Evanesco: Architectural Support
for Efficient Data Sanitization
in Modern Flash-Based Storage Systems

Myungsuk Kim*, Jisung Park*, Geonhee Cho, Yoona Kim,
Lois Orosa, Onur Mutlu, and Jihong Kim

Seoul National University SAFARI

SAFARI Research Group, ETH Ziirich ETHzrich

ASPLOS 2020

*M. Kim and]. Park equally contributed.

Executive Summary

Motivation: Secure deletion is essential in storage systems as modern computing
systems process a large amount of security-sensitive data.

Problem: It is challenging to support data sanitization in NAND flash-based SSDs.
o Erase-before-write property - no overwrite on stored data
o Physical data destruction - high performance & reliability overheads

Evanesco: A low-cost data-sanitization technique w/o reliability issues

o Uses on-chip access-control mechanisms instead of physically destroying data

o Manages access-permission (AP) flags inside a NAND flash chip
Data is not accessible once the flash controller sets the data’s AP flag to disabled.
An AP flag cannot be reset before erasing the corresponding data.

Results

o Provides the same level of reliability as an unmodified SSD (w/o data-sanitization support)
Validated w/ 160 real state-of-the-art 3D NAND flash chips

o Significantly improves performance and lifetime over existing data-sanitization techniques
Provides comparable (94.5%) performance with an unmodified SSD

Outline

Secure Deletion in NAND Flash-Based SSDs

Evanesco: Lock-Based Data Sanitization
0 pageLock: Page-Level Data Sanitization

o blockLock: Block-Level Data Sanitization

o SecureSSD: An Evanesco-Enabled SSD

Evaluation

Conclusion

Secure Deletion in Storage Systems

= Security-sensitive data is increasing in modern storage systems.

Private Message

€ Back Wife Contact
Private Photo
Melona when coming home /
wWhat is the password for our
Metflix account?
jlsungrocks
eVet = O
\\\\\\\
(O]
Kaytek, 6
_
—
| | | ‘ | | Medical records -
|1
m 02 Aug 2018

Confidential Data (e.g., Medical Record)

Secure Deletion in Storage Systems

Security-sensitive data is increasing in modern storage systems.

Private Message

£ Back Wife Contact
Private Photo
Melona when coming home /
wWhat is the password for our
Metflix account?
ilsungrocks
% -
& w
Kaytek, 6
-

Once a user deletes security-sensitive data,
a storage system should guarantee its irrecoverability

Confidential Data (e.g., Medical Record)

Data Versioning Problem

Obsolete data in NAND flash-based solid-state drives (SSDs)
Old versions of updated or deleted files can remain in the SSD for a long time.

a

— 20 [)

S " i\

E' 15 5 ”,' ____________________________________ f: a heavily-updated DB file
20 - '," — # of valid pages of file f
S 10r / o .
) u ! ---- # of invalid pages of file f
i - /
_é" 5 F ! to: running out of free space

_ ! L/
= - 7
Z. 0 I S B I:/I [T T TN TN NN S SN B
1.25 2.5 3.75

=)

Time (in disk writes)

Data Versioning Problem

Obsolete data in NAND flash-based solid-state drives (SSDs)
Old versions of updated or deleted files can remain in the SSD for a long time.

a

N
=)

!
A f: a heavily-updated DB file
| — # of valid pages of file f

pt
9] |

---- # of invalid pages of file f

9] |

Number of pages [103]
[y
S

TTT T[T T T T[T TTT[TTTT]

S |i/| I R N R S R N B B
3.75

0 1.25 2.5
Time (in disk writes)

=)

Updated or deleted data of a file can remain in SSDs
due to unique features of NAND flash memory

NAND Flash Memory Organization & Operations

:

BitLine BL, BL, B

Flash Cell -
O Erased (1)
O Programmed (0)

n-1

NAND String <

~

NAND Flash Memory Organization & Operations

BitLine BL, BL, BL, ;
Flash Cell - Page(s): Unit of read and program
O Erased (1) (e.g., 131,072 cells: 16-KiB page)
O Programmed (0)
NAND String < E :
9l 9l 9| ¢

NAND Flash Memory Organization & Operations

BitLine BL, BL, BL,

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

Flash Cell -

O Erased (1)
O Programmed (0)

NAND String <

NAND Flash Memory Organization & Operations

BitLine BL, BL, BL, BL,,
Flash Cell Q_ 0_ Q_ Page(s): Unit of read and program
QO Erased (1) o 0) 0 (e.g., 131,072 cells: 16-KiB page)
O Programmed (0)
O O - O
NAND String < : : :
Q| Q@ @ @

NAND Flash Memory Organization & Operations

Flash Cell

O Erased (1)
O Programmed (0)

NAND String <

BitLine BL, BL, BL, BL, ,
1 @ (D) (D) 0

@D 0 @D (0

D) @D 0| - @

-Q

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

NAND Flash Memory Organization & Operations

Flash Cell

O Erased (1)
O Programmed (0)

NAND String <

BitLine BL, BL, BL, BL, ,
1 @ (D) (D) 0

@D 0 @D (0

D) @D 0| - @

-0

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

NAND Flash Memory Organization & Operations

Flash Cell

O Erased (1)
O Programmed (0)

NAND String <

BitLine BLo

BL,

/

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

Block: Erase unit
(e.g., 576 pages: 9-MiB block)

NAND Flash Memory Organization & Operations

Flash Cell

O Erased (1)
O Programmed (0)

NAND String <

BitLine BL

/

it

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

Block: Erase unit
(e.g., 576 pages: 9-MiB block)

NAND Flash Memory Organization & Operations

BitLine BLo

BL,

BL,

BLn-I

Flash Cell -

QO Erased (1)
QO Programmed (0)
NAND String < | : : : :
Q@ 9 @
Block#1
Biock#Z |
Peripl.lerals

(Page Buffer, Decoder, ...)

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

Block: Erase unit
(e.g., 576 pages: 9-MiB block)

NAND Flash Memory Organization & Operations

Flash Cell

O Erased (1)
O Programmed (0)

NAND String <

BitLine BL, BL, BL, BL,,

p

19 Q[9 @
Block#1
Biock#Zl
Peripl.lerals

(Page Buffer, Decoder, ...)

