latency critical operations that are hard to
prefetch, 2) the number of instructions between a source
cache miss and a dependent cache miss is often small, 3) on-
chip contention is a substantial portion of memory access
latency in multi-core systems.

• We show that since the EMC is located near memory, it
minimizes on-chip latency by executing dependence chains
immediately when source data arrives from DRAM and
issuing requests directly to DRAM. Memory requests issued
by the EMC observe 20% lower latency than if issued by
the core. A quad-core system with an EMC results in a 13%
performance gain over a GHB prefetcher.

• We develop the design of the EMC, which implements the
minimum functionality required to e�ciently execute the
dependence chains that generate dependent cache misses.
The EMC requires 10.4% of the area of a full out-of-order
core (a 2% total quad-core area overhead). The EMC main-
tains the traditional sequential execution model along with
conventional cache coherence and virtual memory support.

2



2. Related Work
To discuss related work, we separate all cache misses into two
categories. Dependent cache misses, which the EMC acceler-
ates, and independent cache misses, which the EMC does not
target. Prior work has researched two main approaches to
reduce the e�ective memory latency observed by these two
types of misses: prefetching (to access the address before a
demand request), and moving computation closer to memory.

Stream or stride prefetchers [6, 20, 26, 57] lock on to simple
access patterns and require a small amount of hardware over-
head. These prefetchers e�ectively prefetch only independent
cache misses (Figure 3). More advanced hardware prefetching
techniques such as correlation prefetching [8, 25, 29, 56] do
target dependent cache misses. These prefetchers maintain
large tables that correlate past miss addresses to future miss
addresses. The global-history bu�er [43] is a form of corre-
lation prefetching that uses a two-level indexing scheme to
reduce the need for large correlation tables. Roth et al. [48]
identify stable dependence patterns between pointers, and
store this information in a correlation table. These pattern
based prefetchers are oblivious to the control �ow of the main
thread of execution and are consequently bandwidth ine�-
cient. They rely on past behavior re-occurring in the future
and therefore cannot target all dependent cache misses.

Other hardware prefetchers speci�cally target the point-
ers that lead to cache misses [39, 49, 62]. Content-directed
prefetching [11, 18] greedily prefetches by dereferencing val-
ues that could be memory addresses.

Another form of prefetching uses the application’s own
code to spawn speculative threads [9,10,64] or other forms of
precomputation [4,34,60] to execute ahead of the demand ac-
cess stream, generating independent cache misses. Similarly,
Runahead Execution [14,38,40] and Continual Flow Pipelines
[58] discard dependent cache misses to generate new inde-
pendent cache misses. Solihin et al. [55] combine correlation
prefetching and an extra execution context by proposing that
a user level thread executing either in a DRAM chip or at the
memory controller can leverage DRAM capacity to store the
large correlation tables required for correlation prefetching.

Prior work has also considered enhancing the memory
controller. Carter et al. [7] and Seshadri et al. [52] pro-
pose enhancements to the memory controller that include ad-
dress remapping, prefetching and gather/scatter capabilities.
Memory-side prefetching moves the hardware that prefetches
data from the chip closer to DRAM [3, 22]. More generally,
fabricating logic and memory on the same process has been
proposed [19, 21, 28, 44, 53, 59] and recently revisited with 3D-
stacked memory that incorporates a logic layer underneath
DRAM layers [32], e.g., Hybrid Memory Cube (HMC) [45].
Industry and academia are also pursuing di�erent methods of
integrating compute and memory controllers [13,50,51]. Prior
work has proposed performing computation inside the logic
layer of 3D-stacked DRAM [1, 2, 63], but none has targeted
automatically accelerating dependent cache misses.

To our knowledge, this is the �rst work that proposes
adding compute capability to the memory controller to trans-
parently accelerate chains of dependent cache misses. Our
proposal di�ers from prior work in that we do not prefetch
data; all of the requests sent by the EMC are demand requests.
A dependent chain of computation is automatically extracted
from the core and dynamically moved closer to memory. This
allows the EMC to reduce access latency for all dependent
cache misses, not just requests that can be easily prefetched.

3. Motivation
Figure 5 presents one example of the problem that we target.
We adapt a dynamic sequence of micro-operations (uops)
from mcf. The uops are shown on the left and the data depen-
dencies, omitting control uops, are illustrated on the right.
Core physical registers are denoted by a ‘P’. Assume a sce-
nario where Operation 0 is an outstanding cache miss. We
call this uop a source miss and denote it with a dashed box.
Operations 3 and 5 would result in cache misses when issued,
shaded gray. However, their issue is blocked as their parent
Operation 1 has a data dependence on the result of the source
miss, Operation 0. Operations 3 and 5 are delayed from exe-
cution until the data from Operation 0 returns to the chip and
�ows back to the core through the interconnect and cache
hierarchy. Yet, there are a small number of relatively simple
uops between Operation 0 and Operations 3/5.

