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Executive Summary

Motivation: Secure deletion is essential in storage systems as modern computing
systems process a large amount of security-sensitive data.

Problem: It is challenging to support data sanitization in NAND flash-based SSDs.
o Erase-before-write property - no overwrite on stored data
o Physical data destruction - high performance & reliability overheads

Evanesco: A low-cost data-sanitization technique w/o reliability issues

o Uses on-chip access-control mechanisms instead of physically destroying data

o Manages access-permission (AP) flags inside a NAND flash chip
Data is not accessible once the flash controller sets the data’s AP flag to disabled.
An AP flag cannot be reset before erasing the corresponding data.

Results

o Provides the same level of reliability as an unmodified SSD (w/o data-sanitization support)
Validated w/ 160 real state-of-the-art 3D NAND flash chips

o Significantly improves performance and lifetime over existing data-sanitization techniques
Provides comparable (94.5%) performance with an unmodified SSD
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Secure Deletion in Storage Systems

= Security-sensitive data is increasing in modern storage systems.
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Data Versioning Problem

Obsolete data in NAND flash-based solid-state drives (SSDs)
Old versions of updated or deleted files can remain in the SSD for a long time.
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Data Versioning Problem

Obsolete data in NAND flash-based solid-state drives (SSDs)
Old versions of updated or deleted files can remain in the SSD for a long time.
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Updated or deleted data of a file can remain in SSDs
due to unique features of NAND flash memory




NAND Flash Memory Organization & Operations
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NAND Flash Memory Organization & Operations
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NAND Flash-Based SSD
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NAND Flash-Based SSD

File System

o o

Logical block-device view /

that supports overwrites

r N
Flash-Based SSD
7 N[ \Nf . N f . N
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| A0 8l A1
o Distributes host writes to fully exploit internal parallelism S 11 A2 9| BO
% 2| B1 10| B2
E 3 11
S || Block#0 || Block#2
o
- 4 12
gl s 13
3 6 14
'/ |Page 15
Block#1 Block#3
. J \_ J \ J \\ J
- y




NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

File System

—

r N
Flash-Based SSD
Y4 \Nf . N[ . N
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| AO 8| A1
o Distributes host writes to fully exploit internal parallelism @ 11A2 °|.BO
=°' 2| B1 10| B2
E 3 11
S || Block#0 || Block#2
O
= 4 12
b 5 13
=3 6 14
'/ |Page 15
Block#1 Block#3
. VAN J \ J \\ J
. y,




NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

File System

—

r N
Flash-Based SSD
f \Nf . N f . N
r Flash Translation Layer (FTL) ) Chip#0 Chip#1
Address translation o X0 8| A1
o Distributes host writes to fully exploit internal parallelism @ 1|LA2 °|BO
— 2| B1 10| B2
Out-of-pl dat =)
m ut-of-place updates £ 3- 11-
S || Block#0 || Block#2
O
= 4 12
b 5 13
=3 6 14
'/ |Page 15
Block#1 Block#3
\. J \\ J \ J \\ J
. y,




NAND Flash-Based SSD
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NAND Flash-Based SSD

Logical block-device view /
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NAND Flash-Based SSD
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Data Deletion in NAND Flash-Based Storage Systems
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Data Deletion in NAND Flash-Based Storage Systems
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Data Deletion in NAND Flash-Based Storage Systems
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Data Deletion in NAND Flash-Based Storage Systems
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Data Deletion in NAND Flash-Based Storage Systems
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Data Deletion in NAND Flash-Based Storage Systems
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Security Vulnerability of NAND Flash-Based SSDs
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Security Vulnerability of NAND Flash-Based SSDs
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Security Vulnerability of NAND Flash-Based SSDs

Direct access to SSD
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Security Vulnerability of NAND Flash-Based SSDs
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Security Vulnerability of NAND Flash-Based SSDs
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Security Vulnerability of NAND Flash-Based SSDs
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Security Vulnerability of NAND Flash-Based SSDs
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> Hundreds of Copies:
t = Niopy X (trean + trrog)
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Immediate block erasure:
High performance and lifetime overheads
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Existing Solution: Reprogramming the Page

= Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page

o Destroys the page data w/o block erasure
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Existing Solution: Reprogramming the Page

Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page

Destroys the page data w/o block erasure
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Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
= Needs to copy all the valid pages stored in the same flash cells

Reliability issues: cell-to-cell interference
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Evanesco: Lock-Based Data Sanitization
0 pageLock: Page-Level Data Sanitization

o blockLock: Block-Level Data Sanitization

0o SecureSSD: An Evanesco-Enabled SSD
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Evanesco: Access Control-Based Sanitization

