
Managing GPU Concurrency in Heterogeneous Architectures

Onur Kayıran∗ Nachiappan Chidambaram Nachiappan∗ Adwait Jog∗ Rachata Ausavarungnirun†

Mahmut T. Kandemir∗ Gabriel H. Loh‡ Onur Mutlu† Chita R. Das∗
∗ The Pennsylvania State University † Carnegie Mellon University ‡ Advanced Micro Devices, Inc.

Email: ∗{onur, nachi, adwait, kandemir, das}@cse.psu.edu, †{rachata, onur}@cmu.edu, ‡gabriel.loh@amd.com

Abstract—Heterogeneous architectures consisting of general-
purpose CPUs and throughput-optimized GPUs are projected
to be the dominant computing platforms for many classes
of applications. The design of such systems is more complex
than that of homogeneous architectures because maximizing
resource utilization while minimizing shared resource interfer-
ence between CPU and GPU applications is difficult. We show
that GPU applications tend to monopolize the shared hardware
resources, such as memory and network, because of their high
thread-level parallelism (TLP), and discuss the limitations of
existing GPU-based concurrency management techniques when
employed in heterogeneous systems. To solve this problem, we
propose an integrated concurrency management strategy that
modulates the TLP in GPUs to control the performance of both
CPU and GPU applications. This mechanism considers both
GPU core state and system-wide memory and network conges-
tion information to dynamically decide on the level of GPU
concurrency to maximize system performance. We propose
and evaluate two schemes: one (CM-CPU) for boosting CPU
performance in the presence of GPU interference, the other
(CM-BAL) for improving both CPU and GPU performance
in a balanced manner and thus overall system performance.
Our evaluations show that the first scheme improves average
CPU performance by 24%, while reducing average GPU
performance by 11%. The second scheme provides 7% average
performance improvement for both CPU and GPU applications.
We also show that our solution allows the user to control
performance trade-offs between CPUs and GPUs.

1 INTRODUCTION

GPUs have made headway as the computational
workhorses for many throughput-oriented applications com-
pared to general purpose CPUs [32]. Traditionally, a GPU
operates in conjunction with a CPU in a master-slave mode,
where the CPU offloads parallel parts of a computation
to the GPU. Each kernel can spawn thousands of threads
to utilize the full potential of the thread-level parallelism
(TLP) available in a GPU. Current programming models like
OpenCL [25] and CUDA [37] facilitate such programming
on GPUs. While this master-slave mode of computation has
become more powerful with innovations in both GPU hard-
ware and software, it has some limitations that may impede
pushing its performance envelope further. These limitations
include the high overheads due to separate address spaces
that require explicit data movement between the CPU and
the GPU, and the lack of tight coordination between the
CPU and the GPU for dynamically sharing the computation.
Although concepts such as dynamic parallelism [39], where
a GPU can generate new work for itself, Hyper-Q [39],
where multiple CPUs can launch computations on a GPU,

and HSA (Heterogeneous System Architecture) [2], where
there is a unified architecture and programming model for
CPUs and GPUs, are being explored, these concepts are
still evolving and require effective resource management
frameworks to make GPU-based computing more efficient.

A recent trend in GPU-based computing has been the
design of heterogeneous multicore architectures consisting
of CPUs and GPUs on the same die. AMD’s accelerated
processing units (APUs) [3], NVIDIA’s Echelon project [11],
and Intel’s Sandybridge/Ivybridge [18] architectures indicate
the commercial interest and future directions in designing
such heterogeneous multicores. However, the design space
for such a cohesive but heterogeneous platform is much
more complex than that of a homogeneous multicore system.
For example, the number and placement of the CPU and
GPU cores on a chip, the design of the underlying on-chip
network fabric, the design of the cache/memory hierarchy,
including resource management policies, and concurrency1

management strategies for effectively utilizing the on-chip
shared resources are some of the open issues that have not
been sufficiently explored. In this paper, we focus on under-
standing and alleviating the shared-resource contention in a
heterogeneous architecture because the contention problem
is likely to be more aggravated in a heterogeneous system
due to resource sharing between CPUs and GPUs, which
have strikingly different resource demands.

CPU applications tend to be latency sensitive and have
lower TLP than GPU applications, while GPU applications
are more bandwidth sensitive. These disparities in TLP
and sensitivity to latency/bandwidth may lead to low and
unpredictable performance when CPU and GPU applications
share the on-chip network, last-level cache (LLC), and
memory controllers (MCs). To illustrate this, we ran nine
different mixes of CPU and GPU applications on an inte-
grated 14-core CPU and 28-core GPU platform (described
in Section 5). We also ran these applications in isolation
to estimate the performance impact of resource sharing
on applications. Figure 1a shows GPU performance when
running each GPU application (KM, MM and PVR) with and
without one of the three different CPU applications (from
the most memory-intensive to the least: mcf, omnetpp,
perlbench). Figure 1b shows CPU performance when
running each CPU application with and without one of the
three GPU applications. We observe, from these figures,
that the interference between CPU and GPU applications

1We use “concurrency”, “TLP”, and “parallelism” interchangeably.

1

0

0.25

0.5

0.75

1

1.25

KM MM PVR

N
o

rm
a
li

z
e
d

 G
P

U
 I
P

C

noCPU mcf omnetpp perlbench

(a) Effect of CPU Applications
on GPU performance.

0

0.25

0.5

0.75

1

1.25

mcf omnetpp perlbench

N
o

rm
a
li

z
e
d

 C
P

U
 I

P
C

noGPU KM MM PVR

(b) Effect of GPU Applications
on CPU performance.

Figure 1: Effects of heterogeneous execution on performance.

causes performance losses for both classes. CPU applica-
tions, however, are affected much more compared to GPU
applications. For example, when mcf (a CPU application)
is run with PVR (a GPU application), mcf’s performance
drops by 84%, whereas PVR’s performance drops by only
20%. The performance losses observed on both classes of
applications are primarily due to contention in shared hard-
ware resources. In fact, the high TLP of GPU applications
causes GPU packets to become the dominant consumers of
shared resources, which in turn degrades CPU performance.
Hence, concurrency management for GPUs is essential for
controlling CPU, GPU, and overall system performance in
a heterogeneous CPU-GPU system.

Previous works have explored concurrency control mech-
anisms in the context of GPUs. These works either target
performance improvements only for cache-sensitive appli-
cations (CCWS [43]) or propose solutions based on the
latency tolerance of GPU cores (DYNCTA [24]). These
mechanisms are oblivious to the CPU cores and do not
take into account system-wide information (such as memory
and network congestion). Therefore, they lead to suboptimal
CPU performance when applied to heterogeneous CPU-GPU
systems due to the substantial difference between the latency
tolerance of GPU and CPU cores.