Op: 0  MEM_LD( [P8] -> P1 )  //Addr: A

Op: 1  MOV( P1 -> P9 )

Op: 2  ADD( P9, 0x18 -> P12)   

Op: 3  MEM_LD( [P12] -> P10) //Addr: B    

Op: 4  ADD ( P10, 0x4 -> P16)

Op: 5 MEM_LD( [P16] -> P19)  //Addr: C  

1: P1 -> P9

2: P9 + 0x18 -> 

         P12

3: [P12]-> P10

Figure 5: Dependent cache misses: dynamic sequence of
micro-ops based on the left, the data�ow graph is shown on
the right. A, B, C represent cache line addresses.

We propose that the operations that are dependent on a
cache miss be executed as soon as the source data enters the
chip, at the memory controller. This avoids on-chip interfer-
ence and reduces the overall latency to issue the dependent
memory requests.

Figure 5 shows one instance where there are a small num-
ber of simple operations between the source and dependent
miss. We �nd that this trend holds over the memory inten-
sive SPEC CPU2006 applications. Figure 6 shows the average
number of operations in the dependence chain between a
source and dependent miss, if a dependent miss exists. A
small number of operations between a source and dependent
miss means that the EMC does not have to do very much
work to uncover a cache miss and that it requires a small
amount of input data to do so.

3
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Figure 6: Average number of dependent operations between
a source miss and dependent miss.

We therefore tailor the memory controller to execute de-
pendent chains of operations such as those listed in Figure 5.
Section 4.1 describes the required additional compute capabil-
ity in detail. Since the instructions have already been fetched
and decoded at the core and are waiting in the instruction-
window, the core can automatically determine the uops to
include in the dependence chain of a cache miss by leveraging
the existing out-of-order execution machinery. Section 4.2
describes this process. The chain of decoded uops is then
sent to the EMC. Once the data arrives from DRAM for the
original miss, the EMC executes the dependent operations.
Section 4.3 describes the details of EMC execution.

4. Mechanism
Figure 7 shows a quad-core chip that uses our proposed en-
hanced memory controller. The four cores are connected with
a bi-directional ring. The memory controller is located at a
single ring-stop, along with both memory channels, similar
to Intel’s Haswell microarchitecture [24]. Our proposal adds
two pieces of hardware to the processor: limited compute
capability at the memory controller (Section 4.1) and a de-
pendence chain-generation unit at each of the cores (Section
4.2).

Enhanced
Memory

Controller
(EMC)

Core 0 Core 1

Core 2 Core 3

LLC

LLC

LLC

LLC

  DRAM
Channel 0

  DRAM
Channel 1

Figure 7: A high level view of a quad-core processor with an
Enhanced Memory Controller. Each core has a ring stop, de-
noted by a dot, which is also connected to a slice of the shared
last level cache.

4.1. EMC Compute Microarchitecture

We design the EMC to have the minimum functionality re-
quired to execute the pointer-arithmetic that generates de-
pendent cache misses. Instead of a front-end, we utilize small
uop bu�ers (Section 4.1.1). For the back-end, we use 2 ALUs
and provide a minimal set of caching and virtual address

translation capabilities (Section 4.1.2). Figure 8 provides a
high level view of the EMC microarchitecture.

Physical
Register

File Live In Vector

Uop Buffer

Reservation 
Station

ALU 0

ALU 1
EMC 
Data 

Cache

Load Store
Queue

Result Data

Tag Broadcast

Decoded 
micro-ops
from core

Live-out
registers
to core

Live-in
registers
from core

Dirty 
cache

lines to 
core

Figure 8: The microarchitecture of the EMC.

4.1.1. Front-End. The front-end of the EMC consists of two
small uop bu�ers that can each hold a single dependence
chain of up to 16 uops. With multiple bu�ers, the EMC can
be shared between the cores of a multi-core processor. The
front-end of the EMC consists only of this bu�er, it does
not contain any fetch, decode, or register rename hardware.
Chains of dependent operations are renamed for the EMC
using the out-of-order capabilities of the core (Section 4.2).
4.1.2. Back-End. As the EMC targets the pointer-arithmetic
that generates dependent cache misses, it is limited to execut-
ing a subset of the total uops that the core is able to execute.
Only integer operations are allowed (Table 1). Floating point
and vector operations are not allowed. This simpli�es the
microarchitecture of the EMC, and enables the EMC to poten-
tially execute fewer operations to get to the dependent cache
miss. When the core creates a �ltered chain of operations for
the EMC to execute, only the operations that are required
to generate the address for the dependent cache miss are
included in the uop chain.

These �ltered dependence chains are issued from the uop
bu�ers to the 2-wide back-end. Our exploration shows that,
for maximum performance, it is important to exploit the
memory level parallelism present in the dependence chains.
Therefore, the EMC has the capability to issue non-blocking
memory accesses. This requires a small load/store queue
(LSQ) along with out-of-order issue and wakeup using a small
8-entry reservation station and a common data bus (CDB). In
Figure 8, the CDB is denoted by the result and tag broadcast
buses. We support executing stores at the EMC due to how
common register spills/�lls are in the x86 ISA.

