

Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices

Aya Fukami, Saugata Ghose, Yixin Luo, Yu Cai, Onur Mutlu

Brief Summary of the Paper

- Our Goal:
 - Identify <u>error sources</u> in NAND flash memory during chip-off
 - <u>Quantify errors</u> in NAND flash memory introduced in chip-off
 - Identify a <u>mitigation process</u> to reduce errors introduced during chip-off analysis
- Our findings:
 - Long storage time of devices increases errors in NAND flash memory
 - <u>Heat</u> in chip-off increases uncorrectable errors
 - <u>Read-retry</u> mechanism can reduce errors introduced during chip-off

Talk Outline

- Background
 - Basic operation of NAND flash memory
- Testing Methodology and Experimental Results
 - Retention error
 - Errors introduced by heat
- How to Improve Reliability of Chip-off Analysis
 - Read-retry operation

Talk Outline

- Background
 - Basic operation of NAND flash memory
- Testing Methodology and Experimental Results
 - Retention error
 - Errors introduced by heat
- How to Improve Reliability of Chip-off Analysis
 - Read-retry operation

MLC NAND Flash Memory Cell Operation

Amount of charge = Threshold voltage of the cell = Stored data value

MLC NAND Cell Vth Distribution

Threshold voltages need to be between each read voltage

Retention Error on MLC NAND Flash Cell

- Charge leakage over time causes threshold voltage shifts
 - Data error in result is called retention error

NAND Flash Cell Degradation

Repeated programming and erasing (P/E cycle) accelerates charge leakage

NAND Flash Error Sources During Chip-off

- Heat guns or electrical rework machines
 - De-solder NAND flash memory chips with heat
- Required temperature and duration: 250 °C (482 °F), ~2 minutes

High temperature accelerates charge leakage

Error Correction Codes (ECC)

- Flash memory controllers store ECC codewords to correct errors in data
- Typical correction capability for recent chip: 40 bits correction capability per 1KB
- Errors exceeding ECC correction capability: uncorrectable errors

Talk Outline

- Background
 - Basic operation of NAND flash memory
- Testing Methodology and Experimental Results
 - Retention error
 - Errors introduced by heat
- How to Improve Reliability of Chip-off Analysis
 - Read-retry operation

Testing Environment

- Test chips: New 2y-nm NAND flash memory chips from two different vendors (hereafter called Chip A and Chip B)
- Controller: Altera DE0 FPGA

Testing Methodology: Retention Error Evaluation

- Repeated programming/erasing cycles (P/E cycles)
 - 10, 300, 1000, 2500, and 4000 cycles
- Raw bit error rate (RBER) measurement at multiple retention age (=wait time after programming)
 - Day 0 and 1, Week 1, 2, 3 and 4

Experimental Result: Retention Error: Chip A

RBER grows as P/E cycle count and retention age increase

Experimental Result: Retention Error: Chip B

RBER grows as P/E cycle count and retention age increase

Testing Methodology: Thermal Effect Evaluation

- Baking target chips at <u>250 °C for 2 mins</u> at different retention age (simulating chip-off procedures)
 - 1 Week
 - 4 Weeks
- Raw bit error rate (RBER) measurement after baking

Experimental Result: Errors Introduced by Heat (Chip A)

Heat introduces errors more than ECC can correct

Experimental Result: Errors Introduced by Heat (Chip B)

Heat introduces errors more than ECC can correct

Experimental Result: Uncorrectable Errors after Baking

Fraction of pages that contains uncorrectable errors (P/E cycle=300)

Retention Period before Baking	Chip A	Chip B
1 Week	29.1%	78.1%
4 Weeks	84.2%	83.6%

Heat introduces uncorrectable errors even when the chip has been only lightly used

Talk Outline

- Background
 - Basic operation of NAND flash memory
- Testing Methodology and Experimental Results
 - Retention error
 - Errors introduced by heat
- How to Improve Reliability of Chip-off Analysis
 - Read-retry operation

Read-Retry Mechanism

Read-retry mechanism shifts the read voltage to reduce errors caused by threshold voltage shifts

Testing Methodology: Read-Retry Evaluation

- Read-Retry command found on chip B
 - Implemented as a vendor specific command
- Read operation with read-retry
 - Evaluation of 2 modes (mode A and B)

Experimental Result: Error Reduction with Read-Retry

Read-retry can reduce errors introduced by thermal-based chip-off procedure

Uncorrectable Error Reduction by Read-Retry

Fraction of pages that contains uncorrectable errors (Chip B, after baking)

Read Mode	P/E Cycle Count	
	300	1000
Default	83.6%	99.7%
Read-Retry A	0%	12.1%
Read-Retry B	0%	0%

Read-retry can reduce errors introduced by thermal-based chip-off procedure

Conclusions and Recommendations

- Wait time increases errors
 - Conduct data extraction at the earliest possible time after receiving a device
- Heat introduces uncorrectable errors
 - Keep the temperature as low as possible
- Read-retry can reduce errors
 - Use read-retry after chip-off when available

Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices

Aya Fukami, Saugata Ghose, Yixin Luo, Yu Cai, Onur Mutlu

Additional Slides

NAND Flash Memory Organization

Retention Error over P/E Cycles

Reproduced from Cai.et.al. "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis" (2012)