In this paper, we introduce a new GPU TLP management
mechanism that improves performance of both CPU and
GPU applications in a heterogeneous system. The key idea
is to regulate the number of active GPU warps (i.e., GPU
TLP) to control CPU as well as GPU performance based
on information obtained by monitoring system-wide conges-
tion and latency tolerance of GPU cores. We propose two
schemes targeted for different scenarios. Our first scheme,
CPU-Centric Concurrency Management (CM-CPU), aims
to improve the performance of CPU applications because
they are observed to be the worst sufferers in an integrated
platform. CM-CPU limits the number of active warps in
GPUs by monitoring two global metrics that reflect memory
and network congestion. While this scheme is very effective
in boosting CPU performance, it causes most of the GPU ap-
plications to experience performance degradation. To recover
the performance loss of such applications, we propose our
second scheme, Balanced Concurrency Management (CM-
BAL), which improves overall system performance based on
the user’s2 preference for higher CPU or GPU performance.
To achieve this, CM-BAL observes system-wide congestion

2“User” can be an actual user, an application, or the system software.

metrics as well as the latency tolerance of the GPU cores to
modulate the GPU TLP.

While one may argue that the alternative approach of par-
titioning network and memory resources between the CPU
and the GPU might solve the contention problem, we show
that such resource isolation actually leads to severe under-
utilization of resources, which in turn hurts either CPU
or GPU performance, or both, significantly (Section 2.2).
For this reason, we use a system with shared resources as
our baseline in most of our evaluations, but also show (in
Section 6.4) that our proposed schemes work effectively in
a system with partitioned resources as well.

Our main contributions are as follows:
• We show that existing GPU concurrency management
solutions [24, 43] are suboptimal for maximizing overall sys-
tem performance in a heterogeneous CPU-GPU system due
to the large differences in latency/bandwidth requirements
of CPU and GPU applications.
•We introduce two GPU concurrency management schemes,
CM-CPU and CM-BAL, which can be implemented with
any warp scheduling technique by monitoring memory sys-
tem congestion of the heterogeneous architecture and latency
tolerance of GPU cores. The key idea is to dynamically
adjust the number of active warps on the GPU to either
unilaterally boost the CPU performance or enhance the entire
system performance based on the importance of CPU or
GPU performance as determined by the user.
•We show that both of our schemes reduce the monopoliza-
tion of the shared resources by GPU traffic. CM-BAL also
allows the user to control the performance trade-off between
CPU and GPU applications.
• We extensively evaluate our proposals with 36 workloads
on an integrated 28-core GPU and 14-core CPU simulation
platform and show that CM-CPU improves CPU perfor-
mance by 24%, but reduces GPU performance by 11%. CM-
BAL provides 7% performance improvement for both CPU
and GPU applications, without hurting GPU applications
in any workload. We analyze the performance benefits
and provide sensitivity studies, showing that improvements
provided by the proposed techniques are robust.

To our knowledge, this is the first work that introduces
new GPU concurrency management mechanisms to improve
both CPU and GPU performance in heterogeneous systems.

2 ANALYSIS AND BACKGROUND

Before discussing the necessity of TLP management in
a heterogeneous platform and proposing our solution, we
describe our baseline architecture consisting of cores, a
network-on-chip (NoC), and memory controllers (MCs).

2.1 Baseline Configuration
Our baseline architecture configuration places throughput-

optimized GPU cores and latency-optimized CPU cores on
the same chip, and connects these cores to the shared LLC
and MCs via an interconnect, as shown in Figure 2a. In order
to provide a scalable design for heterogeneous architectures,
we use a “tile-based” architecture, as shown in Figure 2b.

2

On Chip Network

LLC

MC

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

GPU GPU GPU GPU

LLC

MC

LLC

MC

LLC

MC

L1 L1 L1 L1

(a) Baseline system configuration

LLC/

MC

LLC/

MC

LLC/

MC

LLC/

MC

LLC/

MC

LLC/

MC

LLC/

MC

CPU CPU

CPU CPU

CPU CPU CPU

CPU CPU CPU

CPU CPU

CPU CPU
LLC/

MC

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

(b) 2D mesh layout

Figure 2: Baseline architecture.

Our baseline configuration consists of 7 processing tiles,
where each tile has 4 GPU and 2 CPU cores. We choose a
GPU to CPU core ratio of 2:1 because a single GPU core
(i.e., streaming multiprocessor, SM) in Fermi GF110 (45nm
technology) occupies roughly half the area of one Nehalem
CPU core (45nm technology). We form a tile consisting of
4 GPU and 2 CPU cores, and replicate these tiles to provide
scalability. Section 6.4 analyzes sensitivity to the number of
GPU cores per tile. A total of 14 CPU and 28 GPU cores are
connected to 8 LLC slices through a 6x6 2D mesh NoC.3

The LLC, shared by both CPUs and GPUs, is distributed
and each slice is directly attached to an MC. Cache blocks
are mapped to LLC tiles and MCs in chunks of 256B.

We use two warp schedulers [38] per GPU core, with the
Greedy-then-oldest (GTO) [43] policy. We use GTO because
we found that it performs better than the round-robin and
two-level schedulers [36] (also confirmed by Rogers et
al. [43]). GTO already has a notion of TLP management
and slightly reduces L1 contention among warps. We use
the Static Wavefront Limiting (SWL) warp scheduler [43]
to control the number of warps that can be scheduled to
the pipeline. This scheduler also uses the GTO policy to
choose between the available warps that can be issued to
the pipeline. Due to the available hardware resources, the
maximum number of warps in a core is 48.

2.2 Network and Memory Controller Configuration
Design of a scalable network and memory system for

heterogeneous architectures is more challenging than for
CMPs or GPUs due to the complex interactions and resource
sharing between the two classes of applications. Previous
work on NoCs for heterogeneous architectures either inves-
tigated the effects of a ring-based design on the system with
a low number of cores [31] or partitioning of the virtual
channels (VCs) [30]. Similarly, previous work on CPU
memory channel/bank partitioning shows that partitioning
the available memory channels/banks across applications can
reduce interference between them [13, 20, 35, 49], while
Ausavarungnirun et al. assume a shared memory controller
between the CPU and GPU to maximize bandwidth utiliza-
tion [4]. However, coordinated design of the NoC and the
memory controllers for heterogeneous architectures is not
sufficiently explored.

To choose a good baseline for studying the impact of
concurrency management in detail, we start with the 2D

3Each node in the 6x6 mesh contains a router.

mesh based design in Section 2.1 and examine four possible
scenarios: 1) shared NoC and shared memory channels for
both CPUs and GPUs; 2) partitioned NoC (one for CPUs
and one for GPUs) and shared memory channels; 3) shared
NoC and dedicated memory channels; and 4) partitioned
NoC and dedicated memory channels. We conduct an eval-
uation for these scenarios, keeping the network bisection
bandwidth and the amount of resources constant.
Shared Network and Shared MCs. This all-shared con-
figuration, although resulting in interference of CPU and
GPU requests, maximizes resource utilization and provides
the best baseline in terms of performance. Thus, we use
it as our baseline and evaluate other configurations with
respect to this. We run representative GPU applications with
omnetpp, a high-MPKI CPU application that is sensitive
to GPU traffic.4

Partitioned Network and Shared MCs. This design has
similarities to some AMD APU implementations [3]. Two
separate networks for the CPU and GPU traffic reduce CPU-
GPU interference and probably helps latency-sensitive CPU
applications, but would lead to resource under-utilization.