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

Block: Erase unit
(e.g., 576 pages: 9-MiB block)

Erase-before-write: A block needs to be erased
before programming a page (i.e., no overwrite on a page)

NAND Flash-Based SSD

File System

(' Flash-Based SSD] \— ‘1_-

; L, | NAND
. - ..__.‘_v e - @
)

)(chip#0 | Chip#1
0 8
E 1 9
S 2 10
|l s 11
S || Block#0 || Block#2
(&)
= 4 12
b 5 13
= 6 14
'/ |Page 15
Block#1 Block#3
. J \\ J \\ J

NAND Flash-Based SSD

File System

012 3456 738

Logical block-device view /

that supports overwrites —_— T e
Flash-Based SSD BT el
Y4 N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
0 8
E 1 9
S 2 10
= 3 11
S || Block#0 || Block#2
o
= 4 12
gl s 13
= 6 14
'/ |Page 15
Block#1 Block#3
. J _ J \ J \\ J
. J

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

File System

o o

N B Ve

(Flash-Based SSD

~wi SEE EmEE

BT N ANDlINAND
- B -
N

s

Flash Translation Layer (FTL)

Flash Controller
o
3
w
H
(]

Page

Block#1

10
11

Block#2

12
13
14
15
Block#3)

NAND Flash-Based SSD

File System

o o

Logical block-device view /

that supports overwrites

r N
Flash-Based SSD
7 N[\Nf . N f . N
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| A0 8l A1
o Distributes host writes to fully exploit internal parallelism S 11 A2 9| BO
% 2| B1 10| B2
E 3 11
S || Block#0 || Block#2
o
- 4 12
gl s 13
3 6 14
'/ |Page 15
Block#1 Block#3
. J _ J \ J \\ J
- y

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

File System

—

r N
Flash-Based SSD
Y4 \Nf . N[. N
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| AO 8| A1
o Distributes host writes to fully exploit internal parallelism @ 11A2 °|.BO
=°' 2| B1 10| B2
E 3 11
S || Block#0 || Block#2
O
= 4 12
b 5 13
=3 6 14
'/ |Page 15
Block#1 Block#3
. VAN J \ J \\ J
. y,

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

File System

—

r N
Flash-Based SSD
f \Nf . N f . N
r Flash Translation Layer (FTL)) Chip#0 Chip#1
Address translation o X0 8| A1
o Distributes host writes to fully exploit internal parallelism @ 1|LA2 °|BO
— 2| B1 10| B2
Out-of-pl dat =)
m ut-of-place updates £ 3- 11-
S || Block#0 || Block#2
O
= 4 12
b 5 13
=3 6 14
'/ |Page 15
Block#1 Block#3
\. J \\ J \ J \\ J
. y,

NAND Flash-Based SSD

r : A
File System
Update BO and B2
- s J
Logical block-device view /
that supports overwrites
4 ™
Flash-Based SSD
f \Nf . N[. N
r Flash Translation Layer (FTL)) Chip#0 Chip#1
Address translation 0| A0 8| A1
o Distributes host writes to fully exploit internal parallelism E 1] A2 o1 BO
Out-of-pl dat : = 2| B1 10| B2
- ut-or-place updates Logical Page Address o 3 - 11 -
- Logical-to-physical (L2P) mappings (e.g., LPA 1 - PPA 8) = lock lock
Physical Page Address 8 Block#0 Block#2
e 4 12
b 5 13
<3 6 14
'/ |Page 15
Block#1 Block#3
\. J \\ J \\ J \\ J
. y,

NAND Flash-Based SSD

File System

Logical block-device view /

that supports overwrites

4)
Flash-Based SSD
Y4 N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| A0 8| A1
o Distributes host writes to fully exploit internal parallelism @ 1|LA2 °LBO
— 2| B1 10| B2
o Out-of-place updates Logical Page Address o 3 - 11 -
- Logical-to-physical (L2P) mappings (e.g., LPA 1 - PPA 8) = Block#0 Block#2
] Physical Page Address Q oc oc
Garbage collection (GC) : A 5
o Reclaims free pages for future host writes [5 13
<3 6 14
'/ |Page 15
Block#1 Block#3
. J _ J \ J \\ J
L J

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

(Flash-Based SSD

File System

N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| A0 8| A1
o Distributes host writes to fully exploit internal parallelism E 1] A2 91 BO
o Out-of-place updates Logical Page Address § i ﬁ 12 E
- Logical-to-physical (L2P) mappings (e.g., LPA 1 - PPA 8) = Block#0 ST
. Physical Page Address =} oc GC Victim
Garbage collection (GC) : 4 5
o Reclaims free pages for future host writes [5 13
o Selects a victim block w/ the smallest number of valid pages = 6 14
o Additional copy operations to move valid pages 7 |Page 15
Block#1 Block#3
. Y J \ J J

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

(Flash-Based SSD

File System

o Reclaims free pages for future host writes
o Selects a victim block w/ the smallest number of valid pages
o Additional copy operations to move valid pages

5

7

\Nf . N[. N
r Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation ol Ao s| A1
o Distributes host writes to fully exploit internal parallelism E 1] A2 91 BO
Out-of-pl dat : o 2] B1 10| B2
- ut-of-place updates Logical Page Address e 3 - 11 -
- Logical-to-physical (L2P) mappings (e.g., LPA 1 - PPA 8) = lock e
. Physical Page Address Q Block#0 GC Victim
Garbage collection (GC) o ;
G
=
3

Al 12
Copy valid pages
6

Page

Block#1

14
15

Block#3

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

(Flash-Based SSD

File System

o Reclaims free pages for future host writes
o Selects a victim block w/ the smallest number of valid pages
o Additional copy operations to move valid pages

5

7

N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation o[A0 s[]
o Distributes host writes to fully exploit internal parallelism E 11 A2 9
o Out-of-place updates Logical Page Address § i ﬁ 12
-> Logical-to-physical (L2P) mappings (e.g., LPA 1 - PPA 8) = lock —
. Physical Page Address Q Block#0 GC Victim
Garbage collection (GC) Q ,
G
=
3

Al 12
Copy valid pages
6

Page

Block#1

14
15

Block#3

NAND Flash-Based SSD

Logical block-device view /

that supports overwrites

(Flash-Based SSD

File System

. Physical Page Address
Garbage collection (GC) Y s

o Reclaims free pages for future host writes

o Selects a victim block w/ the smallest number of valid pages
o Additional copy operations to move valid pages

-> Page-status information (e.g., BO: invalid)

Flash Controller

\Nf . N[. N
: Flash Translation Layer (FTL) Chip#0 Chip#1
Address translation 0| A0 8
o Distributes host writes to fully exploit internal parallelism 1] A2 9
2| B1 10
o Out-of-place updates Logical Page Address 3 - 11
- Logical-to-physical (L2P) mappings (e.g., LPA 1 - PPA 8) Block#0 | | GC Vietim

41 A1 12
5 || Copy valid pages
6

'/ |Page

Block#1

14
15

Block#3

Data Deletion in NAND Flash-Based Storage Systems

(File System)

) - |/
Flash-Based SSD . .
7 N\ 7~ N/ N N\ N D
Flash Translation Layer (FTL) Chip#0 Chip#1
LPA_| PPA PPA_|Status || HAL 8
0 0 0| valid < || 1Az %
1 4 1| valid S 2|B1 10
2 1 2__ | valid = B || 12
3 3 3| valid S || Block#0 || Block#2
4 2 4 valid &)
5 12 5 free = 4| Al 12 -
2]
e 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
\. J \\ J \ J \\ J
\ J

