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6: Results & Conclusion

Key Results of GateKeeper:

 90x-130x faster than SHD (Xin et al., 2015) and the Adjacency

Filter (Xin et al., 2013).

 4x fewer false positives (falsely accepted incorrect

mappings) the Adjacency Filter (Xin et al., 2013).

 10x speedup with the addition of GateKeeper to the mrFAST

mapper (Alkan et al., 2009).

 The first open-source FPGA-based filter for

genome analysis. Github.com/BilkentCompGen/GateKeeper. As such,
we hope that it catalyzes the development and adoption of such
hardware accelerators in genome sequence analysis, which are
becoming increasingly necessary to cope with the processing
requirements of greatly increasing amounts of genomic data.

Other Results:

 The number of processing cores is determined by the maximum data
throughput (~13.3 billion bases per second provided by RIFFA (Jacobsen
et al., 2015)) and the available FPGA resources.

 GateKeeper can examine up to 8 or 16 mappings concurrently (at 250
MHz) for an input read length of 300 and 100 bp, respectively.

 GateKeeper occupies 50% of the available FPGA slice LUTs and 91% of
the available registers for an input read length of 100 and 300 bp,
respectively.

 Pre-alignment filter does not replace alignment verification.
 Integrating the FPGA accelerators with the sequencer can help to hide 

the complexity and details of the underlying hardware.

4: GateKeeper

Our Goal: provide the first hardware accelerator architecture (as a pre-
alignment filter) for quickly rejecting incorrect mappings (highly 
dissimilar read-reference pairs) that wastes execution time.
 Obtain low runtime.
 Highly-parallel hardware accelerator design.
 Reject most of incorrect mappings (low false positives).
 Accept all correct mappings (zero false negatives).

1: Read Mapping

Key Ideas:
 Build a processing core that is based on only parallel bitwise operations to examine a single mapping.
 Introduce parallelism to the pre-alignment step by integrating many hardware processing cores for 

examining many mappings in a parallel fashion.
 Exploit the large amounts of parallelism offered by FPGA* architectures to accelerate the performance 

of our processing cores.

* FPGAs (field-programmable gate arrays) are the most commonly used reconfigurable hardware engines 
today and their computational capabilities are greatly increasing every generation due to increased 
number of transistors on the FPGA chip. An FPGA can be configured to include a large number of 
hardware execution units that are custom-tailored to the problem at hand (Aluru and Jammula, 2014; 
Herbordt et al., 2007; Trimberger, 2015).

2: Problem

Fact: until today, it remains challenging to sequence the entire DNA molecule as a 
whole.
As a workaround: high throughput DNA sequencing (HTS) technologies are used 
to sequence short reads of copies of the original molecule. These technologies 
are relatively quick and cost-effective but result in an excessive number of short 
reads. Reads do not have any information about which part of genome they 
come from; hence read mapping is needed. It determines the optimal alignment
and the potential location of each of the reads within a reference genome to 
construct the donor’s complete genome. 

3: Pre-Alignment Filtering

5: GateKeeper Walkthrough

.

 Optimal alignment is computationally 
expensive.

 Bottlenecked by memory bandwidth,
e.g., Illumina NovaSeq 6000 generates 
6 Terabases per 36 hours for each 
genomic sample.

 Optimal alignment algorithms are 
unavoidable as they provide accurate 
information about the quality of the 
alignment.

 Majority of candidate locations in the 
reference genome do not align with a 
given read due to high dissimilarity. 
This wastes execution time and incurs 
significant computational burden.
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AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
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Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AND Mask :

Needleman-Wunsch 

Alignment:

--- Masks after amendment ---

Incremental right shifting

Incremental left shifting

Mechanism:
1) Fast detection of base-substitutions: If Hamming distance is less than or equal to E, the

user-defined edit distance threshold, then this mapping is accepted.
2) Fast detection of insertions and deletions:

 Generate 2E deletion and insertion masks, by incrementally shifting the query to right
or left, respectively, then compare against the reference segment.

3) Apply bit-vector optimization using fast architecture design:
 Pre-process all the (2E+1) bit-vectors by encoding them into shorter binary format.
 Amend each 2 or less consecutive 0’s into 1’s as they are likely to be random matches.

4) Calculate shifted Hamming distance (Xin et al., 2015): By ANDing all bit-vector masks,
then conservatively count the 1’s in the AND mask. If their number is less than or equal to
E then the mapping is accepted and passed to the alignment step.
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Filtering Accuracy vs. Existing Filters
Number of examined mappings by GateKeeper, SHD, and the 
Adjacency Filter across different read lengths and E thresholds. 
SHD does not support 300 bp long reads 
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Xilinx VC709 FPGA Chip 
layout and breakdown 
of the chip area for 
GateKeeper (for a read 
length of 300 bp and 
E=15).

Read length / E
mrFAST version /

pre-alignment type

Filtering &
Verification time 

(speed-up)

Overall
mapping time 

(speed-up)

100 bp
/ 5 edits

2.1 / No Pre-alignment 22.60 h (1x) 24.27 h (1x)

2.6 / Adjacency Filter 5.65 h (4x) 7.31 h (3.3x)

2.1 / GateKeeper 0.55 h (41x) 2.50 h (9.7x)

300 bp
/ 15 edits

2.1 / No Pre-alignment 0.94 h (1x) 1.02 h (1x)

2.6 / Adjacency Filter 0.04 h (24x) 0.12 h (8x)

2.1 / GateKeeper 0.003 h (279x) 0.09 h (11x)

Overall mrFAST mapping time (in hours) with and without a pre-
alignment step, with an edit distance threshold of 5%.

Pre-alignment + Alignment Steps

https://github.com/BilkentCompGen/GateKeeper