The shared network uses 4 VCs for each router output port
and has 32B links. The partitioned network uses the same
amount of VC and link resources in total, but divides these
resources among the CPU and GPU traffic. For example,
3G1C configuration allocates 3 VCs and 24B links to the
GPU network, and 1 VC and 8B links to the CPU network.
For all configurations, we employ separate networks for
request and reply traffic to prevent protocol deadlocks [12].

Figure 3a shows that the shared network is more suitable
when GPU performance is preferred over CPU performance,
because GPU traffic requires more network resources. Also,
in the partitioned network, allocating more resources to the
GPU traffic results in better GPU performance. On the other
hand, Figure 3b demonstrates that the partitioned network is
more suitable when CPU performance is preferred over GPU
performance, as CPU applications are usually latency sen-
sitive, and a dedicated network eliminates the interference
caused by GPU packets. A counter-intuitive observation here
is that increasing CPU network resources sometimes hurts
CPU performance, because most CPU packets stall at the
MCs, blocked by GPU packets that are waiting in MCs to be
injected into the reply network (also observed by others [6]).
In this scenario, increasing CPU network resources causes
the system bottleneck to shift from memory to the GPU
reply network.
Shared Network and Dedicated MCs. In this design, both
CPUs and GPUs share the NoC, but each MC is dedicated
to serve either CPU or GPU traffic. Figure 4 shows the
effects of partitioning MCs. 1G7C denotes that 1 and 7
MCs are allocated for GPU and CPU traffic, respectively.
We observe that GPU performance tends to degrade with
fewer MCs, whereas CPUs always prefer having 4 dedicated
MCs. Allocating more than 4 MCs to CPUs causes GPU

4Using a low-MPKI application (e.g., perlbench) leads to a lower
impact on CPU performance, but our conclusions do not change.

3

0

0.25

0.5

0.75

1

1.25

KM IIX MST

N
o

rm
a
li

z
e
d

 G
P

U
 I
P

C

1G3C 2G2C 3G1C

(a) Effect of network design on
GPU performance.

0

0.25

0.5

0.75

1

1.25

KM IIX MST

N
o

rm
a
li

z
e
d

 C
P

U
 I

P
C

1G3C 2G2C 3G1C

(b) Effect of network design on
CPU performance.

Figure 3: Effect of network design on GPU and CPU performance.
Results are normalized to shared network/shared MCs configura-
tion. All CPU cores run omnetpp.

packets to congest their own dedicated MCs, eventually
congesting the shared request network, and thus leading to
lower CPU performance. Sharing MCs does not greatly hurt
CPU performance compared to equal partitioning of MCs
(except when the GPU runs MST) and always provides better
performance for the GPU. As expected, overall memory
bandwidth utilization drops with dedicated MCs.

0

0.25

0.5

0.75

1

1.25

KM IIX MST

N
o

rm
a
li

z
e
d

 G
P

U
 I
P

C

1G7C 2G6C 4G4C 6G2C 7G1C

(a) Effect of MC design on
GPU performance.

0

0.5

1

1.5

2

KM IIX MST

N
o

rm
a
li

z
e
d

 C
P

U
 I

P
C

1G7C 2G6C 4G4C 6G2C 7G1C

(b) Effect of MC design on CPU
performance.

Figure 4: Effect of partitioned MC design on GPU and CPU
performance. Results are normalized to shared network/shared MCs
configuration. All CPU cores run omnetpp.

Partitioned Network and Dedicated MCs. In this anal-
ysis, based on the above discussion, we use the 3G1C
configuration for the network, as it is the best-performing
network partitioning; and we evaluate 4G4C and 7G1C
configurations for MCs as they are the best for CPUs and
GPUs, respectively. Figure 5 shows that partitioning both
the network and the MCs is not preferable compared to
sharing both the network and the MCs (except for MST when
memory partitioning is done equally) as such partitioning
greatly degrades both CPU and GPU performance.

0

0.25

0.5

0.75

1

1.25

KM IIX MST

N
o

rm
a
li

z
e
d

 G
P

U
 I
P

C

3G1C-7G1C 3G1C-4G4C

(a) Effect of resource partition-
ing on GPU performance.

0

0.5

1

1.5

KM IIX MST

N
o

rm
a
li

z
e
d

 C
P

U
 I

P
C

3G1C-7G1C 3G1C-4G4C

(b) Effect of resource partition-
ing on CPU performance.

Figure 5: Effect of resource partitioning on GPU and CPU per-
formance. Results are normalized to shared network/shared MCs
configuration. All CPU cores run omnetpp.

Based on the above analyses, we conclude that parti-
tioning shared resources lead to underutilization of these
resources, and thus we use a baseline with a shared network

and shared MCs as it performs the best. Section 6.4 revisits
the use of a partitioned network.

3 MOTIVATION

We make a case for a better TLP control technique by
discussing the limitations of existing techniques and the
impact of TLP in a CPU-GPU environment.

3.1 Limitations of Existing Techniques
We first discuss the limitations of two existing concur-

rency management techniques proposed for GPUs when
applied to heterogeneous CPU-GPU platforms.
Cache-Conscious Wavefront Scheduling (CCWS). Rogers
et al. [43] proposed a throttling technique for GPUs that
prevents warps from issuing loads if high TLP causes
thrashing in the L1 data caches. This technique detects
L1D cache thrashing by employing a victim cache. Each
hit in the victim cache increases a score signifying the
level of thrashing. A hit in a victim cache only happens
when an evicted cache line is accessed again. Thus, this
mechanism works mainly for cache-sensitive applications
that benefit significantly from higher cache capacity, and is
agnostic of the memory system beyond the L1D cache. This
means that CCWS would likely not provide improvements
for cache-insensitive applications that could still benefit from
throttling. In fact, Kayiran et al. [24] demonstrate that there
are applications that do not benefit from an L1D cache,
but benefit from lower concurrency. Importantly, CCWS
is not aware of the interactions of CPU and GPU in the
memory system, and does not target managing concurrency
to improve CPU and overall system performance.
DYNCTA. Kayiran et al. [24] proposed a CTA scheduler
that limits the number of CTAs executing on a GPU core.
This mechanism modulates GPU TLP based on only the
latency tolerance of GPU cores. Because the latency toler-
ance of GPU and CPU cores are different, the decision based
on GPU latency tolerance might not be optimal for CPUs.
Figure 6 shows an example demonstrating this problem.
In this example, GPU performance is mostly insensitive
to the number of concurrently executing warps, except for
the 1 warp-per-core case. Because the latency tolerance of
GPUs does not change drastically with limited concurrency
(except when TLP is greatly reduced to 1 warp), and because
DYNCTA takes into account only the latency tolerance of
the GPUs to modulate GPU concurrency, DYNCTA rarely
reduces the concurrency level below 8 warps. Changing the
concurrency level between 4 and 48 warps greatly affects
memory congestion caused by the GPUs, but has little
impact on GPU performance due to the latency tolerance
provided by ample TLP. However, this memory congestion
causes significant performance losses for CPU applications,
which is not taken into account by DYNCTA. Thus, since
DYNCTA modulates GPU TLP based solely on GPU latency
tolerance without taking into account any effect GPU TLP
has on the CPUs, CPU applications perform poorly with
DYNCTA. In this example, executing only 4 warps per GPU
core would improve CPU performance by more than 20%

4

without affecting GPU performance significantly, compared
to DYNCTA. This demonstrates that, although DYNCTA
is successful in managing GPU TLP to optimize GPU
performance, it fails to do so for CPU or overall system
performance, motivating the necessity for an integrated con-
currency management solution for heterogeneous systems.