Data Deletion in NAND Flash-Based Storage Systems

(File System)

A
B.db
Delete A _

;;17
012 3456 738

) i — |/
Flash-Based SSD | N
(A 4 N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
LPA_| PPA PPA_|Status || HAL 8
0 0 0| valid < || 1Az %
1 4 1| valid S 2|B1 10
2 1 2__ | valid = B || 12
3 3 3| valid S || Block#0 || Block#2
4 2 4 valid &)
5 12 5 free = 4| Al 12 -
2]
e 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
\. J \\ J \ J \\ J
\ y

Data Deletion in NAND Flash-Based Storage Systems

(File System)

A
B.db
Delete A _

;;17
012 3456 738

) i — |
Flash-Based SSD i 1 A
(N/ N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
" LPA_| PPA PPA_|Status || HAL 8
0 0 » 0 | valid S|l Az %
1 4 » 1 valid o 2| B1 10
2 1 2| valid = B || 12
3 3 3| valid S || Block#0 || Block#2
4 2 4 valid (&
5 12 5 free = 4| Al 12 -
2]
e 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
\. J \\ J \ J \\ J
\ J

Data Deletion in NAND Flash-Based Storage Systems

(File System)

A
B.db
Delete A _

;;17
012 3456 738

) i — |/
Flash-Based SSD e
(A 4 N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
" LPA | PPA PPA_|Status || YHAL 8
0 N/A » 0 [invalid < 1|LA2 9
T | N/a » 1 linvalid = || 2[Br]|] 10
2 N . valid =) 3 - 11
Update mapping & status . +
3 b PP _valid S || Block#0 || Block#2
4 2 4 linvalid (&
5 12 5 free = 41 A1l 12 -
2]
e 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
\. J \\ J \ J \\ J
. y,

Data Deletion in NAND Flash-Based Storage Systems

(File System)

Update B1

) i \— |/
Flash-Based SSD Tt
(A 4 AW 4 . N[. N
Flash Translation Layer (FTL) Chip#0 Chip#1
LPA | PPA PPA_[Status || YHAL 8
0 N/A 0 |invalid < 1] A2 9
1 N/A 1 invalid o 2| B1 10
2| N/& 2| valid = B || 12
3 3 3 | valid S || Block#0 || Block#2
4 2 4 invalid (3]
5 12 5 free = 41 A1l 12 -
70]
e 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
. J \\ J \\ J \\ J
\ y,

Data Deletion in NAND Flash-Based Storage Systems

(File System)

Update B1

(" Flash-Based SSD B ;“..*

=N ANDINAND
- S o m @
N

f (. N[. N
[Flash Translation Layer (FTL)) Chip#0 Chip#1
LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 linvalid Qo 1 A2 9
1 N/A 1 linvalid S 2| B1 10
2| N/& 2| valid = B || 12
3 3 3] valid S || Block#0 || Block#2
4 2 4 linvalid &
5 12 5 free = 4 12 F
o 5 13
11 N/A 15 free iI Out-of-place update
L2P Mapping Table Page Status Table [IS |
Block#1 Block#3
\. J \\ J \\ J \\ J
\. y,

Data Deletion in NAND Flash-Based Storage Systems

(File System)

Update B1

) i \— __
Flash-Based SSD i [
f \Nf . N[. N
[Flash Translation Layer (FTL)) Chip#0 Chip#1
LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 linvalid Qo 1| A2 9
1 N/A 1 linvalid S 2| Bl 10
: . o
] [opdare [P 2 || o || oz
7 > |—1 Sstatus 7 linvalid S oc oc
5 12 5 free = 4 12 F
o 5 13
11 N/A 15 free iI Out-of-place update
L2P Mapping Table Page Status Table [IS |
Block#1 Block#3
\. J \\ J \\ J \\ J
. y,

Data Deletion in NAND Flash-Based Storage Systems

(File System)

Update B1

) i \— |
Flash-Based SSD L
f \Nf . N f . N
[Flash Translation Layer (FTL)) Chip#0 Chip#1
LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 |invalid < 1] A2 9
1 N/A 1 linvalid S 2| B1 10
: - o
] [opaae TR 2 || s || oz
4 5 _— status 4 invalid 8 oc oc
5 | Update 5 free < 4 12 F
11 e 1o free iI Out-of-place update
L2P Mapping Table Page Status Table 71 IS
Block#1 Block#3
\. J \\ J \ J \\ J
. y,

Data Deletion in NAND Flash-Based Storage Systems

(File System)

AN
B.db

(Flash-Based SSD

BN ANDINAND
,_',.‘:;“bi’*:lif; \
5 -’ 2iE A —— g
N

f (. N f . N
[Flash Translation Layer (FTL)) Chip#0 Chip#1
LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 |invalid < 1| A2 9
1 N/A 1 linvalid S 21 Bl 10
2 N/A 2 i lid = 3 11
21/ 2_finvall 5| siEod

Invalid data remains in NAND flash chips
until GC erases the corresponding block(s)

s ,===7—

8

Security Vulnerability of NAND Flash-Based SSDs

(File System)

AN
B.db

ADVERSARY

R {NANDJINAND
N

Flash-Based SSD -
f 4 . N f . N
[Flash Translation Layer (FTL)) Chip#0 Chip#1
LPA | PPA PPA_[Status || YHAL 8
0 N/A 0 |invalid < 1| A2 9
1 N/A 1 linvalid o 2| B1 10
2 | N/A 2 |invalid = 3o || 12
i g 2 _ Vahlsid S || Block#0 || Block#2
invali (&)
5 12 5 free = 4 12 -
< 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
. J \\ J \\ J \\ J

Security Vulnerability of NAND Flash-Based SSDs

File System

@

012345678

N

ADVERSARY e
Flash-Based SSD = &
r :
[Flash Translation Layer (FTL)) Chlp#O Ch1p#1
LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 |invalid < 1| A2 9
1 N/A 1 linvalid o 2| B1 10
2 | N/A 2 |invalid = 3o || 12
i g 2 _ Vahl‘.id S || Block#0 || Block#2
invali (&}
5 12 5 free = 4 12 -
< 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
. J \\ J \ J \\ J

Security Vulnerability of NAND Flash-Based SSDs

Direct access to SSD

Flash-Based SSD »_—— '1_‘

ADVERSARY. — ..
C NANDNAND

4 A 4 4 . A 4 . N
Flash Translation Layer (FTL) Chip#0 Chip#1
LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 |invalid < 1| A2 9
1 N/A 1 linvalid o 21 B1 10
2 | N/A 2 |invalid = 3o || 12
2 g 2 _ Vahl‘.id S || Block#0 || Block#2
invali (&)
5 12 5 free = 4 12 -
< 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
. J \\ J \ J \\ J

