




Warp Scheduler Controls GPU Thread-Level Parallelism

Warp Scheduler Controls GPU Thread-Level Parallelism

	Improved GPU	Improved CPU
	performance	performance
CPU-centric Strategy	×	

Warp Scheduler Controls GPU Thread-Level Parallelism

	Improved GPU	Improved CPU
	performance	performance
CPU -centric	✓	- /
Strategy		
CPU-GPU		
Balanced		
Strategy		

Warp Scheduler Controls GPU Thread-Level Parallelism

	Improved GPU	Improved CPU
	performance	performance
CPU -centric	~	-
Strategy		
CPU-GPU		
Balanced		
Strategy		

Control the trade-off

CPU-centric Strategy

Memory Congestion

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Results Summary:

+24% CPU & -11% GPU

CPU-centric Strategy

CPU-GPU Balanced Strategy

Memory Congestion

GPU TLP

CPU Performance

GPU Latency Tolerance -

Results Summary:

+24% CPU & -11% GPU

CPU-centric Strategy

CPU-GPU Balanced Strategy

Memory Congestion

GPU TLP

CPU Performance

GPU Latency Tolerance

IF Latency Tolerance

GPU TLP

Results Summary:

+24% CPU & -11% GPU

CPU-centric Strategy

CPU-GPU Balanced Strategy

Memory Congestion

GPU TLP

CPU Performance

GPU Latency Tolerance

IF Latency Tolerance

GPU TLP

Results Summary:

+24% CPU & -11% GPU

Results Summary:

+7% both CPU & GPU

Onur Kayıran¹,

Nachiappan CN¹, Adwait Jog¹, Rachata Ausavarungnirun²,

Mahmut T. Kandemir¹, Gabriel H. Loh³, Onur Mutlu², Chita R. Das¹

Penn State
 Carnegie Mellon
 AMD Research

Onur Kayıran¹,

Nachiappan CN¹, Adwait Jog¹, Rachata Ausavarungnirun²,

Mahmut T. Kandemir¹, Gabriel H. Loh³, Onur Mutlu², Chita R. Das¹

Carnegie Mellon

Penn State
 Carnegie Mellon
 AMD Research

Today
Session 1B – Main Auditorium

@ 3 pm