Each of the uop bu�ers in the front-end is allocated a pri-
vate physical register �le (PRF) that is 16 registers large and
a private live-in source vector. As the out-of-order core has a
much larger physical register �le than the EMC (256 vs. 16
registers), we rename operations at the core to use the smaller
physical register set of the EMC.
4.1.3. Caches. The EMC contains no instruction cache, but
it does contain a small 4kB data cache that holds the most

4



MEM_LD C8->E0

MOV E0->E1

Cycle 0 Cycle 1

CPR 

MEM_LD C8 ->  C1

MOV C1 -> C9

MEM_LD C16 -> C19

MEM_LD C12 -> C10

ADD C9, 0x18 -> C12

Figure 9: Chain generation using the chain of micro-ops from Figure 5. Three structures are shown: the reorder bu�er (ROB),
register remapping table (RRT), and live-in vector. CPR: Core Physical Register, EPR: EMC Physical Register. Processed
operations are shaded after every cycle.

recent lines that have been transmitted from DRAM to the
chip to exploit temporal locality. Cache coherence for this
cache is maintained at the inclusive last-level cache by adding
an extra bit to each directory entry for every cache line to
track the cache lines that the EMC holds.
4.1.4. Virtual Address Translation. Virtual memory trans-
lation at the EMC occurs through a small 32 entry TLB for
each core. The TLBs act as a circular bu�er and cache the
page table entries (PTE) of the last pages accessed by the
EMC for each core. The PTEs of the core add a bit to each
TLB entry to track if a page translation is resident in the TLB
at the EMC. This bit is used to invalidate EMC TLB entries
during the TLB shootdown process. Before a chain is sent to
the EMC, the bit is also used to check if the PTE for the source
miss is resident at the EMC TLB. If it is not, the core sends
the source miss PTE to the EMC along with the dependence
chain. The EMC does not handle page-faults: if the PTE is not
available at the EMC, the EMC halts execution and signals
the core to re-execute the entire chain.

4.2. Generating Chains of
Dependent Micro-Operations

We leverage the out-of-order execution capability of the core
to generate the short chains of operations that the EMC ex-
ecutes. This allows the EMC to have no fetch, decode, or
rename hardware, as shown in Figure 8, signi�cantly reduc-
ing its area and energy consumption.

The core can generate dependence chains to execute at
the EMC once there is a full-window stall due to a LLC miss
blocking retirement. If this is the case, we use a 3-bit sat-
urating counter to determine if a dependent cache miss is
likely. This counter is incremented if any LLC miss has a
dependent cache miss and decremented if any LLC miss has
no dependent cache misses. If either of the top 2-bits of the
saturating counter are set, we begin the following process of
generating a dependence chain for the EMC to accelerate.

We use the dynamic micro-op sequence from Figure 5 to
demonstrate the chain generation process, illustrated by Fig-
ure 9. This process takes a variable number of cycles based on
dynamic chain length (5 cycles for Figure 9). As the uops are

included in the chain they are stored in a bu�er maintained
at the core until the entire chain has been assembled. At this
point the chain is transmitted to the EMC.

For each cycle, we show three structures in Figure 9: the
reorder bu�er of the home core (ROB), the register remapping
table (RRT), and a live-in source vector. The RRT is function-
ally similar to a register alias table and maps core physical
registers to EMC physical registers. The operations in the
chain have to be remapped to a smaller set of physical reg-
isters so that the EMC can execute them. The live-in source
vector is a shift register that holds the input data necessary to
execute the chain of operations. We only show a relevant por-
tion of the ROB and omit irrelevant operations by denoting
them with stripes.

In Figure 9, the cycle 0 frame shows the source miss at the
top of the ROB. It has been allocated core physical register
number 1 (C1) to use as a destination register. This register is
remapped to an EMC register using the RRT. EMC physical
registers are assigned using a counter that starts at 0 and
saturates at the maximum number of physical registers that
the EMC contains (16). In the example, C1 is renamed to use
the �rst physical register of the EMC (E0) in the RRT.

Once the source miss has been remapped to EMC physical
registers, chains of decoded uops are created using a forward
data�ow walk that tracks dependencies through renamed
physical registers. The goal is to mark uops that would be
ready to execute when the source miss has completed. There-
fore, the load that has caused the cache miss is pseudo “woken
up” by broadcasting the tag of the destination physical reg-
ister onto the common data bus (CDB) of the home core. A
uop wakes up when the physical register tag of one of its
source operands matches the tag that is broadcast on the
CDB and all other source operands are ready. Pseudo waking
up the uop does not execute or commit the uop; it simply
broadcasts the uop’s destination tag on the CDB to pseudo
wake up dependent instructions.