Key idea: Allow a NAND flash chip to be aware of data validity

o Prevent access to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

E:Enabled, D:Disabled

N
NAND| O | AO E
1] A1 E
2| A2 E
31 BO E
Block#0 Flags#0
4 E
5 E
6 E
i E
. Block#1 Flags#lJ
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pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time

Data ﬁrea Spar(i Area (for metadata)
4 Y \
(1 1t I 1 1t 1 1 1 1]
Block O Q ( Page#0 ) Q Q— Flash Cell 8:3:2:2;26 )
O Q ( Page#1 ) Q O
O Q ( Page#2 ) Q O
QO QO
O O ( Page#N-1 ) O O
Bitline (BL) —
Page Buffer _( Data Out
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pLock: Implementation Details
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pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
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pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.

o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page
o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)
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pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
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pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
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- Reduces pLock latency
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pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.

o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page
o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)
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Evanesco: Lock-Based Data Sanitization
Q
o blockLock: Block-Level Data Sanitization
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Problem with Page-Level Sanitization

= Nontrivial performance overhead in invalidating an entire block
o Deleting a 1-GiB video = 65,536 pLock operations (page size = 16 KiB)
o Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)
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Immediate block erasure is not feasible in 3D NAND flash memory.

o Open-block problem: Reliability degradation due to a long time interval b/w erasing and
programming a block = A block should be erased lazily.
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bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block
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bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
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bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

o 3D NAND flash memory implements an SSL using flash cells.
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bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

o 3D NAND flash memory implements an SSL using flash cells.

o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)
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o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL,,
N. 1 v Flash Cell
o voltage
(deactivate) ‘ SSL#0
Block#0
Ve SSL#k < Cannot activate
(activate) w/ normal voltage

d
page rea Disconnected from BLs

Block#k

No voltage
(deactivate)

Block#N-1

SSL#N

Page Buffer —< Data Out
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bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL,,
N. 1 v Flash Cell
o voltage
(deactivate) ‘ SSL#0
Block#0
Ve SSL#k < Cannot activate
(activate) w/ normal voltage

d
page rea Disconnected from BLs

- No current through strings
Block#k

No voltage
(deactivate)

Block#N-1

All-zerodata —%» 0 0 0 0 0 0 0
Page Buf?er —< Data Out

SSL#N
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bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL,,
|

Flash Cell
o BRI ssier
(deactivate) ¥ ¥ ¥ ¥ ¥ ¥ ¥ |

Blockiol v | ¥ | v+ |+] 4]+

Cannot activate

| ssL#k <
w/ normal voltage

Vies P
(activate)

d
page read—p Disconnected from BLs

- No current through strings

Block#k

bLock: Programs the SSL of block
—> Disconnects all the pages from bitlines
until the block is physically erased

l | \ |
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Outline

Evanesco: Lock-Based Data Sanitization
Q

Q

0 SecureSSD: An Evanesco-Enabled SSD
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SecureSSD: An Evanesco-Enabled SSD

An SSD that supports immediate data sanitization of updated or deleted data
o Lock manager issues pLock and bLock commands depending on the block’s status.

[ Application ]
File System
:
@ N
( SecureSSD N
Evanesco-Aware FTL A " Flash Chip T
L2P Page
Mapping Status [ M;‘I(:;ker #ﬂ
Table Table 8 L J)
\\ ) = )
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SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a
[ Application ] /’I
:"' pLock —»
Delete A i
File System !
Al ,’I
B.doc | :" Block#k
O valid [ nvalid
lT rim (discard) LPAs /
4 SecureSSD / A
N\ 4 . N
Evanesco-Aware FTL Flash Chip |
pLock
LZP_ Page Lock < B.doc
Mapping Status Manacer bLock o
Table Table & \ J
" / < —




SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a
[ Application ] /’I
:"' pLock —»
Delete A i
File System !
Al ,’I
B.doc | :" Block#k
O valid [ nvalid
lT rim (discard) LPAs /
4 SecureSSD / A
N\ 4 . N
Evanesco-Aware FTL Flash Chip |
pLock
LZP_ Page Lock < B.doc
Mapping Status Manacer bLock o
Table Table & \ J
" / < —




SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a

?

