Evanesco: Architectural Support for Efficient Data Sanitization in Modern Flash-Based Storage Systems

Myungsuk Kim*, **Jisung Park***, Geonhee Cho, Yoona Kim, Lois Orosa, Onur Mutlu, and Jihong Kim

Seoul National University
SAFARI Research Group, ETH Zürich

ASPLOS 2020

Executive Summary

- Motivation: Secure deletion is essential in storage systems as modern computing systems process a large amount of security-sensitive data.
- Problem: It is challenging to support data sanitization in NAND flash-based SSDs.
 - □ **Erase-before-write property** → no overwrite on stored data
 - □ Physical data destruction → high performance & reliability overheads
- Evanesco: A low-cost data-sanitization technique w/o reliability issues
 - Uses on-chip access-control mechanisms instead of physically destroying data
 - Manages access-permission (AP) flags inside a NAND flash chip
 - Data is not accessible once the flash controller sets the data's AP flag to disabled.
 - An AP flag cannot be reset before erasing the corresponding data.

Results

- Provides the same level of reliability as an unmodified SSD (w/o data-sanitization support)
 - Validated w/ 160 real state-of-the-art 3D NAND flash chips
- Significantly improves performance and lifetime over existing data-sanitization techniques
 - Provides comparable (94.5%) performance with an unmodified SSD

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - blockLock: Block-Level Data Sanitization
 - SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

Secure Deletion in Storage Systems

Security-sensitive data is increasing in modern storage systems.

Private Message

Confidential Data (e.g., Medical Record)

Secure Deletion in Storage Systems

Security-sensitive data is increasing in modern storage systems.

Once a user deletes security-sensitive data, a storage system should guarantee its irrecoverability

Confidential Data (e.g., Medical Record)

Data Versioning Problem

- Obsolete data in NAND flash-based solid-state drives (SSDs)
 - Old versions of updated or deleted files can remain in the SSD for a long time.

Data Versioning Problem

- Obsolete data in NAND flash-based solid-state drives (SSDs)
 - Old versions of updated or deleted files can remain in the SSD for a long time.

Updated or deleted data of a file can remain in SSDs due to unique features of NAND flash memory

Erase-before-write: A block needs to be erased before programming a page (i.e., no overwrite on a page)

File System

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism

NAND NAND Chip#0 Chip#1 8 **A1 A0** Flash Controller **B0 B1** 10 **B2** Block#0 Block#2 14 15 **Page** Block#1 Block#3

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism

Chip#0 Chip#1 8 **A1 A0** Flash Controller **B0 B1** 10 **B2** Block#0 Block#2 14 15 **Page** Block#1 Block#3

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Chip#0 Chip#1 **B0** Flash Controller **B1** 10 **B2 B0**′ B2' Block#0 Block#2 14 15 **Page** Block#1 Block#3

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Logical Page Address

→ Logical-to-physical (L2P) mappings (e.g., LPA 1 → PPA 8)

Physical Page Address

Flash Controller

Chip#0

0 A0
1 A2
2 B1
3 B0'
Block#0
4 5
6 7 Page

Block#1

Chip#1

8 A1

9 B0

10 B2

11 B2'

Block#2

12 13 14 15

Block#3

DRAM

Logical block-device view that supports overwrites

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Logical Page Address

- → Logical-to-physical (L2P) mappings (e.g., LPA 1 → PPA 8)

 Physical Page Address
- Garbage collection (GC)

Reclaims free pages for future host writes

Chip#0

O A0

1 A2

2 B1

3 B0'

Block#0

4 5

6 7 Page

Block#1

NAND NAND

Chip#1

8 A1
9 B0
10 B2
11 B2'
Block#2

12 13 14 15
Block#3

DRAM

Logical block-device view / that supports overwrites

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Logical Page Address

- → Logical-to-physical (L2P) mappings (e.g., LPA 1 → PPA 8)

 Physical Page Address
- Garbage collection (GC)

Reclaims free pages for future host writes

- Selects a victim block w/ the smallest number of valid pages
- Additional copy operations to move valid pages