In the example, there is only a single ready uop to broadcast
in Cycle 0. The destination register of the source load (C1) is
broadcast on the CDB. This wakes up the second operation
in the chain, which is a MOV instruction that uses C1 as a

5



Algorithm 1: Dependence Chain Generation
//Process the source uop at ROB full stall;
Allocate EPR for destination CPR of uop in RRT;
Add uop to chain and broadcast destination CPR tag;
for each dependent uop do

if uop Allowed and (all source CPRs ready or in RRT) then
//Prepare the dependent uop to send to EMC;
for each source operand do

if CPR ready then
Read data from PRF into live-in vector;

else
EPR = RRT[CPR];

end
end
Allocate EPR for destination CPR in RRT;
Add uop to chain and broadcast destination CPR tag;
if Total uops in Chain == 16 then

break;
end

end
end
Send �ltered chain of uops and live-in data to EMC;

Figure 10: Dependence chain generation. CPR: Core Physical
Register. EPR: EMCPhysical Register. RRT: Register Remap-
ping Table.
source register. It reads the remapped register id from the
RRT for C1, and uses E0 as its source register at the EMC.
The destination register (C9) is renamed to E1.

Operations continue to “wake up” dependent operations
until either the maximum number of operations in a chain is
reached, or there are no more operations to awaken. Thus,
in the next cycle, the core broadcasts C9 on the CDB. The
result of this operation is shown in cycle 1, when an ADD
operation is woken up. This operation has two sources, C9
and an immediate value, 0x18. The immediate is shifted into
a live-in source vector, which will be sent to the EMC along
with the chain. The destination register C12 is renamed to
E2 and written into the RRT.

In the example, the entire process takes �ve cycles to com-
plete. In cycle 4, once the �nal load is added to the chain, a
�ltered portion of the execution window has been assembled
for the EMC to execute. These uops are read out of the instruc-
tion window and sent to the EMC for execution. Algorithm 1
describes our mechanism for dynamically generating a chain
of dependent uops. Note that dependence chain generation
terminates when either all dependent operations have been
identi�ed or the maximum chain length (16 uops) is reached.
Dependence chains frequently contain multiple levels of in-
direction (dependent loads). Out-of-order issue allows the
EMC to react to dynamic hit/miss information, minimizing
request latency.
4.3. EMC Execution
To start execution, the EMC takes two inputs: the source vec-
tor of live-in registers and the executable chain of operations.
The EMC does not commit architectural state, it executes the

chain of uops speculatively and sends the destination phys-
ical registers back to the core. Two special cases arise with
respect to control operations and memory operations. First,
we discuss control operations.

The EMC does not fetch instructions and is sent the branch-
predicted stream that has been fetched in the ROB. We send
branch directions along with computation to the EMC so that
the EMC does not generate wrong path memory requests. If
the EMC determines that the dependence chain it is execut-
ing contains a mispredicted branch, it stops execution and
noti�es the core of the mispredicted branch. The EMC has
the capability to detect branch mispredictions made by the
core, but it cannot restart from the correct path.

For memory operations, a load �rst queries the EMC data
cache: if it misses in the data cache it generates an LLC
request. However, the EMC can predict if a load is going to
result in a cache miss. This enables the EMC to directly issue
the request to memory if it is predicted to miss in the LLC,
thus saving the latency to access the on-chip cache hierarchy.
To enable this capability we keep an array of 3-bit counters
for each core, similar to [47]. The PC of the miss-causing
instruction is used to hash into the array. On a miss, the
corresponding counter is incremented; a hit decrements the
counter. If the counter is above a threshold, the load is sent
directly to memory without accessing the LLC.

A store is included in the dependence chain only if it is
a register spill. This is determined by searching the home
core LSQ for a corresponding load with the same address (�ll)
during dependence chain generation. A store executed at the
EMC writes its data value into the EMC LSQ.

Load and store operations are retired in program order back
at the home core. When a memory operation is executed at
the EMC, it sends a message on the address ring back to the
core. The core snoops this request and populates the relevant
entry in the LSQ. This serves two purposes. First, if a memory
disambiguation problem arises (i.e., there is a store to the
same address as a load executed at the EMC), execution of the
chain can be canceled. Second, for consistency reasons, stores
executed at the EMC are not made globally observable until
the store has been drained from the home core store-queue
in program order.

While executing chains of instructions remotely requires
these modi�cations to the core, transactional memory imple-
mentations that are built into current hardware [23] provide
many similar guarantees for memory ordering.

Once a dependence chain has completed execution, the
live-outs, including the store data from the LSQ, are sent back
to the core. Physical register tags are broadcast on the home
core CDB, and execution on the home core continues. As
the home core maintains all instruction state for in-order
retirement, any exceptional event (e.g., branch misprediction,
EMC TLB-miss, EMC exception) causes the home core to re-
issue and execute the entire chain normally without shipping
it to the EMC.
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Core 4-wide issue, 256-entry ROB, 92-entry reservation station, hybrid branch predictor, 3.2 GHz clock rate
L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 byte lines, 2 ports, 3 cycle latency, 8-way, write-through.
L2 Cache Distributed, shared, 1MB 8-way slice per core, 18-cycle latency, write-back. 4-Core: 4 MB. 8-Core: 8MB.
Interconnect 2 Bi-directional rings: control (8 bytes)/data (64 bytes). 1 cycle core to LLC slice bypass. 1 cycle ring links.
EMC
Compute

2-wide issue. 8-entry reservation station. 32-entry TLB per core. 4kB data cache, 4-way, 2-cycle access, 1-port.
4-Core: 2 contexts. 8-Core: 4 contexts total. Each context contains: 16-entry uop bu�er, 16-entry physical
register �le, 16-entry live-in vector, 8 LSQ-entries. Micro-op size: 6 bytes in addition to any live-in source data.