Security Vulnerability of NAND Flash-Based SSDs

Direct access to SSD

ADVERSARY. ‘ — HDRAMES

Flash-Based SSD 1 —"
(N/ N[. N[.)
Flash Translation Layer (FTL) Chip#0 Chip#1
" LPA | PPA PPA_|Status || YHAL 8
0 N/A 0 |invalid < 1| A2 9
1 N/A 1 linvalid o 21 B1 10
2 N/A | No mappings 2 invalid b 3 - 11
3 3 to invalid PPAs 3 _valid 8 Block#0 Block#2
4 5 4 linvalid (&
5 12 5 free = 4 12 -
< 5 13
11 | N/A 15 | free = 6 14
L2P Mapping Table Page Status Table 7 15
Block#1 Block#3
\. J \\ J \ J \\ J
. y,

Security Vulnerability of NAND Flash-Based SSDs

ADVERSARY. ..
De-solder

[Chip#0 | [Chip#1
O AO 8
1| A2 9
2| B1 10
3o || 12
Block#0 Block#2
4 12 [B27]
5 13
6 14
7 15
L Block#1)1 Block#3)

Security Vulnerability of NAND Flash-Based SSDs

ADVERSARY

De-solder |NANDJINAND

Direct access

A0

Al

A2

B1

' Custom Flash Control

to raw NAND chips
ler | ‘

[Chip#0 | [Chip#1
ol AO 8
1| A2 9
2 B1 10
3o || 12
Block#0 Block#2
4 12 [B27]
5 13
6 14
7 15
L Block#1)1 Block#3)

Security Vulnerability of NAND Flash-Based SSDs

Entire

Deleted File

Previous Ver.

of Up

AS
B.db

Forensic Tool '

Direct access

A0

Al

' Custom Fla

A2
sh Con

B1 to raw NAND chips
troller '

dated File De-solder

[Chip#0 | [Chip#1

ol Ao 8
1| A2 9
2| B1 10
3o || 12

Block#0 Block#2
4 12 [B27]
5 13
6 14
7 15

Block#1

Block#3

Security Vulnerability of NAND Flash-Based SSDs

Entire Previous Ver.
Deleted File of Updated File De-solder

AS
B.db

[Chip#0 | [Chip#1
Forensic Tool ' ol AO 8
Direct access ; Ai 13
to raw NAND chips B
(_AO Al | A2 | B1 — p s[Ber] || 12

Deleted or updated files can be recovered
by directly accessing raw NAND flash chips

Existing Solution: Immediate Block Erasure

» Immediately erases the block that stores data to be sanitized

10

Existing Solution: Immediate Block Erasure

» Immediately erases the block that stores data to be sanitized
o High performance and lifetime overheads due to Erase-before-write property
= Needs to copy all the valid pages stored in the same block

D Free 4
[valid

D Invalid Target Page

576 Pages i

Target Block

10

Existing Solution: Immediate Block Erasure

Immediately erases the block that stores data to be sanitized
o High performance and lifetime overheads due to Erase-before-write property
Needs to copy all the valid pages stored in the same block

D Free 4
[valid

D Invalid Target Page

576 Pages i

Target Block Free Block

10

Existing Solution: Immediate Block Erasure

Immediately erases the block that stores data to be sanitized

o High performance and lifetime overheads due to Erase-before-write property

D Free
[valid

D Invalid

576 Pages i

Target Block

Needs to copy all the valid pages stored in the same block

Target Page

> Hundreds of Copies:
t = Niopy X (trean + trrog)

Free Block

10

Existing Solution: Immediate Block Erasure

Immediately erases the block that stores data to be sanitized

o High performance and lifetime overheads due to Erase-before-write property

Needs to copy all the valid pages stored in the same block

D Free 4
[valid

D Invalid

576 Pages i

Target Block

Target Page

} Wasted

> Hundreds of Copies:
t = Niopy X (trean + trrog)

Free Block

10

Existing Solution: Immediate Block Erasure

Immediately erases the block that stores data to be sanitized

o High performance and lifetime overheads due to Erase-before-write property

Needs to copy all the valid pages stored in the same block

D Free 4
[valid

D Invalid

576 Pages i

Target Block

Target Page

} Wasted

> Hundreds of Copies:
t = Niopy X (trean + trrog)

Free Block

10

Existing Solution: Immediate Block Erasure

Immediately erases the block that stores data to be sanitized

o High performance and lifetime overheads due to Erase-before-write property

Needs to copy all the valid pages stored in the same block

D Free 4
[valid

D Invalid

576 Pages i

Target Block

Target Page

} Wasted

> Hundreds of Copies:
t = Niopy X (trean + trrog)

Free Block

Immediate block erasure:
High performance and lifetime overheads

10

Existing Solution: Reprogramming the Page

= Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page

o Destroys the page data w/o block erasure

Target Page

|:| Free
[valid

D Invalid

Target Block

11

Existing Solution: Reprogramming the Page

= Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page

o Destroys the page data w/o block erasure

I cc Poge
|:| Free
[valid
[] nvalid
Bl Scrubbed
Target Block

11

Existing Solution: Reprogramming the Page

= Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page
o Destroys the page data w/o block erasure
o Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
= Needs to copy all the valid pages stored in the same flash cells

flash cells

|:| Free
[valid

[] nvalid
Bl Scrubbed

Target Block

11

Existing Solution: Reprogramming the Page

= Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page
o Destroys the page data w/o block erasure
o Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
= Needs to copy all the valid pages stored in the same flash cells

Share Target Page
flash cells

|:| Free
[valid

[] nvalid
Bl Scrubbed

Target Block

11

Existing Solution: Reprogramming the Page

Scrubbing [Wei+, FAST'2011]: Reprograms all the flash cells storing an invalid page

Destroys the page data w/o block erasure

a

a

Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
= Needs to copy all the valid pages stored in the same flash cells

Reliability issues: cell-to-cell interference

8 R

Share
flash cells

|:| Free
[valid

[] nvalid
Bl Scrubbed

8

Target Block

Target Page

Cell-to-cell
interference

11

Existing Solution: Reprogramming the Page

= Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page

a

a

Destroys the page data w/o block erasure

Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory
= Needs to copy all the valid pages stored in the same flash cells

Reliability issues: cell-to-cell interference

Share Target Page
flash cells
Cell-to-cell
N N

D Free {3 interference

[valid

[] nvalid
Bl Scrubbed

Target Block

Existing solutions incur
performance, lifetime, and reliability problems
in modern NAND flash memory