NAND NAND

Logical block-device view / that supports overwrites

Flash-Based SSD CTRL DRAM NAND NAND

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Logical Page Address

- → Logical-to-physical (L2P) mappings (e.g., LPA 1 → PPA 8)

 Physical Page Address
- Garbage collection (GC)

Reclaims free pages for future host writes

- Selects a victim block w/ the smallest number of valid pages
- Additional copy operations to move valid pages

DRAM

Logical block-device view / that supports overwrites

Flash-Based SSD

Flash Translation Layer (FTL)

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Logical Page Address

- → Logical-to-physical (L2P) mappings (e.g., LPA 1 → PPA 8)

 Physical Page Address
- Garbage collection (GC)

Reclaims free pages for future host writes

- Selects a victim block w/ the smallest number of valid pages
- Additional copy operations to move valid pages

NAND NAND

DRAM

Flash-Based SSD

Flash Translation Layer (FTL)

that supports overwrites

- Address translation
 - Distributes host writes to fully exploit internal parallelism
 - Out-of-place updates

Logical Page Address

- → Logical-to-physical (L2P) mappings (e.g., LPA 1 → PPA 8)

 Physical Page Address
- Garbage collection (GC)

Reclaims free pages for future host writes

- Selects a victim block w/ the smallest number of valid pages
- Additional copy operations to move valid pages
- → Page-status information (e.g., B0: invalid)

NAND NAND

Flash-Based SSD

Flash Translation Layer (FTL)

LPA	PPA
0	0
1	4
2	1
3	3
4	2
5	12
11	N/A

L2P Mapping Table

	_
PPA	Status
0	valid
1	valid
2	valid
3	valid
4	valid
5	free
15	free

Page Status Table

Flash Controller

Block#1

LPA

0

3

5

Flash-Based SSD

Flash Translation Layer (FTL)

LPA	PPA
0	N/A
1	N/A
2	N/A
3	3
4	2
5	12
•••	
11	N/A

L2P Mapping Table

PPA	Status
0	invalid
1	invalid
2	valid
3	valid
4	invalid
5	free
15	free

Page Status Table

Flash Controller

Block#1

Flash-Based SSD

Flash Translation Layer (FTL)

LPA	PPA
0	N/A
1	N/A
2	N/A
3	3
4	2
5	12
11	N/A

L2P Mapping Table

PPA	Status
0	invalid
1	invalid
2	valid
3	valid
4	invalid
5	free
•••	
15	free

Page Status Table

Data Deletion in NAND Flash-Based Storage Systems

Data Deletion in NAND Flash-Based Storage Systems

Invalid data remains in NAND flash chips until GC erases the corresponding block(s)

Direct access to SSD

Flash-Based SSD

Flash Translation Layer (FTL)

LPA	PPA
0	N/A
1	N/A
2	N/A
3	3
4	5
5	12
11	N/A

L2P Mapping Table

PPA	Status
0	invalid
1	invalid
2	invalid
3	valid
4	invalid
5	free
15	free

Page Status Table

	Ch	ip#0	
	0	A0	
er	1	A2	
oll	2	B1	
	3	B0 ′	
—	Rlo	Block#0	
<u></u>		0 22 0	
h Contr	4	A1	
ash	4 5		
	4	A1	

Block#1

Direct access to SSD

Flash-Based SSD

Flash Translation Layer (FTL)

LPA	PPA
0	N/A
1	N/A
2	N/A
3	3
4	5
5	12
11	N/A

L2P Mapping Table

No mappings to invalid PPAs

PPA	<u>Status</u>
0	invalid
1	invalid
2	invalid
3	valid
4	invalid
5	free
•••	
15	free

DDA Ctatus

Page Status Table

Chip#0

Block#1

Deleted or updated files can be recovered by *directly accessing* raw NAND flash chips

Immediately erases the block that stores data to be sanitized

- Immediately erases the block that stores data to be sanitized
 - High performance and lifetime overheads due to Erase-before-write property
 - Needs to copy all the valid pages stored in the same block

- Immediately erases the block that stores data to be sanitized
 - □ High performance and lifetime overheads due to Erase-before-write property
 - Needs to copy all the valid pages stored in the same block