EMC Instructions Integer: add/subtract/move/load/store. Logical: and/or/xor/not/shift/sign-extend.
Memory Controller Batch Scheduling [42]. 4-Core: 128-entry memory queue. 8-Core: 256-entry memory queue.
Prefetchers Stream: 32 streams, distance 32. Markov: 1MB correlation table, 4 addresses per entry. GHB G/DC: 1k-entry

bu�er, 12KB total size. All con�gurations use FDP [57]: dynamic degree 1-32, prefetch into LLC.
DRAM DDR3 [36], 1 Rank of 8 Banks/Channel, 8KB Row-Size, CAS 13.75ns, bank-con�icts & queuing delays modeled,

800 MHz bus. 4-Core: 2 Channels. 8-Core: 4 Channels.
Table 1: System con�guration.

4.4. Multiple Memory Controllers
We primarily consider a common quad-core processor design,
where one memory controller has access to all memory chan-
nels from a single location on the ring (Figure 7). However,
with large core counts, multiple memory controllers can be
distributed across the interconnect. In this case, with our
mechanism, each memory controller would be compute ca-
pable. On cross-channel dependencies (where one EMC gen-
erates a request to a channel located at a di�erent enhanced
memory controller), the EMC directly issues the request to
the other memory controller without migrating execution
of the chain. This cuts the core, a middle-man, out of the
process. We evaluate this scenario with an eight-core CMP
(Figure 11b) and compare the results to an eight-core CMP
with a single memory controller (Figure 11a) in Section 6.2.
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EMC

(b)
Figure 11: (a) Single memory controller. (b) Dual memory
controller.

5. Methodology
We simulate three systems: a quad core system (Figure 7)
and two eight-core systems (Figure 11). Table 1 lists the
details of our system con�gurations. The cache hierarchy
of each core contains a 32KB instruction cache and a 32KB
data cache. The LLC is divided into 1MB cache slices per core.
The interconnect is composed of two bi-directional rings, a
control ring and a data ring. Each core has a ring-stop that is
shared with the LLC slice.

We model three di�erent prefetchers. A stream
prefetcher [57] (based on the stream prefetcher in the IBM
POWER4 [61]), a Markov prefetcher [25], and a global-
history-bu�er (GHB) based global delta correlation (G/DC)
prefetcher [43]. Prior work has shown a GHB prefetcher to

outperform a large number of other prefetchers [46]. We
�nd that the stream prefetcher always increases performance
when used with a Markov prefetcher, and therefore employ
them together.

The baseline system uses a sophisticated memory schedul-
ing algorithm, batch scheduling [42], and Feedback Directed
Prefetching (FDP) [57] to throttle prefetchers. The parame-
ters for the EMC listed in Table 1 (TLB size, cache size, num-
ber/size of contexts) have been chosen via sensitivity analysis.
In the eight-core, dual memory controller case (Figure 11b),
each EMC contains 2 issue contexts for 4 total contexts, and
is otherwise identical to the EMC in the eight-core single
memory controller con�guration.

We separate the SPEC CPU2006 benchmarks into two cate-
gories: high memory intensity and low memory intensity by
MPKI. The classi�cation of each benchmark is listed in Table
2. As the EMC is primarily intended to accelerate memory
intensive applications, we focus on high memory intensity
workloads in our evaluation. The EMC does not result in ap-
preciable performance gains on most low memory intensity
applications. Using the high intensity benchmarks, we ran-
domly generate a set of ten quad-core workloads to evaluate
(Table 3). Each benchmark appears only once in every work-
load combination. We additionally evaluate homogeneous
quad-core workloads using four copies of each of the high
memory intensity benchmarks. Eight-core workloads are two
copies of the corresponding quad-core workload.

High Intensity
(MPKI >= 10)

omnetpp, milc, soplex, sphinx3, bwaves,
libquantum, lbm, mcf

Low Intensity
(MPKI <10)

calculix, povray, namd, gamess, perlbench,
tonto, gromacs, gobmk, dealII, sjeng, gcc, hm-
mer, h264ref, bzip2, astar, xalancbmk, zeusmp,
cactusADM, wrf, GemsFDTD, leslie3d

Table 2: SPEC CPU2006 classi�cation by memory intensity.