[ Application ] /’I
:"' pLock —p»
Delete A i
File System !
Al 'll
B.doc | Block#k
[Jvalid [ nvalid
lT rim (discard) LPAs /
e ,"\ Multiple invalid pages +
SecureSSD / no valid pages in the block
4 D )
Evanesco-Aware FTL Flash Chip |
pLock
LZP. Page Lock < B.doc bLock
Mapping Status Manaeer bLock q :
Table Table 8 \ /
\\ J < =
~~~~~~~~~ Block#m
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SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[ Application ]
File System
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B. doc
( SecureSSD )
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L2P Page
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SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.

o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[ Application ]

lfd = open("B.doc”, O_CREATE|O_INSEC);

File System

A
B.doc

lbio->bi_of =| REQ OP INSEC WRITE;

( SecureSSD )
Evanesco-Aware FTL A " Flash Chip T
L2P Extended Lock
Mapping || PG Status Manager B.doc
Table Table 8 L J)
\\ /| g, \\ y
v

Set page status to INSECURE

22



SecureSSD: Selective Data Sanitization
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SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[ Application ]
lDeIete B
File System
Al
B. doc
lT rim (discard) LPAs
( SecureSSD )
Evanesco-Aware FTL h [ Flash Chip 1\
L2P Extended Lock
Mapping || PG Status Manager B.doc
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K\ . / \ . y
M \ 4

Set page status to INSECURE Invalidation w/o pLock or bLock



SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[ Application ]

lDeIete B

File System

A
B.doc

lT rim (discard) LPAs

(" SecureSSD

~N
Evanesco-Aware FTL A [ Flash Chip m

V- N 7 N 7 N\

SecureSSD minimizes data-sanitization overheads
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Methodology

Design space exploration for pLock and bLock
o Using 160 real state-of-the-art 3D triple-level-cell (TLC) NAND flash chips
o To find the best operation parameters w/o reliability degradation

pLock: 100-us latency w/ 9 flag cells per page

bLock: 300-us latency

tREAD =100 us, tPROG = 700 us, tBERS = 3.5 ms

Simulator: Open SSD-development platform (FlashBench [Lee+, RSP’2012])
o 32-GiB storage capacity

o 576 pages per block

o 16-KiB page size

Compared SSDs
o erSSD: Erases the entire block after copying valid pages in the block
o scrSSD: Performs scrubbing after copying valid pages in the same cells [Wei+, FAST'2011]

Workloads

o Three server workloads: MailServer, DBServer, FileServer
o Mobile workload collected from an Android smartphone (Samsung Galaxy S2)
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Results: Performance

] erssD [] scrSSD I secSSD
1.0
0.98 0.89 0.96 0.95
£ 08 [
9 . Ne)
~ [ N
¥ 06 < —
'ﬁ - <
B (@)
E 04
(<) [ —
= [ N N
02 | « cn — N ot
B o o (@] o
B ) (@) o d
S =) S <
0.0 1 1 1
MailServer DBServer FileServer Mobile

SecureSSD significantly reduces performance overhead
of data sanitization (11% slowdown at most)
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Results: Lifetime

] erssD [] scrSSD I secSSD

4.4

3.3

Normalized WAF

MailServer DBServer FileServer Mobile

. i . #of logical pages written by the host system
Write Amplification Factor (WAF) = f logical pag y y

# of physical pages written by the SSD

No additional copy in SecureSSD: No lifetime overhead
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Results: Effect of Selective Data Sanitization

% of security-sensitive data: m60% m70% 080% 090% m100%
1.0
.0'99 0.97 0.97 =

& 0.96
o 0.94
=
)
>
= 09 0.89
=
St
o
2z

0.8 1 1 1

MailServer DBServer FileServer Mobile

Selective data sanitization minimizes performance overheads
(6% slowdown at most with 60% security-sensitive data)
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Other Analyses in the Paper

Empirical Study on Invalid Data in SSDs

Reliability Issues in Physical Data Destruction

Design Space Exploration for pLock and bLock

Effectiveness of bLock command
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Conclusion

Challenges of data sanitization in NAND flash-based SSDs:
o Erase-before-write property - no overwrite on stored data
o Physical data destruction - high performance & reliability overheads

Evanesco: Uses on-chip access-control mechanisms
o pLock: Page-level data sanitization
Implements the access-permission flag of each page using spare cells
o bLock: Block-level data sanitization
Programs the SSL of a block to disconnect all pages
o SecureSSD: An Evanesco-Enabled SSD
Supports selective data sanitization to reduce performance overheads

Results

o Provides the same level of reliability of an unmodified SSD
Validated w/ 160 real state-of-the-art 3D NAND flash chips

o Significantly improves performance and lifetime over existing data-sanitization techniques
Provides comparable (94.5%) performance with an unmodified SSD
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