- Immediately erases the block that stores data to be sanitized
 - High performance and lifetime overheads due to Erase-before-write property
 - Needs to copy all the valid pages stored in the same block

- Immediately erases the block that stores data to be sanitized
 - High performance and lifetime overheads due to Erase-before-write property
 - Needs to copy all the valid pages stored in the same block

- Immediately erases the block that stores data to be sanitized
 - High performance and lifetime overheads due to Erase-before-write property
 - Needs to copy all the valid pages stored in the same block

- Immediately erases the block that stores data to be sanitized
 - High performance and lifetime overheads due to Erase-before-write property
 - Needs to copy all the valid pages stored in the same block

Immediate block erasure: High performance and lifetime overheads

- Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page
 - □ Destroys the page data w/o block erasure

- Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page
 - Destroys the page data w/o block erasure

- Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page
 - Destroys the page data w/o block erasure
 - Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
 - Needs to copy all the valid pages stored in the same flash cells

- Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page
 - Destroys the page data w/o block erasure
 - Performance and lifetime overheads in *Multi-level cell* (MLC) NAND flash memory
 - Needs to copy all the valid pages stored in the same flash cells

- Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page
 - Destroys the page data w/o block erasure
 - Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
 - Needs to copy all the valid pages stored in the same flash cells
 - Reliability issues: cell-to-cell interference

- Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page
 - Destroys the page data w/o block erasure
 - Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
 - Needs to copy all the valid pages stored in the same flash cells
 - Reliability issues: cell-to-cell interference

Existing solutions incur performance, lifetime, and reliability problems in modern NAND flash memory

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - blockLock: Block-Level Data Sanitization
 - SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

- **Key idea:** Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages

- **Key idea:** Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - bLock: disables access to all the page in a block

- Key idea: Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - □ **bLock:** disables access to all the page in a block

- **Key idea:** Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - bLock: disables access to all the page in a block

- **Key idea:** Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - bLock: disables access to all the page in a block

- **Key idea:** Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - bLock: disables access to all the page in a block

- Key idea: Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - bLock: disables access to all the page in a block

- Key idea: Allow a NAND flash chip to be aware of data validity
 - Prevent access to invalid data at the chip level w/o destroying the data
 - → Low overhead: No copy operation to move valid pages stored in the same cells
 - → High reliability: No cell-to-cell interference to other valid pages
- Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
 - pLock: disables access to a page
 - bLock: disables access to all the page in a block

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - blockLock: Block-Level Data Sanitization
 - □ SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

pLock: Page-Level Data Sanitization

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - No additional command to access a pAP flag: read with the page data at the same time

pLock: Page-Level Data Sanitization

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - No additional command to access a pAP flag: read with the page data at the same time

pLock: Page-Level Data Sanitization

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - No additional command to access a pAP flag: read with the page data at the same time

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - □ No additional command to access a pAP flag: read with the page data at the same time
- Prevents transfer of data from a disabled page
 - The bridge transistor disconnects the page buffer from the data-out circuitry.

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - □ No additional command to access a pAP flag: read with the page data at the same time
- Prevents transfer of data from a disabled page
 - The bridge transistor disconnects the page buffer from the data-out circuitry.

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - □ No additional command to access a pAP flag: read with the page data at the same time
- Prevents transfer of data from a disabled page
 - The bridge transistor disconnects the page buffer from the data-out circuitry.

- Implements page access-permission (pAP) flags using spare cells
 - □ Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
 →A disabled page cannot be enabled until the entire block is erased.
 - No additional command to access a pAP flag: read with the page data at the same time
- Prevents transfer of data from a disabled page
 - The bridge transistor disconnects the page buffer from the data-out circuitry.