We use an in-house cycle accurate x86 simulator, which
faithfully models core microarchitectural details, the cache
hierarchy, and includes a detailed non-uniform access latency
DDR3 memory system. We simulate each workload until ev-
ery application in the workload completes at least 50 million
instructions from a representative SimPoint [54].
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H1 bwaves+lbm+milc+omnetpp
H2 soplex+omnetpp+bwaves+libq
H3 sphinx3+mcf+omnetpp+milc
H4 mcf+sphinx3+soplex+libq
H5 lbm+mcf+libq+bwaves
H6 lbm+soplex+mcf+milc
H7 bwaves+libq+sphinx3+omnetpp
H8 omnetpp+soplex+mcf+bwaves
H9 lbm+mcf+libq+soplex
H10 libq+bwaves+soplex+omentpp

Table 3: Quad-Core workloads.

We model chip energy using McPAT [33] and DRAM power
using CACTI [37]. Shared structures dissipate static power
until the completion of the entire workload. Event counters
used for dynamic power computation are updated until each
benchmark’s completion. The EMC is modeled as a stripped
down core and does not contain structures like an instruction
cache, decode stage, register renaming hardware, or a �oating
point pipeline.

We model the chain generation unit by adding the follow-
ing additional energy events corresponding to the chain gen-
eration process at each home core. Each of the uops included
in the chain requires an extra CDB access (tag broadcast) due
to the pseudo wake-up process. Each of the source opera-
tions in every uop requires a Register Remapping table (RRT)
lookup, and each destination register requires an RRT write
since the chain is renamed to the set of physical registers
at the EMC. Each operation in the chain requires an addi-
tional ROB read when it is transmitted to the EMC. We model
data and instruction transfer overhead to/from the EMC via
additional messages sent on the ring.

6. Results

6.1. Quad-Core Evaluation

Figure 12 shows the performance of the quad-core system for
workloads H1-H10. Performance gain due to the EMC over
the no-prefetching baseline and each prefetching con�gura-
tion is illustrated as a bold/hashed bar.
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Figure 12: Quad-Core performance for workloads H1-H10.

On H1-H10, the EMC improves performance on average
by 15% over a no-prefetching baseline, by 13% over a base-
line with a GHB prefetcher, 10% over a baseline with stream
prefetching, and by 11% over a baseline with both a stream

and Markov prefetcher. Workloads that include a SPEC
CPU2006 benchmark with a high rate of dependent cache
misses (Figure 2) such as mcf or omnetpp tend to perform
well, especially when paired with other highly memory inten-
sive workloads like libquantum or bwaves. Workloads with
lbm tend not to perform well. lbm contains no dependent
cache misses, leaving no room for improvement with EMC,
and has a regular access pattern that utilizes most of the
available bandwidth, particularly with prefetching enabled.

To provide insight into the performance implications of the
EMC on homogeneous workloads, Figure 13 shows a system
running four copies of each high memory intensity SPEC06
benchmark. Overall, the EMC results in a 9.5% performance
advantage over a no-prefetching baseline and roughly 8% over
each prefetcher. mcf results in the highest performance gain,
at 30% over a no-prefetching baseline. All of the benchmarks
with a high rate of dependent cache misses show performance
improvements with an EMC. These applications also gener-
ally observe performance degradations when prefetching is
employed.
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Figure 13: Quad-Core performance for homogeneous work-
loads.

6.2. Eight-Core Evaluation

We demonstrate the scalability of the EMC system. Figure 14
shows the performance bene�t of using the EMC in an eight-
core system. We evaluate both the single memory controller
con�guration (1MC, the �rst four bars in each workload) and
the dual memory controller con�guration (2MC, the second
four bars in each workload).
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Figure 14: Eight-Core performance for workloads H1-H10.
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Overall, the performance bene�t of the EMC is slightly
higher in the eight-core case than the quad-core case, due
to a more heavily contended memory system. On the sin-
gle memory controller con�guration, EMC gains 17%, 13%,
14%, and 13% over the no-prefetching, GHB, stream, and
Markov+stream prefetchers respectively in Figure 14. The
dual memory controller baseline system shows a slight (-.8%)
performance degradation over the single memory controller
system, and EMC gains slightly less on average over each
baseline (16%, 14%, 11%, 12% respectively) than the single
memory controller, due to the overhead of communication
between the EMCs. We do not observe a signi�cant perfor-
mance degradation by using two EMCs in the system.

6.3. Performance Analysis

To examine the reasons behind the performance bene�t of
the EMC we contrast workload H1 (1% performance gain)
and H4 (33% performance gain). While we observe no single
indicator for the performance improvement that the EMC pro-
vides, we identify three statistics that correlate to increased
performance. First, we show the percentage of total cache
misses that the EMC generates in Figure 15. As H1 and H4
are both memory intensive workloads, the EMC generating
a larger percentage of the total cache misses indicates that
its latency reduction features result in a larger impact on
workload performance. The EMC generates about 10% of all
of the cache misses in H1 and 22% of the misses in H4.1
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Figure 15: Fraction of all LLC misses generated by the EMC.