11

Outline

Evanesco: Lock-Based Data Sanitization
0 pageLock: Page-Level Data Sanitization

o blockLock: Block-Level Data Sanitization

0o SecureSSD: An Evanesco-Enabled SSD

12

Evanesco: Access Control-Based Sanitization

Key idea: Allow a NAND flash chip to be aware of data validity

o Prevent access to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

E:Enabled, D:Disabled

N
NAND| O | AO E
1] A1 E
2| A2 E
31 BO E
Block#0 Flags#0
4 E
5 E
6 E
i E
. Block#1 Flags#lJ

13

Evanesco: Access Control-Based Sanitization

Key idea: Allow a NAND flash chip to be aware of data validity

o Prevent access to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

N
NAND| O | AO E
1] A1 E
2| A2 E
31 BO E
Block#0 Flags#0
4 E
5 E
6 E
i E
. Block#1 Flags#lJ

Evanesco: Access Control-Based Sanitization

Key idea: Allow a NAND flash chip to be aware of data validity

o Prevent access to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

D

NAND| O | AO E
11 A1 E
21 A2 E
31 BO E

Block#0 Flags#0

1 [[Bo7] E

5 E
6 E
7 E

Block#1 Flags#1

Evanesco: Access Control-Based Sanitization

= Key idea: Allow a NAND flash chip to be aware of data validity
o Preventaccess to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

= Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

\

X1
EVANESCO' NAND| O | AO E
, 1[A1 E
AWV E
pLock (3) 3 LBO D
Block#0 Flags#0
N
5 E
6 E
LD (il 1371 k#1 Fl E#1
ALREADY VANISHED: _>o¢ ags#1 |

13

Evanesco: Access Control-Based Sanitization

= Key idea: Allow a NAND flash chip to be aware of data validity
o Preventaccess to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

= Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

\

W
EVAN_ESCO' NANDJ O | AO E
/ 11 A1 E
2| A2 E
pLock (3) 3 LBO D

Block#0 Flags#0

1 [[Bo7] E

5 E
6 E
YOU ARE ! E

Block#1 Flags#1
J

ALREADY VANISHED? \

13

Evanesco: Access Control-Based Sanitization

= Key idea: Allow a NAND flash chip to be aware of data validity
o Preventaccess to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

= Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

\

W
EVAN_ESCO' NANDJ O | AO D
/ 11 A1 D
2| A2 D
pLock (3) 3 LBO D

Block#0 Flags#0

’4- E

bLock (0) S E
6 E
7 E

YOU ARE

Block#1 Flags#1
J

ALREADY VANISHED? \

13

Evanesco: Access Control-Based Sanitization

= Key idea: Allow a NAND flash chip to be aware of data validity
o Prevent access to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

= Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

D

I
EVAESCO' NAND| O | AO D
/ 1| Al D
21 A2 D
pLock (3) 31LBO D read (2)

Block#0 Flags#0 [

’4- E

bLock (0) S E
6 E
7 E

YOU ARE

Block#1 Flags#1

ALREADY VANISHED? \

13

Evanesco: Access Control-Based Sanitization

= Key idea: Allow a NAND flash chip to be aware of data validity
o Prevent access to invalid data at the chip level w/o destroying the data
- Low overhead: No copy operation to move valid pages stored in the same cells
—> High reliability: No cell-to-cell interference to other valid pages

= Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)
o pLock: disables access to a page
o bLock: disables access to all the page in a block

E:Enabled, D:Disabled

D

EVANESCO! NAND{ O | AO D
| ' 1| A1 D d
= C
pLock (3) 31 BO D | read (2) .
Block#0 Flags#0 [
+ [Ber] E 00..0
bLock (0) "l s E (all-zero data)
6 E
YOU ARE 7 E
ALREADY VANISHED" | Block#1 Flags#1

13

Outline

Evanesco: Lock-Based Data Sanitization
0 pageLock: Page-Level Data Sanitization
U

O

14

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time

Data ﬁrea Spar(i Area (for metadata)
4 Y \
(1 1t I 1 1t 1 1 1 1]
Block O Q (Page#0) Q Q— Flash Cell 8:3:2:2;26)
O Q (Page#1) Q O
O Q (Page#2) Q O
QO QO
O O (Page#N-1) O O
Bitline (BL) —
Page Buffer _(Data Out

15

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time

Data ﬁrea Spar(i Area (for metadata)
4 Y \
(1 1t I 1 1t 1 1 1 1]
Block O Q (Page#0) Q Q— Flash Cell 8:3:2:2;26)
O Q (Page#1) Q O
O Q (Page#2) Q O
O Q () Q O O 1:Enabled
O O (Page#N_I) O O_ Flag Cell O O DI'::sabied
Bitline (BL) —
Page Buffer _(Data Out

15

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time

Data ﬁrea Spar(i Area (for metadata)
AN I I A
Block [pagero)OO} -mash cenn gt ®
O Q (Page#1) O O
pLock (2) O Q (Page#2) Q Flag-cell programming
OO()OO O 1:Enabled
O O (Page#N-1) O O— Flag Cell O 0: pisabled
Bitline (BL) —
Page Buffer _(Data Out

15

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time
Prevents transfer of data from a disabled page
o The bridge transistor disconnects the page buffer from the data-out circuitry.

Data Area Spare Area (for metadata)
r A Y A \
1 1 1 1 1 | O Erased (1)
Bl k B rase
oc Page#0 (Of Flash Cell & provrammed)
Page#1 O
pLock (2) ¥

|
Q
O
Page#2) Q Flag-cell programming
O

RO

Page#N-I B Flag Cell O 0: Disabled

Bitline (BL)
Page Buffer Data Out

Bridge Transistor

8 O 1:Enabled

—HOIOOO0

15

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time
Prevents transfer of data from a disabled page
o The bridge transistor disconnects the page buffer from the data-out circuitry.

Data ﬁrea Spar(i Area (for metadata)
AT A
Block [() (Page#0) () (Of Flash Cell 833:_2&(3)
O Q (Page#1) O O
Read(2)—>OQ< Page#2)QO
QO QO
O O (Page#N-1) O O— Flag Cell 8(1) E:::;i: q
Bitline (BL) —
Page Buffer $_< Data Out

Bridge Transistor

15

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time
Prevents transfer of data from a disabled page
o The bridge transistor disconnects the page buffer from the data-out circuitry.

Data ﬁrea Spar(i Area (for metadata)
AN I I A O erasea (1
rase
Block [() (Page#0)OOt Flash cell G o)

O Q (Page#1) O O
Read(2)—>OQ< Page#2)QO

OO()OO O 1:Enabled

O O (Page#N-1) O O_ Flag Cell o 0:Disabled
Bitline (BL) 11 |0 |1 |0 |- 0 |1 |0 |O0:off (disconnect)

Page Buffer Data Out

Bridge Transistor

15

pLock: Page-Level Data Sanitization

Implements page access-permission (pAP) flags using spare cells
o Sets a pAP flag to disabled (enabled) by programming (erasing) the flag cells
—> A disabled page cannot be enabled until the entire block is erased.
o No additional command to access a pAP flag: read with the page data at the same time
Prevents transfer of data from a disabled page
o The bridge transistor disconnects the page buffer from the data-out circuitry.