- Problem 1: Multiple pages are stored in the same flash cell.
 - Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

- **Problem 1:** Multiple pages are stored in the same flash cell.
 - Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
- Problem 2: A flag cell can misbehave → unintentional disabling or enabling of a page
 - □ **Solution:** Use multiple flag cells for each pAP flag (*k*-modular redundancy scheme)

- Problem 1: Multiple pages are stored in the same flash cell.
 - Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
- **Problem 2:** A flag cell can misbehave → unintentional disabling or enabling of a page
 - □ **Solution:** Use multiple flag cells for each pAP flag (*k*-modular redundancy scheme)

- **Problem 1:** Multiple pages are stored in the same flash cell.
 - Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
- **Problem 2:** A flag cell can misbehave → unintentional disabling or enabling of a page
 - □ **Solution:** Use multiple flag cells for each pAP flag (*k*-modular redundancy scheme)

Reliability issues

- 1. Cell-to-cell interference b/w flag cells in the same NAND strings
- 2. Program disturbance due to high program voltage to the other cells at the same row

- Problem 1: Multiple pages are stored in the same flash cell.
 - Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
- **Problem 2:** A flag cell can misbehave → unintentional disabling or enabling of a page
 - □ **Solution:** Use multiple flag cells for each pAP flag (*k*-modular redundancy scheme)

Reliability issues

- 1. Cell-to-cell interference b/w flag cells in the same NAND strings
- 2. Program disturbance due to high program voltage to the other cells at the same row

Solutions

- 1. Use flag cells in single-level cell (SLC) mode
- More robust to interference and disturbance
- Reduces pLock latency
- 2. One-shot programming w/ low voltage
- Reduces interference and disturbance

- Problem 1: Multiple pages are stored in the same flash cell.
 - Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
- Problem 2: A flag cell can misbehave → unintentional disabling or enabling of a page
 - □ **Solution:** Use multiple flag cells for each pAP flag (*k*-modular redundancy scheme)

Reliability issues

- 1. Cell-to-cell interference b/w flag cells in the same NAND strings
- 2. Program disturbance due to high program voltage to the other cells at the same row

Solutions

- 1. Use flag cells in single-level cell (SLC) mode
- More robust to interference and disturbance

pLock: Prevents data transfer for a disabled page → Reliable and copy-free per-page sanitization

Briuge Transistor

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - blockLock: Block-Level Data Sanitization
 - □ SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

- Nontrivial performance overhead in invalidating an entire block
 - □ Deleting a 1-GiB video → 65,536 pLock operations (page size = 16 KiB)
 - Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

- Nontrivial performance overhead in invalidating an entire block
 - □ Deleting a 1-GiB video \rightarrow 65,536 pLock operations (page size = 16 KiB)
 - Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

- Immediate block erasure is not feasible in 3D NAND flash memory.
 - Open-block problem: Reliability degradation due to a long time interval b/w erasing and programming a block → A block should be erased *lazily*.

- Nontrivial performance overhead in invalidating an entire block
 - □ Deleting a 1-GiB video \rightarrow 65,536 pLock operations (page size = 16 KiB)
 - Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

- Immediate block erasure is not feasible in 3D NAND flash memory.
 - Open-block problem: Reliability degradation due to a long time interval b/w erasing and programming a block → A block should be erased *lazily*.

- Nontrivial performance overhead in invalidating an entire block
 - □ Deleting a 1-GiB video \rightarrow 65,536 pLock operations (page size = 16 KiB)
 - Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

- Immediate block erasure is not feasible in 3D NAND flash memory.
 - □ **Open-block problem:** Reliability degradation due to a long time interval b/w erasing and programming a block → A block should be erased *lazily*.

Key idea: Program the *string-select line* (SSL) of a block

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.

- **Key idea:** Program the *string-select line* (SSL) of a block
 - □ 3D NAND flash memory implements an SSL using flash cells.

- **Key idea:** Program the *string-select line* (SSL) of a block
 - □ 3D NAND flash memory implements an SSL using flash cells.

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

- **Key idea:** Program the *string-select line* (SSL) of a block
 - □ 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

- **Key idea:** Program the *string-select line* (SSL) of a block
 - 3D NAND flash memory implements an SSL using flash cells.
 - SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

bLock: Programs the SSL of block
 → Disconnects all the pages from bitlines until the block is physically erased

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - □ blockLock: Block-Level Data Sanitization
 - SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

- An SSD that supports immediate data sanitization of updated or deleted data
 - □ Lock manager issues pLock and bLock commands depending on the block's status.

- An SSD that supports immediate data sanitization of updated or deleted data
 - □ Lock manager issues pLock and bLock commands depending on the block's status.

- An SSD that supports immediate data sanitization of updated or deleted data
 - Lock manager issues pLock and bLock commands depending on the block's status.

