Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery

Yu Cai, **Yixin Luo**, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu

Carnegie Mellon University, *Seagate Technology

SAFARI Carnegie Mellon

Executive Summary

- Read disturb errors limit flash memory lifetime today
 - Apply a high pass-through voltage (V_{pass}) to multiple pages on a read
- We characterize read disturb on real NAND flash chips
 - -Slightly lowering V_{pass} greatly reduces read disturb errors
 - -Some flash cells are more prone to read disturb
- Technique 1: Mitigate read disturb errors online
 - -V_{pass} Tuning dynamically finds and applies a lowered V_{pass}
 - Flash memory lifetime improves by 21%
- Technique 2: Recover after failure to prevent data loss
- -*Read Disturb Oriented Error Recovery* (RDR) selectively corrects cells more susceptible to read disturb errors
- -Reduces raw bit error rate (RBER) by up to 36%

Outline

- Background (Problem and Goal)
- Key Experimental Observations
- Mitigation: V_{pass} Tuning
- Recovery: Read Disturb Oriented Error Recovery
- Conclusion

Outline

- Background (Problem and Goal)
- Key Experimental Observations
- Mitigation: V_{pass} Tuning
- Recovery: Read Disturb Oriented Error Recovery
- Conclusion

NAND Flash Memory Background

Flash Cell Array

Flash Cell

Floating Gate Transistor (Flash Cell)

Flash Read

Flash Pass-Through

Read from Flash Cell Array s = 5.0 Pass (5V) Page 1

10

Read Disturb Problem: "Weak Programming" Effect

11

Read Disturb Problem: "Weak Programming" Effect

Read disturb errors: Reading from one page can alter the values stored in other unread pages

Goal: Mitigate and Recover Read Disturb Errors

Outline

- Background (Problem and Goal)
- Key Experimental Observations
- Mitigation: V_{pass} Tuning
- Recovery: Read Disturb Oriented Error Recovery
- Conclusion

Methodology

• FPGA-based flash memory testing platform [Cai+, FCCM '11]

- Real 20- to 24-nm MLC NAND flash chips
- 0 to 1M read disturbs
- 0 to 15K Program/Erase Cycles (PEC)

Read Disturb Effect on V_{th} Distribution

Other Experimental Observations

- •Lower threshold voltage states are affected more by read disturb
- Wear-out increases read disturb effect

Key Observation 1: Slightly lowering V_{pass} greatly reduces read disturb errors

Outline

- Background (Problem and Goal)
- Key Experimental Observations
- Mitigation: V_{pass} Tuning
- Recovery: Read Disturb Oriented Error Recovery

Conclusion

Read Disturb Mitigation: V_{pass} Tuning

- Key Idea: Dynamically find and apply a lowered V_{pass}
- Trade-off for lowering V_{pass}
 +Allows more read disturbs
 -Induces more read errors

Utilizing the Unused ECC Capability

- 1. Huge unused ECC correction capability can be used to tolerate read errors
- 2. Unused ECC capability decreases over time

Dynamically adjust V_{pass} so that read errors fully utilize the unused ECC capability

V_{pass} Reduction Trade-Off Summary

- Conservatively set V_{pass} to a high voltage
 - Accumulates more read disturb errors at the end of each refresh interval
 - +No read errors
- Dynamically adjust V_{pass} to unused ECC capability + Minimize read disturb errors
 - Control read errors to be tolerable by ECC
 - \odot If read errors exceed ECC capability, read again with a higher V_{pass} to correct read errors

V_{pass} Tuning Steps

- Perform once for each block every day:
 - **1.** Estimate unused ECC capability
 - 2. Aggressively reduce V_{pass} until read errors exceeds ECC capability
 - Gradually increase V_{pass} until read error just becomes less than ECC capability

Evaluation of V_{pass} Tuning

- •19 real workload I/O traces
- •Assume 7-day refresh period
- Similar methodology as before to determine acceptable V_{pass} reduction
- Overhead for a 512 GB flash drive:
 - -128~KB storage overhead for per-block V_{pass} setting and worst-case page
 - -24.34 sec/day average V_{pass} Tuning overhead

V_{pass} Tuning Lifetime Improvements

Average lifetime improvement: 21.0%

Outline

- Background (Problem and Goal)
- Key Experimental Observations
- Mitigation: V_{pass} Tuning
- Recovery: Read Disturb Oriented Error Recovery

Conclusion

Read Disturb Resistance

29

Read Disturb Oriented Error Recovery (RDR)

- Triggered by an uncorrectable flash error
 - -Back up all valid data in the faulty block
 - -Disturb the faulty page 100K times (more)
 - -Compare V_{th} 's before and after read disturb
 - -Select cells susceptible to flash errors (V_{ref} - σ < V_{th} < V_{ref} - σ)
 - –Predict among these susceptible cells
 - Cells with more V_{th} shifts are disturb-prone \rightarrow Higher V_{th} state
 - Cells with less V_{th} shifts are disturb-resistant \rightarrow Lower V_{th} state

RDR Evaluation

Reduce total error counts up to 36% @ 1M read disturbs ECC can be used to correct the remaining errors

Outline

- Background (Problem and Goal)
- Key Experimental Observations
- Mitigation: V_{pass} Tuning
- Recovery: Read Disturb Oriented Error Recovery

Conclusion

Executive Summary

- Read disturb errors limit flash memory lifetime today
 - Apply a high pass-through voltage (V_{pass}) to multiple pages on a read
- We characterize read disturb on real NAND flash chips
 - -Slightly lowering V_{pass} greatly reduces read disturb errors
 - -Some flash cells are more prone to read disturb
- Technique 1: Mitigate read disturb errors online
 - -V_{pass} Tuning dynamically finds and applies a lowered V_{pass}
 - -Flash memory lifetime improves by 21%
- Technique 2: Recover after failure to prevent data loss
 - -*Read Disturb Oriented Error Recovery* (RDR) selectively corrects cells more susceptible to read disturb errors
 - -Reduces raw bit error rate (RBER) by up to 36%

Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery

Yu Cai, **Yixin Luo**, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu

Carnegie Mellon University, *Seagate Technology

SAFARI Carnegie Mellon

Read Disturb Induced RBER Increases Faster with Higher PEC

Threshold Voltage Increases with Read Disturb Count

Showing results for P1 state @ 8K PEC, other states have similar trends

Lower Voltage States Are More Prone to Read Disturb

P1 State

Read Disturb Count (Millions)

Read Disturb Count (Millions)

Reducing V_{pass} Increases Tolerable Read Disturb Count

Pass-Through Voltage Reduction Induced Read Error

Read Errors Induced by V_{pass} Reduction

- Will generate a read error only if:
 - $-Max(V_{th}) > V_{pass}$
 - -Correct read value is 1

- These errors do not affect lifetime
 - -can usually be tolerated by the unused ECC capability
- These errors are temporary

-can be corrected (if necessary) by reading with the default V_{pass}

Illustration of V_{pass} Tuning Results

Time

SAFARI Showing ΔV_{th} with 8K PEC from 250K to 350K read disturbs ⁴³