Data ﬁrea Spar(i Area (for metadata)
AN I I A O erasea (1
rase
Block [() (Page#0)OOt Flash cell G o)

O Q (Page#1) O O
Read(2)—>OQ< Page#2)QO

OO()OO O 1:Enabled

O O (Page#N-1) O O_ Flag Cell o 0:Disabled
Bitline (BL) 11 |0 |1 |0 |- 0 |1 |0 |O0:off (disconnect)

Page Buffer Data Out |+ 0000..000

Bridge Transistor (all-zero data)

15

pLock: Implementation Details

pAP Flags
Data Cells MsB CSB LSB

N A\ N4
BLn- BLn+k BLn+2k BLn+3k-1

N

1 n

- N N’ I

Qo 9l

AP Flag Selector
Majority Circuit

H

\ Data Out
Bridge Transistor

Page Buffer

pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

pAP flags
DataACells {MSB CSB LSB\
BLn-\I fBLn \ fBLn+k \éLMZk BLn:’:’k-I
= 0 [LSB
Jio)(e](e} Ql © m
|QIOIO QL O =
) O O Q Q Q 5 ESE
1QRRIQ Q| QP Q| e
AP Flag Selector
X
Majority Circuit
= /
Page Buffer 1 \ Data Out
Bridge Transistor

pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.

o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page
o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

pAP flags
DataCells MsB CSB LSB
BLn-\I fBLn \ fBLn+k \éLMZk BLn:?k-I
= 0 [LSE
Jie)(e)(e) Ql © m
QO[O Ql Ol@r« =
1QRRP QO PP Q Foa
AP Flag Selector
P i
Majority Circuit
4
Page Buffer 1 < Data Out

Bridge Transistor

16

pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page

o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

pAP Flags
A
Data Cells MSB CSB LSB
A N/ A A4 A N\ A
BLn-I BLn BLn+k BLn+2k BLn+3k—1
10l0l0I0] Olol ©

No cell

=

o-cell interference

1QQQ

19199

O P
Q9| QP

—
OadbdwdhNRFr O

AP Flag Selector

P i

Majority Circuit

4

A

LSB

MSB
LSB

MSB

/

Page Buffer

Bridge Transistor

\ Data Out

Block#k

16

pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page
o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

BL,,,; BLM;.,‘_I Reliability issues

pAP Flags
DataCells MsB CSB LSB
BL,, BL, "BL,,,
101010101 Olol ©

=

No cell

o-cell interference

1QQQ

19199

QIR Q9

_ .’.‘%3

AP Flag Selector

P i

Majority Circuit

4

A

/

Page Buffer

Bridge Transistor

\ Data Out

1. Cell-to-cell interference b/w flag cells
in the same NAND strings

2. Program disturbance due to high program
voltage to the other cells at the same row

16

pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.
o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page
o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

BL,,,; BLM;,‘_I Reliability issues

pAP Flags
DataCells MsB CSB LSB
BL,, BL, "BL,,,
10l010I0] Olol ©

=

No cell-

o-cell interference

1QQQ

19199

O P
Q9| QP

_ .’.‘%3

AP Flag Selector

P i

Majority Circuit

4

A

/

Page Buffer

Bridge Transistor

\ Data Out

1. Cell-to-cell interference b/w flag cells
in the same NAND strings

2. Program disturbance due to high program
voltage to the other cells at the same row

Solutions

1. Use flag cells in single-level cell (SLC) mode
- More robust to interference and disturbance
- Reduces pLock latency

2. One-shot programming w/ low voltage
- Reduces interference and disturbance

16

pLock: Implementation Details

Problem 1: Multiple pages are stored in the same flash cell.

o Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)
Problem 2: A flag cell can misbehave = unintentional disabling or enabling of a page
o Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

pAP Flags
A
4 \
Data Cells MSB CSB LSB
A N A \ A \ A \ . I .
BL,, BL, BL,,, BL,,,, BL..., Reliability issues

1. Cell-to-cell interference b/w flag cells

)- 6 6 6 6 6 6 6 ! in the same NAND strings

W6 Yefirblcell infe)Ferehce [k 2. Program disturbance due to high program

- voltage to the other cells at the same row
A ALALLA A A : Solutions
) Q Q Q Q Q Q Q Q Q 1. Use flag cells in single-level cell (SLC) mode

- More robust to interference and disturbance

pLock: Prevents data transfer for a disabled page
- Reliable and copy-free per-page sanitization

DI age 11alininurl b

16

Outline

Evanesco: Lock-Based Data Sanitization
Q
o blockLock: Block-Level Data Sanitization

O

17

Problem with Page-Level Sanitization

= Nontrivial performance overhead in invalidating an entire block
o Deleting a 1-GiB video = 65,536 pLock operations (page size = 16 KiB)
o Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

18

Problem with Page-Level Sanitization

Nontrivial performance overhead in invalidating an entire block
o Deleting a 1-GiB video = 65,536 pLock operations (page size = 16 KiB)
o Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

Immediate block erasure is not feasible in 3D NAND flash memory.

o Open-block problem: Reliability degradation due to a long time interval b/w erasing and
programming a block = A block should be erased lazily.

18

Problem with Page-Level Sanitization

Nontrivial performance overhead in invalidating an entire block
o Deleting a 1-GiB video = 65,536 pLock operations (page size = 16 KiB)
o Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

Immediate block erasure is not feasible in 3D NAND flash memory.

o Open-block problem: Reliability degradation due to a long time interval b/w erasing and
programming a block = A block should be erased lazily.

[ONo P/E cycling []After P/E cycling [l After P/E cycling + retention

“ I 1
08 L

Zero Very short Short Medium Long Very long

Normalized RBER
(Raw Bit Error Rate)

Length of open interval

18

Problem with Page-Level Sanitization

Nontrivial performance overhead in invalidating an entire block
o Deleting a 1-GiB video = 65,536 pLock operations (page size = 16 KiB)
o Invalidating blocks in SSD management tasks (GC, wear-leveling, ...)

Immediate block erasure is not feasible in 3D NAND flash memory.

o Open-block problem: Reliability degradation due to a long time interval b/w erasing and
programming a block = A block should be erased lazily.

[ONo P/E cycling []After P/E cycling [l After P/E cycling + retention

1.0 F I 1
08 L

Zero Very short Short Medium Long Very long

Normalized RBER
(Raw Bit Error Rate)

Length of open interval

18

bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

BL, BL, ,

||:; |r; |:; ||:; ||:; |:! ||:; ||:; SSL#0

Block#o| ¥ | ¥ [¥ |+ [+]|+ [+]+

SSL#k

Block#k

||:::_ |:::_ |:::_ |:::_ ||:::_ |:::_ II:::_ ||:::_ SSL#N

Block#N-1| v |+ |+ |+ |+ |+ |+ | +

Page Buffer —< Data Out

19

bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.