- An SSD that supports immediate data sanitization of updated or deleted data
 - □ Lock manager issues pLock and bLock commands depending on the block's status.

- An SSD that supports immediate data sanitization of updated or deleted data
 - □ Lock manager issues pLock and bLock commands depending on the block's status.

- An SSD that supports immediate data sanitization of updated or deleted data
 - Lock manager issues pLock and bLock commands depending on the block's status.

- An SSD that supports immediate data sanitization of updated or deleted data
 - Lock manager issues pLock and bLock commands depending on the block's status.

SecureSSD: Selective Data Sanitization

- SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
 - A user sets the security requirements of written data w/ extended I/O interfaces.

- SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
 - A user sets the security requirements of written data w/ extended I/O interfaces.

- SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
 - □ A user sets the security requirements of written data w/ extended I/O interfaces.

- SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
 - □ A user sets the security requirements of written data w/ extended I/O interfaces.

- SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
 - □ A user sets the security requirements of written data w/ extended I/O interfaces.

SecureSSD minimizes data-sanitization overheads

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - blockLock: Block-Level Data Sanitization
 - □ SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

Methodology

Design space exploration for pLock and bLock

- Using 160 real state-of-the-art 3D triple-level-cell (TLC) NAND flash chips
- □ To find the best operation parameters w/o reliability degradation
 - pLock: 100-us latency w/ 9 flag cells per page
 - **bLock:** 300-us latency
 - tREAD = 100 us, tPROG = 700 us, tBERS = 3.5 ms
- Simulator: Open SSD-development platform (FlashBench [Lee+, RSP'2012])
 - 32-GiB storage capacity
 - 576 pages per block
 - □ 16-KiB page size

Compared SSDs

- erSSD: Erases the entire block after copying valid pages in the block
- scrSSD: Performs scrubbing after copying valid pages in the same cells [Wei+, FAST'2011]

Workloads

- Three server workloads: MailServer, DBServer, FileServer
- Mobile workload collected from an Android smartphone (Samsung Galaxy S2)

Results: Performance

SecureSSD significantly reduces performance overhead of data sanitization (11% slowdown at most)

Results: Lifetime

Write Amplification Factor $(WAF) = \frac{\# of logical pages written by the host system}{\# of physical pages written by the SSD}$

No additional copy in SecureSSD: No lifetime overhead

Results: Effect of Selective Data Sanitization

Selective data sanitization minimizes performance overheads (6% slowdown at most with 60% security-sensitive data)

Other Analyses in the Paper

- Empirical Study on Invalid Data in SSDs
- Reliability Issues in Physical Data Destruction
- Design Space Exploration for pLock and bLock
- Effectiveness of bLock command

Outline

Secure Deletion in NAND Flash-Based SSDs

- Evanesco: Lock-Based Data Sanitization
 - pageLock: Page-Level Data Sanitization
 - blockLock: Block-Level Data Sanitization
 - □ SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

Conclusion

- Challenges of data sanitization in NAND flash-based SSDs:
 - \Box **Erase-before-write property** \rightarrow no overwrite on stored data
 - □ Physical data destruction → high performance & reliability overheads
- **Evanesco:** Uses on-chip access-control mechanisms
 - pLock: Page-level data sanitization
 - Implements the access-permission flag of each page using spare cells
 - bLock: Block-level data sanitization
 - Programs the SSL of a block to disconnect all pages
 - SecureSSD: An Evanesco-Enabled SSD
 - Supports selective data sanitization to reduce performance overheads

Results

- Provides the same level of reliability of an unmodified SSD
 - Validated w/ 160 real state-of-the-art 3D NAND flash chips
- Significantly improves performance and lifetime over existing data-sanitization techniques
 - Provides comparable (94.5%) performance with an unmodified SSD

Evanesco: Architectural Support for Efficient Data Sanitization in Modern Flash-Based Storage Systems

Myungsuk Kim*, **Jisung Park***, Geonhee Cho, Yoona Kim, Lois Orosa, Onur Mutlu, and Jihong Kim

Seoul National University
SAFARI Research Group, ETH Zürich

ASPLOS 2020