0

0.5

1

1.5

2

N
o

rm
a

li
z
e

d
 I
P

C

GPU IPC CPU IPC

Figure 6: GPU and CPU IPC with different GPU concurrency
levels, normalized to DYNCTA. GPU cores run BFS, CPU cores
run a High-MPKI application mix (H2 in Table IV).

3.2 CPU-GPU Interaction in Heterogeneous Execution

We analyze the impact of the TLP of GPU applications
on system performance in a CPU-GPU system, to motivate
the necessity of TLP control in GPUs.

3.2.1 Effects of GPU Concurrency on GPU Perfor-
mance: The effects of GPU TLP on GPU performance have
been studied by prior research [24, 43]. Figure 7 shows the
effect of six different concurrency levels (between 4 to 48
warps) on GPU performance for representative applications.5

GPU IPC is normalized to the baseline scheduler, where
there can be at most 48 warps running concurrently. The
results demonstrate that while some applications, such as
BP and MM, benefit from high concurrency (due to improved
parallelism and latency tolerance), other applications such
as MUM, suffer from it. There are two primary reasons
for reduced GPU performance at high concurrency levels.
First, cache-sensitive applications might thrash the caches by
issuing many memory requests [43] at higher concurrency
levels, resulting in reduced cache effectiveness, and in turn
lower performance. Second, the high number of requests
generated by more threads causes congestion in the memory
subsystem [24], degrading overall GPU performance.

0
0.25

0.5
0.75

1
1.25

MUM BP MM PVR MST SSSP HMEAN

N
o

rm
a

li
z
e

d

G
P

U
 I
P

C

4 warps 6 warps 8 warps 16 warps 24 warps 48 warps

Figure 7: Effect of GPU TLP on GPU performance for represen-
tative GPU applications. All CPU cores run omnetpp.

Memory subsystem congestion is observed at two points:
1) the MC cannot accept new packets coming from the
request network, as the memory queue is full, 2) the MC
cannot inject packets into the reply network because the
reply network is congested. To analyze the sources of
congestion, we examine two metrics:

5This figure shows the effect of GPU TLP on GPU performance. The
chosen CPU workload has little impact on our observations.

1) stallMC = The number of stalled requests (per cycle)
due to an MC being full.

2) stallnet = The number of stalled requests (per cycle)
due to reply network being full.

Both metrics can take values between 0 and the number of
MCs. Figure 8 shows the value of these congestion metrics
when concurrency is varied between 4 and 48 warps. We run
representative GPU applications alongside omnetpp on the
CPU side,6 and normalize the results to the 48-warp con-
currency level. In MUM, lower concurrency reduces memory
congestion, which improves GPU performance by almost
20%. In SSSP, lower concurrency reduces both memory and
interconnect congestion, improving performance. However,
reducing the number of warps from 6 to 4 leads to insuf-
ficient latency tolerance and thus a drop in performance.
In PVR, very low concurrency reduces congestion as well
as latency tolerance of the application, causing a drop in
performance. In MST, memory pressure does not reduce
with reduced concurrency, thus not affecting its performance.
Performance of MM and BP drops significantly at low con-
currency levels because these two applications require high
TLP to effectively hide the memory access latencies. Note
that these metrics also reflect the effects of heterogeneous
execution on the shared LLC.

Figure 8 shows that the main performance bottleneck in
the system is likely memory bandwidth as many workloads
have high values for stallMC . The reply network is the
bottleneck for SSSP. Applications that do not suffer greatly
from MC stalls (BP and MM) strongly prefer higher concur-
rency levels for effective latency tolerance (see Figure 7).

0

2

4

6

8

MUM BP MM PVR MST SSSP

s
ta

ll
M

C

4 warps 6 warps 8 warps
16 warps 24 warps 48 warps

(a) Effect of TLP on stallMC .

0

2

4

6

8

MUM BP MM PVR MST SSSP

s
ta

ll
n

e
t

4 warps 6 warps 8 warps
16 warps 24 warps 48 warps

(b) Effect of TLP on stallnet.

Figure 8: Effect of GPU TLP on memory subsystem for represen-
tative GPU applications. All CPU cores run omnetpp.

3.2.2 Effects of GPU Concurrency on CPU Perfor-
mance: As high GPU TLP leads to congestion in the
memory subsystem, it causes longer latencies for memory
requests. However, because CPUs cannot provide the level of
thread- and memory-level parallelism that GPUs can, to tol-
erate long latencies, the increase in memory latencies likely
hurt CPU performance. We observe that GPU applications
pressurize the memory more than CPU applications. Thus,
CPUs are highly affected by the GPU applications, whose
memory pressure usually depends on their TLP.

Figure 9 shows the effect of GPU TLP on CPU perfor-
mance when the CPU cores are running omnetpp (a high-
MPKI application) alongside representative GPU applica-
tions. CPUs benefit from reduced congestion (see Figure 8)
when run with GPU applications MUM, PVR, and SSSP.

6We observe the same trends when all CPU cores run perlbench.

5

MM does not put any pressure on the memory subsystem,
thus does not affect CPU execution. Although reducing TLP
does not affect the congestion metrics for BP and MST
(see Figure 8), the significant reduction in LLC miss rates
with reduced TLP leads to CPU performance improvement.
Therefore, the scope for CPU performance improvement
by reducing GPU TLP depends on the GPU application’s
memory intensity.

0.75

1

1.25

1.5

1.75

MUM BP MM PVR MST SSSP

N
o

rm
a

li
z
e

d

C
P

U
 I

P
C

4 warps 6 warps 8 warps 16 warps 24 warps 48 warps

Figure 9: Effect of GPU TLP on CPU performance when all CPUs
run omnetpp with each GPU application.

Figure 10 shows the results for the same experiment,
except now the CPU cores run a very-low-MPKI application
(perlbench). perlbench generates very few memory
requests due to its very low MPKI, and, therefore, its
performance is not bottlenecked by the memory service it
receives.7 Thus, even when it is run with GPU applications
that saturate memory bandwidth, its performance does not
degrade greatly. We conclude that very low-MPKI CPU
applications have a limited scope for performance improve-
ment by lowering GPU concurrency.

0.75

1

1.25

1.5

1.75

MUM BP MM PVR MST SSSP

N
o

rm
a

li
z
e

d

C
P

U
 I

P
C

4 warps 6 warps 8 warps 16 warps 24 warps 48 warps

Figure 10: Effect of GPU TLP on CPU performance when all CPUs
run perlbench with each GPU application.