BL, BL, ,

Q

Flash Cell
SSL#0

«JOf
O}
O}
O}
O}
O}

Block#0

SSL#k

OO0
OO0
OO0
OO0
OO0
OO0

Block#k

SSL#N

*Ol| «O-O00] 4.Q%

g
g
g
g
g
g
g

Block#N-1

Page Buffer —< Data Out

19

bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

o 3D NAND flash memory implements an SSL using flash cells.

BL,

BL,
|

No voltage
(deactivate)

Block#0

A

v

£

v

HE

HE

£

Flash Cell
§u/ SSL#0

v

]

15

Vierk P

SSL#k

(activate)

Block#k

000
000

3
:

:
.

3
:

S
0

3
:

No voltage
(deactivate)

Block#N-1

i

i

i

i

i

o
Q
i

SSL#N

Page Buffer

19

bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

o 3D NAND flash memory implements an SSL using flash cells.

BL,

BL,

No voltage
(deactivate)

Block#0

&

\ 4

£

v

£

£

\ 4

£

£

\ 4

£

Flash Cell
§u{ SSL#0

bLock (k) —P

Block#k

3

3

3

:

No voltage
(deactivate)

Block#N-1

v

LI

v

v

7

v

Page Buffer

19

bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

o 3D NAND flash memory implements an SSL using flash cells.

o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL,

BL,

No voltage
(deactivate)

Block#0

&

\ 4

£

v

£

v

£

v

£

v

£

v

£

v

Flash Cell
§u{ SSL#0

bLock (k) —P

Block#k

:

:

:

SSL#k < SSL programming

No voltage
(deactivate)

Block#N-1

Y

19

bLock: Block-Level Sanitization

Key idea: Program the string-select line (SSL) of a block

o 3D NAND flash memory implements an SSL using flash cells.

o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL,

BL,

No voltage
(deactivate)

Block#0

&

£

v

£

v

£

v

£

£

v

£

v

Flash Cell
§u{ SSL#0

Vierk P
(activate)

Block#k

No voltage
(deactivate)

Block#N-1

QQIR0I[e[QIo
SRR R e
Page Buffer —< Data Out

19

bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)
BL, BL,
y Flash Cell
| ssL#0

No voltage
(deactivate)

Block#0

Cannot activate

SSL#k
* w/ normal voltage

Vref
(activate)

Block#k

No voltage
(deactivate)

Block#N-1

SSL#N

Page Buffer —< Data Out

19

bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL, ,
Vo vol y Flash Cell
o voltage
(deactivate) ‘ SSL#0
Block#0
V, SSL#k < Cannot activate
(activate) w/ normal voltage
Disconnected from BLs
Block#k
No voltage
(deactivate) SSL#N
Block#N-1

Page Buffer —< Data Out

19

bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL,,
N. 1 v Flash Cell
o voltage
(deactivate) ‘ SSL#0
Block#0
Ve SSL#k < Cannot activate
(activate) w/ normal voltage

d
page rea Disconnected from BLs

Block#k

No voltage
(deactivate)

Block#N-1

SSL#N

Page Buffer —< Data Out

19

bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL,,
N. 1 v Flash Cell
o voltage
(deactivate) ‘ SSL#0
Block#0
Ve SSL#k < Cannot activate
(activate) w/ normal voltage

d
page rea Disconnected from BLs

- No current through strings
Block#k

No voltage
(deactivate)

Block#N-1

All-zerodata —%» 0 0 0 0 0 0 0
Page Buf?er —< Data Out

SSL#N

19

bLock: Block-Level Sanitization

= Key idea: Program the string-select line (SSL) of a block
o 3D NAND flash memory implements an SSL using flash cells.
o SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

BL, BL,,
|

Flash Cell
o BRI ssier
(deactivate) ¥ ¥ ¥ ¥ ¥ ¥ ¥ |

Blockiol v | ¥ | v+ |+] 4]+

Cannot activate

| ssL#k <
w/ normal voltage

Vies P
(activate)

d
page read—p Disconnected from BLs

- No current through strings

Block#k

bLock: Programs the SSL of block
—> Disconnects all the pages from bitlines
until the block is physically erased

l | \ |

19

Outline

Evanesco: Lock-Based Data Sanitization
Q

Q

0 SecureSSD: An Evanesco-Enabled SSD

20

SecureSSD: An Evanesco-Enabled SSD

An SSD that supports immediate data sanitization of updated or deleted data
o Lock manager issues pLock and bLock commands depending on the block’s status.

[Application]
File System
:
@ N
(SecureSSD N
Evanesco-Aware FTL A " Flash Chip T
L2P Page
Mapping Status [M;‘I(:;ker #ﬂ
Table Table 8 L J)
\\) =)

SecureSSD: An Evanesco-Enabled SSD

An SSD that supports immediate data sanitization of updated or deleted data
o Lock manager issues pLock and bLock commands depending on the block’s status.

[Application]
lDelete A
File System
Al
B. doc
lT rim (discard) LPAs
(SecureSSD N
Evanesco-Aware FTL A " Flash Chip T
L2P Page
Mapping Status [M;‘S;ker #ﬂ
Table Table 8 L J)
\\) =)

SecureSSD: An Evanesco-Enabled SSD

An SSD that supports immediate data sanitization of updated or deleted data
o Lock manager issues pLock and bLock commands depending on the block’s status.

[Application]
lDeIete A
File System
N\
B. doc
lT rim (discard) LPAs
(SecureSSD N
Evanesco-Aware FTL h [Flash Chip T
L2P Page pLock >
Mapping Status [M;‘::;ker bLock q B.doc
Table Table 8 L J)
\\) =)

SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a
[Application] /’I
:"' pLock —»
Delete A i
File System !
Al ,’I
B.doc | :" Block#k
O valid [nvalid
lT rim (discard) LPAs /
4 SecureSSD / A
N\ 4 . N
Evanesco-Aware FTL Flash Chip |
pLock
LZP_ Page Lock < B.doc
Mapping Status Manacer bLock o
Table Table & \ J
" / < —

SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a
[Application] /’I
:"' pLock —»
Delete A i
File System !
Al ,’I
B.doc | :" Block#k
O valid [nvalid
lT rim (discard) LPAs /
4 SecureSSD / A
N\ 4 . N
Evanesco-Aware FTL Flash Chip |
pLock
LZP_ Page Lock < B.doc
Mapping Status Manacer bLock o
Table Table & \ J
" / < —

SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a

?