Second, we expect a reduction in DRAM contention for
requests issued by the EMC. As requests are generated and
issued to memory faster than in the baseline, a request can
reach an open DRAM row before the row can be closed by
a competing request from a di�erent core. This results in
a reduction in row-bu�er con�icts. There are two di�erent
scenarios where this occurs. First, the EMC can issue a depen-
dent request that hits in the same row-bu�er as the original
request. Second, multiple dependent requests to the same
row-bu�er are issued together and can coalesce into a batch.
We observe that the �rst scenario occurs about 15% of the

1The Markov + Stream PF con�guration generates 25% more memory
requests than any other con�guration on average, diminishing the impact
of the EMC in Figure 15. This additional bandwidth consumption is also
one reason that the Markov + Stream con�guration results in lower relative
performance when compared to the other prefetchers.

time while the second scenario is more common, occurring
about 85% of the time on average.

Figure 16 shows the change in row-bu�er con�ict rate
over the no-prefetching baseline for H1-H10. This statistic
correlates to how much latency reduction the EMC achieves,
as the latency for a row-bu�er con�ict is much higher than
the latency of a row-bu�er hit. The reduction in H1, less than
1%, is much smaller than the 19% reduction in H4.
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Figure 16: Change in row-bu�er con�ict rate with the EMC
over a no-prefetching baseline.

Between these two factors, the fraction of total cache
misses generated by the EMC and the reduction in row-bu�er
con�icts, it is clear that the EMC has a much smaller impact
on H1 than on H4. One other factor is also important to note.
The EMC exploits temporal locality in the memory access
stream using a small data cache (Section 4.1.3). If the depen-
dence chain executing at the EMC contains a load to data
that has recently entered the chip, this will result in a very
short-latency EMC data cache hit. Otherwise, the load may
have to access the LLC (if a hit is predicted by the EMC miss
predictor). Figure 17 shows that H1 has a much smaller hit
rate in the EMC cache than H4.
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Figure 17: Hit rate at the EMC data cache.

These three statistics (the fraction of total cache misses
generated by the EMC, the reduction in row-bu�er con�ict
rate, and the EMC data cache hit rate) demonstrate why the
performance gain in H4 is larger than the gain in H1.

The net result of the EMC is a raw latency di�erence for
cache misses that are generated by the EMC and cache misses
that are generated by the core. This is shown in Figure 18.
Latency is given in cycles observed by the miss before depen-
dent operations can be executed and is inclusive of accessing
the LLC, interconnect, and DRAM. We �nd that a cache miss
generated by the EMC observes a 20% lower average latency
than a cache miss generated by the core.
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Figure 18: Latency observed by an LLCmiss generated by the
EMC vs. an LLC miss generated by the core for H1-H10.

The critical path of executing a dependent cache miss in-
cludes three areas where the EMC saves latency. First, in the
baseline, the source cache miss is required to go through the
�ll path back to the core before dependent operations are
executed. Second, the dependent cache miss must go through
the on-chip cache hierarchy and interconnect before it can
be sent to the memory controller. Third, the request must be
selected by the memory controller to be issued to DRAM. We
attribute the latency savings of EMC requests in Figure 18 to
these three sources: bypassing the interconnect back to the
core, bypassing cache accesses, and reduced contention at
the memory controller. Figure 19 shows the average number
of cycles saved by these three factors. We conclude that a
large fraction of the savings come from reduced DRAM con-
tention in many workloads, but the other two factors are also
signi�cant and sometimes dominant.
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Figure 19: Average cycles saved by the EMC on a request.

As we attribute a large fraction of the latency reduction
to decreased DRAM contention, we demonstrate that the
performance gain of the EMC cannot simply be obtained by
increasing memory banks and bandwidth. Figure 20 shows
the average sensitivity of H1-H10 to di�erent DRAM systems,
from 1 channel with 1 rank to 4 channels with 4 ranks per
channel (scaling memory queue size commensurately).

For the 1 channel and 2 channel cases (up to 2 channels 4
ranks), the performance bene�t of the EMC relative to the
no EMC baseline increases as the number of banks increases.
These con�gurations have highly contended DRAM systems
which gives the EMC the opportunity to reduce memory
access latency for dependent cache misses. At 2 channels 4
ranks and with the 4 channel con�gurations, the large amount
of memory bandwidth causes some reduction in the bene�t
of the EMC. However, as H1-H10 are very memory intensive
workloads, we observe steadily increasing performance and
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Figure 20: Performance sensitivity to varying memory chan-
nels and ranks over a 1 channel 1 rank (1C1R) baseline.

high bandwidth utilization through the 4 channel/4 rank con-
�guration, particularly for the systems where prefetching is
enabled. Even at 4 channels and 4 ranks, the EMC provides
an 11% performance gain over the baseline.

6.4. Prefetching and the EMC
We analyze the interaction between the EMC and prefetching
when they are employed together. The impact of prefetching
on the EMC is shown by the fraction of EMC-generated cache
misses that are also covered by prefetching. This is illustrated
in Figure 21.
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Figure 21: Percentage of cache misses generated by the EMC
without prefetching that are converted into a cache hit with
a prefetcher.