Summary. Reducing GPU TLP might (positively or neg-
atively) or might not affect GPU performance, but does not
hurt CPU performance and can potentially greatly improve
it. Thus, a prudent TLP management scheme can improve
performance in a heterogeneous CPU-GPU system.

4 MANAGING GPU CONCURRENCY

We describe our new approach for managing concurrency
in heterogeneous systems.
Overview. Our proposal aims to 1) reduce the negative
impact of GPU applications on CPUs, and 2) control the
performance trade-off between CPU and GPU applications
based on the user’s preference. To achieve these goals, we
propose two schemes. The first scheme, CM-CPU, achieves
the first goal by reducing GPU concurrency to unilaterally
boost CPU performance (Section 4.1). The second scheme,
CM-BAL, achieves the second goal by giving the user
multiple options to control the level of GPU concurrency
(Section 4.2). This flexibility allows the user to control the

7As previous works have shown [13, 14, 26–28, 34, 35], last-level cache
MPKI (or miss rate) is highly correlated with an application’s sensitivity
to memory latency or bandwidth.

performance of both classes of applications, and also to
achieve balanced improvements for both CPUs and GPUs.

Before describing each scheme in detail, we first discuss
why we employ concurrency management, why we do it
specifically in GPU cores, and how we manage concurrency.
Employing Concurrency Management. Memory band-
width is the critical bottleneck in most workloads, as shown
in Section 3. To mitigate the ill effects of bandwidth sat-
uration, solutions at different layers are possible. Lee and
Kim [29] propose a new shared cache partitioning mech-
anism, and Ausavarungnirun et al. [4] propose new mem-
ory scheduling techniques. Both approaches aim to solve
this problem at the sink, where the problem is observed.
However, the source of the problem is the high number of
requests generated by the GPU, leading to severe contention
at the shared resources. Thus, we propose concurrency
management strategies that attack the problem at the source,
instead of the sink. Such an approach, by controlling the rate
at which memory requests are issued, can reduce contention
at the shared cache, network and memory.
Employing Only GPU-based Concurrency Management.
We employ TLP management mechanisms only on GPUs
(as opposed to also throttling the CPUs as done in [15, 47,
50]) due to two reasons. First, throttling CPUs does not have
a significant effect on GPU performance but throttling GPUs
can have a great effect on CPU performance, since GPUs
tend to have many more memory requests than the CPUs [4].
Our experimental results show that reducing the number of
CPU cores in our baseline from 14 to 8 has only 2-3%
performance impact on GPU applications when both CPU
and GPU cores are running memory-intensive applications.
We showed in Section 1 that the effect of the GPUs on CPU
performance is much higher than the effect of the CPUs on
GPU performance. Second, unlike in GPUs, throttling CPUs
to reduce memory contention [15, 47, 50] is likely to result
in substantial performance loss for the throttled CPUs as a
CPU is inherently much less latency tolerant and throttling
reduces its latency tolerance even more [15]. Therefore, our
strategy is to tune the impact of GPU execution on CPU
performance by controlling the TLP of GPUs.
Reducing GPU TLP. GPU TLP can be reduced by mod-
ulating the number of executing warps [43] (Section 2.1).
Reducing the number of concurrently executing warps would
result in fewer memory requests sent by the GPU cores to
the memory system. As long as there is enough parallelism
in the cores, GPU performance should not drop.

4.1 CPU-Centric Concurrency Management (CM-CPU)

The main goal of CM-CPU is to reduce GPU concurrency
to boost CPU performance. Recall from Section 3.2.2 that,
if lowering GPU TLP reduces stallMC or stallnet, CPU
applications have good scope for performance improvement.
The key idea of CM-CPU is to 1) dynamically monitor
the two congestion metrics, stallMC and stallnet, and 2)
modulate GPU TLP based on these metrics. If at least one
of these metrics is high, the memory subsystem is assumed

6

to be congested either at the MCs or the reply network. Then,
we reduce the level of concurrency by reducing the number
of active warps running on GPUs (called, the active warp
limit). If both metrics are low, we increase TLP, which might
improve GPU performance. Otherwise, we keep the active
warp limit unchanged. We use two thresholds, tH and tL
to determine if these metrics are low, medium, or high. We
use a medium range to avoid ping-ponging between different
concurrency levels. If the active warp limit is between 8 and
48, increasing or decreasing concurrency is done in steps
of 2 warps. If the active warp limit is between 1 and 8,
the modulation step is 1, because the effect of changing
concurrency is more significant in that range.

Figure 11 shows the architectural diagram of our proposal.
To calculate stallMC (1) and stallnet (2), we collect
the congestion metrics (3 , 4) at each memory partition
separately. A centralized unit, called the CM-CPU logic (5),
periodically (with an interval of 1024 cycles)8 aggregates
these congestion metrics to calculate stallMC and stallnet,
which it compares against tH and tL. Based on the result,
it sends the modulation decision to the GPU cores. The
CM-CPU logic is placed next to the global CTA scheduler.
The scheduler has a dedicated connection to all the GPU
cores [38, 39], and communicates with them frequently. The
CM-CPU logic also needs to communicate with the memory
partitions, where 3 and 4 are calculated, requiring dedicated
connections with the memory partitions.

C
M

-C
P

U

lo
gi

c

GTO
priority

logic

Ready
warps [1:N]

Prioritized
warps
[1:N]

Warp-limiting
scheduler

(SWL)

Warps to be
scheduled
[1:warp_limit]

N==0

Pipeline register full

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

Interconnect

C
TA

sc

h
e

d
u

le
r

congestionMC

MC

congestionnet

CPU cores

current
warp_limit

stallGPU table

1 warp - stallGPU

2 warps - stallGPU

48 warps - stallGPU

…

From CM-CPU
logic

CM-BAL
logic

LLCLLCLLC

MCMC

congestionMCcongestionMC

congestionnetcongestionnet

st
al

l M
C

st
al

l n
et

k

10

11

1
2

3
4

5

6

7

8

9

13

12

True

Warp Issue Arbiter

Figure 11: Proposed hardware organization. Additional hardware
shown as white components and dashed arrows.

The downside of CM-CPU is that throttling the GPUs
solely based on memory/network congestion metrics might
hurt GPU applications that require high TLP for suffi-
cient latency tolerance. For such applications, CM-CPU can
fail to provide enough latency tolerance due to aggressive
throttling. Because the memory congestion metrics are not
correlated well with the latency tolerance of the GPU cores,

8We chose an interval of 1024 cycles empirically (but we did not optimize
the value). Such a small interval enables quick adaptation to fast fluctuations
in memory and network congestion.

modifying tH and tL to provide improvements for CPUs as
well as latency tolerance for GPUs is not trivial.