[Application] /’I
:"' pLock —p»
Delete A i
File System !
Al 'll
B.doc | Block#k
[Jvalid [nvalid
lT rim (discard) LPAs /
e ,"\ Multiple invalid pages +
SecureSSD / no valid pages in the block
4 D)
Evanesco-Aware FTL Flash Chip |
pLock
LZP. Page Lock < B.doc bLock
Mapping Status Manaeer bLock q :
Table Table 8 \ /
\\ J < =
~~~~~~~~~ Block#m
21




SecureSSD: An Evanesco-Enabled SSD
An SSD that supports immediate data sanitization of updated or deleted data
Lock manager issues pLock and bLock commands depending on the block’s status

a

?

[ Application ] /’I
:"' pLock —p»
Delete A i
File System !
Al 'll
B.doc | Block#k
[Jvalid [ nvalid
lT rim (discard) LPAs /
e ,"\ Multiple invalid pages +
SecureSSD / no valid pages in the block
4 D )
Evanesco-Aware FTL Flash Chip |
pLock
LZP. Page Lock < B.doc bLock
Mapping Status Manaeer bLock q :
Table Table 8 \ /
\\ J < =
~~~~~~~~~ Block#m
21

SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[Application]
File System
Al
B. doc
(SecureSSD)
Evanesco-Aware FTL A " Flash Chip T
L2P Page
Mapping Status M;‘S:ker #5'
Table Table 8 - J)
\)) -),

SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.

o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[Application]

lfd = open("B.doc”, O_CREATE|O_INSEC);

File System

A
B.doc

lbio->bi_of =| REQ OP INSEC WRITE;

(SecureSSD)
Evanesco-Aware FTL A " Flash Chip T
L2P Extended Lock
Mapping || PG Status Manager B.doc
Table Table 8 L J)
\\ /| g, \\ y
v

Set page status to INSECURE

22

SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[Application]
lDeIete B
File System
Al
B. doc
lT rim (discard) LPAs
(SecureSSD N
Evanesco-Aware FTL A " Flash Chip T
L2P Extended Lock
Mapping || PG Status Manager B.doc
Table Table 8 - J)
K\ . / \ . y
v

Set page status to INSECURE

SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[Application]
lDeIete B
File System
Al
B. doc
lT rim (discard) LPAs
(SecureSSD)
Evanesco-Aware FTL h [Flash Chip 1\
L2P Extended Lock
Mapping || PG Status Manager B.doc
Table Table 8 - J)
K\ . / \ . y
M \ 4

Set page status to INSECURE Invalidation w/o pLock or bLock

SecureSSD: Selective Data Sanitization

SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.
o Auser sets the security requirements of written data w/ extended 1/0 interfaces.

[Application]

lDeIete B

File System

A
B.doc

lT rim (discard) LPAs

(" SecureSSD

~N
Evanesco-Aware FTL A [Flash Chip m

V- N 7 N 7 N\

SecureSSD minimizes data-sanitization overheads

Outline

m Secure Deletion in NAND Flash-Based SSDs

m Evanesco: Lock-Based Data Sanitization
0 pageLock: Page-Level Data Sanitization
o blockLock: Block-Level Data Sanitization
o SecureSSD: An Evanesco-Enabled SSD

= Evaluation

m Conclusion

24

Methodology

Design space exploration for pLock and bLock
o Using 160 real state-of-the-art 3D triple-level-cell (TLC) NAND flash chips
o To find the best operation parameters w/o reliability degradation

pLock: 100-us latency w/ 9 flag cells per page

bLock: 300-us latency

tREAD =100 us, tPROG = 700 us, tBERS = 3.5 ms

Simulator: Open SSD-development platform (FlashBench [Lee+, RSP’2012])
o 32-GiB storage capacity

o 576 pages per block

o 16-KiB page size

Compared SSDs
o erSSD: Erases the entire block after copying valid pages in the block
o scrSSD: Performs scrubbing after copying valid pages in the same cells [Wei+, FAST'2011]

Workloads

o Three server workloads: MailServer, DBServer, FileServer
o Mobile workload collected from an Android smartphone (Samsung Galaxy S2)

25

Results: Performance

] erssD [] scrSSD I secSSD
1.0
0.98 0.89 0.96 0.95
£ 08 [
9 . Ne)
~ [N
¥ 06 < —
'ﬁ - <
B (@)
E 04
(<) [—
= [N N
02 | « cn — N ot
B o o (@] o
B) (@) o d
S =) S <
0.0 1 1 1
MailServer DBServer FileServer Mobile

SecureSSD significantly reduces performance overhead
of data sanitization (11% slowdown at most)

26

Results: Lifetime

] erssD [] scrSSD I secSSD

4.4

3.3

Normalized WAF

MailServer DBServer FileServer Mobile

. i . #of logical pages written by the host system
Write Amplification Factor (WAF) = f logical pag y y

of physical pages written by the SSD

No additional copy in SecureSSD: No lifetime overhead

27

Results: Effect of Selective Data Sanitization

% of security-sensitive data: m60% m70% 080% 090% m100%
1.0
.0'99 0.97 0.97 =

& 0.96
o 0.94
=
)
>
= 09 0.89
=
St
o
2z

0.8 1 1 1

MailServer DBServer FileServer Mobile

Selective data sanitization minimizes performance overheads
(6% slowdown at most with 60% security-sensitive data)

28

Other Analyses in the Paper

Empirical Study on Invalid Data in SSDs

Reliability Issues in Physical Data Destruction

Design Space Exploration for pLock and bLock

Effectiveness of bLock command

29

Outline

m Secure Deletion in NAND Flash-Based SSDs

m Evanesco: Lock-Based Data Sanitization
0 pageLock: Page-Level Data Sanitization
o blockLock: Block-Level Data Sanitization
o SecureSSD: An Evanesco-Enabled SSD

s Evaluation

= Conclusion

30

Conclusion

Challenges of data sanitization in NAND flash-based SSDs:
o Erase-before-write property - no overwrite on stored data
o Physical data destruction - high performance & reliability overheads

Evanesco: Uses on-chip access-control mechanisms
o pLock: Page-level data sanitization
Implements the access-permission flag of each page using spare cells
o bLock: Block-level data sanitization
Programs the SSL of a block to disconnect all pages
o SecureSSD: An Evanesco-Enabled SSD
Supports selective data sanitization to reduce performance overheads

Results

o Provides the same level of reliability of an unmodified SSD
Validated w/ 160 real state-of-the-art 3D NAND flash chips

o Significantly improves performance and lifetime over existing data-sanitization techniques
Provides comparable (94.5%) performance with an unmodified SSD

31

Evanesco: Architectural Support
for Efficient Data Sanitization
in Modern Flash-Based Storage Systems

Myungsuk Kim*, Jisung Park*, Geonhee Cho, Yoona Kim,
Lois Orosa, Onur Mutlu, and Jihong Kim

Seoul National University SAFARI

SAFARI Research Group, ETH Ziirich ETHzrich

ASPLOS 2020

*M. Kim and]. Park equally contributed.