On average, the GHB/stream/Markov+stream prefetchers
cover some fraction of the cache misses that the EMC gen-
erates. However, this fraction is relatively small: 30%, 21%,
48% of the memory requests that the EMC issued in the no-
prefetching case are covered by the prefetchers, respectively.
For the majority of EMC accesses, the EMC supplements
the prefetcher by reducing the latency to access memory
addresses that the prefetcher cannot predict ahead of time.

6.5. Enhanced Memory Controller Overhead
The interconnect overhead of the EMC consists of three main
components: sending dependence chains and the source reg-
isters (live-ins) that these chains require to the EMC, and
sending destination registers (live-outs) back to the core. Fig-
ure 22 shows the average length of the dependence chains
that are executed at the EMC in uops.

The dependence chains executed at the EMC are short (un-
der 10 uops, on average). These chains require an average of
6.4 live-ins. Transmitting the uops to the EMC results in a
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Figure 22: The average number of uops in each chain.

transfer of 1-2 cache lines of data on average. The average
chain produces 8.8 live-outs, requiring a single cache line of
data transfer back to the core. This relatively small amount
of data transfer motivates why we do not see a performance
loss due to the EMC. The interconnect overhead of the EMC
for each executed chain is small and we migrate dependent
operations only if dependent misses are likely. Overall, these
messages result in a 33% average increase in data ring mes-
sages and a 7% increase in control ring requests for H1-H10.
EMC requests are 25% of all data messages and 5% of all con-
trol ring messages. Due to the EMC, we observe a slight (4%)
increase in LLC latency.

6.6. Energy and Area Evaluation

The energy results for the quad-core workloads are shown in
Figure 23 and Figure 24 respectively. Both �gures present the
cumulative results for the energy consumption of the chip
and DRAM as a percentage di�erence in energy consumption
from the no-EMC, no-prefetching baseline.
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Figure 23: Energy consumption for workloads H1-H10.

4x
so

pl
ex

4x
m

ilc
4x

om
ne

t
4x

sp
hi

nx
4x

lb
m

4x
bw

av
es

4x
lib

q

4x
m

cf

G
M

ea
n

50

40

30

20

10

0

10

20

%
 D

if
fe

re
n
ce

 i
n
 

 E
n
e
rg

y
 C

o
n
su

m
p
ti

o
n

EMC EMC+GHB

GHB

EMC+Stream

Stream

EMC+Markov+Stream

Markov+Stream

Figure 24: Energy consumption for homogeneous work-
loads.

Overall, we observe that the EMC reduces energy consump-
tion on average by 11% for heterogeneous workloads H1-H10
and by 9% for the homogeneous workloads. This is due to
two factors: a reduction in static energy consumption (as
the performance improvement caused by the EMC decreases
the total execution time of a workload), and dynamic energy
savings due to the reduced row-bu�er con�ict rate.

In the prefetching con�gurations, all three of the prefetch-
ers cause an increase in average energy consumption, par-
ticularly the Markov+stream con�guration. This is due to
inaccurate prefetches, which occur despite the fact that our
baseline throttles inaccurate prefetchers [57]. In Figure 23, the
GHB, stream, Markov+stream systems increase memory traf-
�c by 18%, 20% and 52% respectively while the EMC increases
tra�c by only 8%. Similarly, in Figure 24 the prefetchers
increase tra�c by 12%, 8% and 45% respectively while the
EMC increases tra�c by only 3%. Analogous to the perfor-
mance results, the systems with the EMC and prefetching
combined result in lower energy consumption than systems
with prefetching alone.

We estimate the entire area overhead of the EMC to be
2.2mm2 (including 5.9KB of additional storage), roughly 2%
of total chip area. Over half of this additional area is due to
the 4kB EMC cache. The small out-of-order engine consti-
tutes 8% of the additional area, while the two integer ALUs
make up 5%. McPAT estimates the area of a full out-of-order
core as 21.2mm2, so the EMC is 10.4% of a full core. We
implement the minimum functionality at the EMC to execute
dependent cache miss chains. The out-of-order functionality
is lightweight and the EMC does not contain large structures
such as a �oating-point pipeline or a front-end.

7. Conclusion
This paper makes a case for compute capable memory con-
trollers. We introduce one mechanism for automatically of-
�oading computation and mechanisms for communication
between main processor cores and an EMC. We identify that
dependent cache misses are latency critical operations. By
transparently executing these dependent operations at the
EMC instead of the core we observe a 20% reduction in ef-
fective memory access latency for these requests. This re-
sults in a 13% performance gain over a Global History Bu�er
prefetcher, the highest performing prefetcher in our evalua-
tion. Future techniques can be built upon our framework that
can use the EMC in di�erent ways to exploit and enhance
its capabilities. We believe that as memory continues to be
an increasingly important bottleneck in future data-intensive
workloads and systems, enhancing the memory controller
and using it as an accelerator to improve memory access
latency and e�ciency will become increasingly important.
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