4.2 Balanced Concurrency Management (CM-BAL)

CM-BAL tries to recover the performance of GPU ap-
plications that suffer due to insufficient latency tolerance
imposed by CM-CPU, up to the extent specified by the user.
The key idea of CM-BAL is to: 1) detect whether or not
GPU cores have enough latency tolerance, and 2) maintain
or increase the number of active warps if GPU cores
are not able to hide memory latencies due to insufficient
concurrency. To quantify the latency tolerance of GPU cores,
for each core and each monitoring interval, we calculate the
number of cycles during which the core is not able to issue a
warp: stallGPU . We use two warp schedulers per core in our
baseline, so stallGPU for a core can be between 0 and twice
the number of cycles in an interval. stallGPU is incremented
if there are no ready warps that passed the scoreboard check
(6) and the pipeline register for the next stage is full9

(7). CM-BAL logic (8) calculates the moving average of
stallGPU for each concurrency level in each interval. These
moving averages are stored in a table (9). Depending on
the difference between moving averages of stallGPU of a
particular concurrency level and its neighboring levels, CM-
BAL logic either increases or maintains the concurrency
level (10). Based on this level, the SWL scheduler (11) limits
the number of warps that can be issued to the pipeline.

We observe that the performance difference between
higher TLP levels (e.g., between 48 warps and 24 warps,
which is negligible in most workloads) is much smaller than
the performance difference between lower TLP levels. To
take this into account, our algorithm changes the TLP level
not with fixed steps, but using predetermined levels (9): 1,
2, 3, 4, 6, 8, 16, 24, and 48 warps. We maintain a moving
average of stallGPU for each of these levels. At the end
of an interval, we update the one that has been used during
that interval. Because during different phases of execution
stallGPU for a particular level might have significantly
different values, we opted to use moving averages in order
not to use information coming from only a single interval
and move to a suboptimal level. All moving average entries
are invalidated at the beginning and end of a kernel. A new
entry is created for a level with the value of stallGPU of the
interval in which the concurrency level was used for the first
time. In subsequent intervals during which the same level
is used, CM-BAL logic updates the moving average using
mov avgnew = mov avgold × 0.25 + stallGPU × 0.75.

Figure 12 shows how CM-CPU and CM-BAL work. The
x-axis shows the level of GPU concurrency (TLP), and the
y-axis denotes stallGPU . This figure illustrates a typical
scenario10 where stallGPU increases with low concurrency,

9This might happen due to instruction latencies and write-back contention
for ALU instructions, and shared memory bank-conflicts and coalescing
stalls for memory instructions.

10This curve does not necessarily have to be parabolic. Its exact shape
depends on the application’s reaction to the variation in TLP.

7

Part 1 of CM-BALPart 2 of CM-BAL

GPU TLP

s
ta

ll
G

P
U

Lowest TLP that provides enough

latency tolerance

CM-CPU

CM-BAL

R1 R2

CM-CPU’s working domain

1

2

Figure 12: Operation of our schemes. CM-CPU increases/decreases
TLP for all TLP ranges. CM-BAL might use Part 2 to improve
latency tolerance by increasing TLP if TLP is low.

mainly due to low latency tolerance, and increases with high
concurrency, mainly due to high memory contention. R1 is
the region where a GPU application does not have enough
latency tolerance. R2 is the region where the application
has enough latency tolerance, but it might be suffering
from memory contention. CM-CPU works on the entire
TLP spectrum and increases/decreases concurrency based on
two congestion metrics, but it does not consider stallGPU .
CM-BAL, on the other hand, operates in two parts. Part-
1 (12 in Figure 11) operates the same way as CM-CPU
(with the exception of using concurrency levels, instead of
fixed steps), and works in R2, as shown in Figure 12. If
the application is in R1, Part-2 of CM-BAL overrides any
decision made by CM-CPU, and might increase TLP. There
are multiple reasons as to why an application moves into R1.
First, due to a change in the application’s behavior (the curve
shifts on the x-axis), the current TLP point might move into
R1. Second, based on memory contention, CM-CPU might
push the current TLP point of the application into R1.

We explain how Part-2 of CM-BAL works in R1. This part
makes three decisions. First, as shown in À in Figure 12, if
decreasing the number of active warps, i.e., moving to the
left on the x-axis, would potentially increase stallGPU by
more than a parameter k (13 in Figure 11), i.e., reducing
concurrency might increase stallGPU by more than k, CM-
BAL does not allow concurrency to be reduced. Second,
as shown in Á in Figure 12, if increasing the number of
active warps, i.e., moving to the right on the x-axis, would
potentially reduce stallGPU by more than k, i.e., increasing
concurrency might decrease stallGPU by more than k, CM-
BAL increases concurrency to the next level. In order to
predict if changing concurrency would increase/decrease
the value of stallGPU by more than k in either case,
CM-BAL logic compares the moving average of stallGPU

of the current level with that of the lower/upper level.11

Third, if the algorithm stays in the same concurrency level
for 4 consecutive intervals, we increase or decrease TLP
if the current concurrency level is less than 6 or greater
than or equal to 6, respectively (all thresholds empirically
determined). We do this to solely update the moving av-
erage of stallGPU for neighboring levels as those values

11If the moving average of stallGPU in the lower or upper level is
invalid for this comparison, Part-2 does not override the decision made by
Part-1 of CM-BAL.

might become unrepresentative of the current phase of the
application if not updated.

The higher the k value is, the more difficult it is to im-
prove the latency tolerance of GPU cores. Thus, we use this
parameter as a user-controlled knob (13) to specify the GPU
priority (or, the importance of the GPU relative to the CPU).
We provide the user with four different levels of control
for this knob: CM-BAL1, CM-BAL2, CM-BAL3, and CM-
BAL4. CM-BAL1 and CM-BAL4 provide the highest and the
lowest GPU performance, respectively. The corresponding k
for each of these four levels is linearly proportional to the
number of core cycles in an interval. k can take any value
between 0 and stallGPU . When k is set to stallGPU , CM-
BAL converges to CM-CPU.

5 EXPERIMENTAL METHODOLOGY

Simulated System. Table I provides the configuration details
of GPU and CPU cores. A GPU core contains 32-wide
SIMD lanes and is equipped with an instruction cache,
private L1 data cache, constant and texture caches, and
shared memory. Each CPU core is a trace-driven, cycle-
accurate, 3-issue x86 core; and has a private write-back L1
instruction/data and L2 caches. We use a detailed GDDR5
DRAM timing model [38].

Table I: Baseline configuration.
GPU Core Config. 28 Shader Cores, 1400MHz, SIMT Width = 16 × 2
GPU Resources / Core Max.1536 Threads (48 warps, 32 threads/warp),

48KB Shared Memory, 32684 Registers
GPU Caches / Core 16KB 4-way L1 Data Cache, 12KB 24-way Texture,

8KB 2-way Constant Cache, 2KB 4-way I-cache,
128B Line Size

CPU Core Config. 14 x86 Cores, 2000MHz,
128-entry instruction window, OoO Fetch and Execute
3 instructions/cycle, max. 1 memory instruction/cycle

CPU L1 Cache / Core 32KB 4-way, 2-cycle lookup, 128B Line Size
CPU L2 Cache / Core 256KB 8-way, 8-cycle lookup, 128B Line Size
Shared LLC Cache 1 MB/Memory Partition, 128B Line, 16-way, 700MHz
Default Warp Scheduler Greedy-then-oldest [43]
Features Memory Coalescing, Inter-warp Merging,

Post Dominator
Interconnect 6 × 6 Shared 2D Mesh, 1400MHz, XY Routing,

2 GPU cores per node, 1 CPU core per node,
32B Channel Width, 4VCs, Buffers/VC = 4

Memory Model 8 Shared GDDR5 MCs, 800 MHz,
FR-FCFS [42, 51], 8 DRAM-banks/MC

GDDR5 Timing tCL=12, tRP=12, tRC=40, tRAS=28, tCCD=2,
tRCD=12, tRRD=6, tCDLR=5, tWR=12

Evaluation Methodology. To evaluate our proposal, we
integrated GPGPU-Sim v3.2.0 [5] with an in-house cycle-
level x86 CMP simulator. The simulation starts with CPU
execution. After the slowest CPU core warms up with
500K instructions, GPU execution starts. To measure CPU
performance, we run until the slowest core reaches 5 million
instructions. To measure GPU performance, we run the
application until completion or 100 million instructions,
whichever comes first.
Application Suites for GPUs and Benchmarks for CPUs.

We evaluate a wide range of applications for GPUs and
CPUs. Our repertoire of 13 GPU applications, shown in
Table II, come from Rodinia [9], Parboil [46], MapRe-
duce [17], the CUDA SDK [5] and LonestarGPU [7]. We
classify these applications into three categories based on

8

their optimal TLP. The applications that perform the best
with higher TLP values belong to Type-H, and they have
high latency tolerance. The applications that perform the
best with lower TLP values due to lower congestion and
better cache performance belong to Type-L. The remaining
applications that are mostly insensitive to TLP belong to
Type-M. The CPU applications we use include scientific,
commercial, and desktop applications drawn from the SPEC
CPU 2000/2006 INT and FP suites and commercial server
workloads. We choose representative execution phases from
these applications using PinPoints [33]. We classify the CPU
applications into three types based on their LLC misses-per-
kilo-instruction (MPKI) rates, as shown in Table III.

Table II: GPU applications: Type-H: Applications that benefit from
higher TLP. Type-M: Applications that are mostly insensitive to
TLP. Type-L: Applications that benefit from lower TLP. Optimal
TLP (Opt. TLP) is given in number of warps.

Suite Application Abbr. Type Opt. TLP
1 Rodinia Backpropagation BP Type-H 48
2 Rodinia Hotspot HOT Type-H 16-48
3 Rodinia Pathfinder PATH Type-H 48
4 Parboil Matrix Mult. MM Type-H 16-48
5 CUDA SDK BlackScholes BLK Type-M 16
6 MapReduce Page View Count PVC Type-M 8
7 MapReduce Page View Rank PVR Type-M 8
8 LonestarGPU Breadth-First Src. BFS Type-M 6
9 LonestarGPU Min. Span. Tree MST Type-M 8
10 CUDA SDK MUMerGPU MUM Type-L 4
11 MapReduce InvertedIndex IIX Type-L 1
12 LonestarGPU Single-Source SP Type-L 4

Shortest Paths
13 LonestarGPU Survey Propagation SSSP Type-L 6

Table III: CPU applications: L2 MPKI and classification
App. L2 MPKI Type
1 perlbench 0.2 L-MPKI
2 povray 0.2 L-MPKI
3 tonto 0.2 L-MPKI
4 applu 0.3 L-MPKI
5 calculix 0.3 L-MPKI
6 gcc 0.3 L-MPKI
7 namd 0.4 L-MPKI
8 barnes 0.7 L-MPKI
9 gromacs 0.7 L-MPKI

10 sjeng 0.8 L-MPKI
11 dealII 1 L-MPKI
12 wrf 1.3 L-MPKI
13 h264ref 1.5 L-MPKI
14 cactus 1.6 L-MPKI
15 gobmk 1.6 L-MPKI
16 bzip2 3.1 M-MPKI
17 sjas 4 M-MPKI

App. L2 MPKI Type
18 tpcw 4.8 M-MPKI
19 Gems 5.2 M-MPKI
20 hmmer 7 M-MPKI
21 astar 7.1 M-MPKI
22 sjbb 7.5 M-MPKI
23 swim 10 M-MPKI
24 ocean 10.6 M-MPKI
25 sphinx3 12 M-MPKI
26 libquantum 12.5 M-MPKI
27 art 13.6 M-MPKI
28 lbm 14 M-MPKI
29 leslie3d 14.2 M-MPKI
30 xalan 14.6 M-MPKI
31 milc 25 H-MPKI
32 omnetpp 25.8 H-MPKI
33 mcf 49.8 H-MPKI
34 soplex 103.2 H-MPKI

Workloads. From the three CPU application types, we form
two CPU mixes per type,12 listed in Table IV. Each of these
mixes are then coupled with a GPU application to form a
workload. The GPU application is chosen in such a way
that each CPU mix gets paired with two randomly chosen
GPU applications from each of the three GPU application
types. Thus, we have six workloads for each CPU mix, for
a total of 36 workloads. These workloads cover all possible
combinations of CPU and GPU application types; 3 CPU

12We limited the number of CPU mixes because we found that the
behavior of the mixes that belong to the same category are similar.

and 3 GPU application types form 9 workload types (e.g.,
Type-H/L-MPKI), and 4 workloads for each workload type.

Table IV: List of CPU workloads (application mixes).

CPU Mix Applications in the mix
L1 povray, tonto, applu, calculix, gcc, namd, barnes, gromacs,

sjeng, dealII, wrf, h264ref, cactusADM, gobmk
L2 sjeng, dealII, wrf, h264ref, cactusADM, gobmk, sjeng,

dealII, wrf, h264ref, cactusADM, gobmk, sjeng, dealII
M1 sjas, tpcw, Gems, hmmer, astar, sjbb, swim, ocean, sphinx3,

libquantum, art, lbm, leslie3d, xalan
M2 ocean, sphinx3, libquantum, art, lbm, leslie3d, xalan, ocean,

sphinx3, libquantum, art, lbm, leslie3d, xalan
H1 milc, soplex, milc, omnetpp, mcf, soplex, milc, omnetpp,

mcf, soplex, mcf, soplex, omnetpp, mcf
H2 omnetpp, omnetpp, omnetpp, omnetpp, omnetpp, milc, milc,

milc, milc, milc, soplex, soplex, mcf, mcf

Performance Metrics.. To capture GPU performance, we
use GPU speedup (SUGPU), which is the ratio of its
instructions-per-cycle (IPC) when it runs along with CPU
to its IPC when it runs alone. We use weighted speedup
to capture CPU performance (WSCPU) [44]. WSCPU is

defined as
n∑

i=1

(IPCi,multiprogram/IPCi,alone), where n is

the number of CPU applications in the workload. All average
speedup results in the paper use harmonic mean. Based on
user preferences, one might want to change the importance
given to CPU or GPU when calculating speedup [4]. For this
reason, we use the overall system speedup (OSS) metric [4]:
OSS = (1 − α) × WSCPU + α × SUGPU , where α is
a number between 0 and 1. A higher α indicates higher
GPU importance. Note that α is only an evaluation metric
parameter, not an input to our schemes.
Mechanism Parameters. k is a user-dependent parameter
to specify the relative importance of GPU vs. CPU. A
high value of k places less importance on the GPU. In our
evaluations, we use four values for k: 32 (CM-BAL1), 64
(CM-BAL2), 96 (CM-BAL3), 128 (CM-BAL4). To achieve
balanced improvements for both the CPU and the GPU, the
user can set k to 32 (called the CM-BAL1 configuration).
Mechanism Thresholds. We use 1 and 0.25 for tH and tL,
respectively. These thresholds are determined empirically,
and they correlate well with their effect on CPU applica-
tions’ performance, as given in Figure 8. These thresholds
also correlate well with the memory bandwidth saturation
and reply network saturation, as memory access latencies
start to increase non-linearly beyond the high threshold
congestion range identified by these thresholds. Monitoring
interval is set to 1024 cycles. The thresholds require cali-
bration for different system designs.
Hardware Overhead. As shown in Figure 11, in each core,
the warp scheduler requires a table (9 in Figure 11) with 99-
bits13, a 6-bit register (10), and a comparator (6). CM-BAL
logic (8) requires two 10-bit adders and two shift registers.
The CTA scheduler (5) requires two 13-bit counters and two
adders to calculate/store the congestion metrics, two 13-bit

13There are nine entries in the table. Each entry requires 11 bits because
it is incremented by two warp schedulers during a 1024-cycle interval.

9

registers to hold the congestion thresholds, and four com-
parators for the CM-CPU decision. Each memory partition
(3 , 4) requires two 10-bit counters to sample the congestion
metrics. As such, the total storage cost of our proposal is
16 bytes per GPU core, 3 bytes per memory partition, and
8 bytes for the CTA scheduler.

6 EXPERIMENTAL RESULTS

6.1 Dynamism of Concurrency
We first analyze the effect of our techniques on GPU

concurrency with two studies. First, Figure 13 shows the
average number of active warps on GPU cores during the
course of execution. Figure 13a shows the concurrency
behavior of a Type-H GPU application (PATH) when it is
executed alongside two different CPU mixes (L1 and H1),
with CM-CPU. Because higher MPKI CPU applications
exert more pressure on the memory system than lower MPKI
applications, and because CM-CPU decisions are based
solely on congestion metrics, the number of active warps is
lower when a GPU application is executed alongside higher
MPKI applications. This causes CM-CPU to hurt the per-
formance of Type-H GPU applications when boosting CPU
performance. Figure 13b shows that the TLP in CM-BAL1

is higher than in CM-CPU for the same workloads (except
for sudden drops from 48 to 24 warps with the L-MPKI
workload because there are no concurrency levels between
24 and 48 warps). As expected, L-MPKI CPU workloads
lead to higher TLP compared to H-MPKI workloads. We
observed similar behavior for Type-M and Type-L GPU
applications when run with L- and H-MPKI CPU mixes.

0

8

16

24

32

40

48

A
v
e
ra

g
e
 #

 o
f

a
c
ti

v
e

w
a
rp

s

Time

L-MPKI (L1) H-MPKI (H1)

(a) PATH with CM-CPU.

0

8

16

24

32

40

48

A
v
e
ra

g
e
 #

 o
f

a
c
ti

v
e

w
a
rp

s

Time

L-MPKI (L1) H-MPKI (H1)

(b) PATH with CM-BAL1.
Figure 13: Average number of active warps over time.

Second, Figure 14 provides insight into the working of
CM-BAL by showing the relationship between the metrics
monitored by CM-BAL and the number of active warps on
a core, over a short period of time, in one of our work-
loads (Type-L/H-MPKI – MUM/H1). In this plot, difflow
= (stallGPU of the lower concurrency level − stallGPU

of the current concurrency level); and diffup = (stallGPU

of the current concurrency level − stallGPU of the upper
concurrency level). If difflow > k, CM-BAL does not
reduce the GPU TLP. If diffup > k, CM-BAL increases
the GPU TLP (see Section 4.2). At A , since diffup > k,
the number of warps is increased for the next interval. This
workload stresses the memory, leading to high stallMC . As
a result, at B , Part-1 of CM-BAL wants to reduce TLP.
However, because difflow > k (i.e., reducing TLP would
likely lead to increased GPU stall time), Part-2 of CM-BAL
kicks in, and TLP is not reduced. In contrast, a similar

scenario at C leads to lower TLP in the next interval,
because the concurrency level has remained unchanged for
the past 4 consecutive intervals. At D , Part-1 of CM-BAL
reduces TLP because diffup < k, and difflow < k. This
example shows that CM-BAL effectively adapts concurrency
to dynamic workload behavior at fine granularity.

A B C D

-4000

-2000

0

2000

4000

0

4

8

12

16

C
yc

le
s

Th
e

 n
u

m
b

e
r

o
f

ac
ti

ve
 w

ar
p

s

Time

of warps diff_low diff_up k

B C
DA

Figure 14: Number of active warps over time with CM-BAL.
difflow, diffup, and k are shown in the secondary y-axis.

Figure 15 shows the average number of warps in a GPU
core across nine workload types, with CM-CPU and CM-
BAL1. As expected, CM-CPU reduces concurrency very
aggressively. CM-BAL1 maintains high TLP for Type-H
applications, low TLP for Type-L applications, and reduces
TLP of Type-M applications as much as possible without
hurting them. Hence, our techniques effectively modulate
GPU concurrency in an application-aware manner.

0
8

16
24
32
40
48

Type-H
/ L-

MPKI

Type-H
/ M-

MPKI

Type-H
/ H-

MPKI

Type-M
/ L-

MPKI

Type-M
/ M-

MPKI

Type-M
/ H-

MPKI

Type-L
/ L-

MPKI

Type-L
/ M-

MPKI

Type-L
/ H-

MPKI

A
v
e

ra
g

e
 #

 o
f

a
c

ti
v
e

 w
a

rp
s

CM-CPU

CM-BAL1

Figure 15: Average number of warps with CM-BAL1.

6.2 Application Performance Results
Figure 16 shows the average performance of GPU ap-

plications obtained by our schemes for all workload types.
The results are normalized to the performance of the same
workloads when they are executed using the baseline warp
scheduler, GTO. We also evaluate DYNCTA after tuning its
parameters. We make several observations. First, DYNCTA
works only for Type-L applications, and improves their
performance by 7%, while not hurting any workload by
more than 2%. Second, CM-CPU causes significant per-
formance losses in Type-H and Type-M applications, as
those applications require high latency tolerance and CM-
CPU is aware only of memory congestion, not the latency
tolerance of GPU cores. However, CM-CPU improves the
performance of Type-L applications due to successful con-
gestion management. We observe high benefits for Type-
L/L-MPKI workloads due to two workloads that run IIX.
IIX prefers 1-2 active warps, but its CTAs have more warps.
Because DYNCTA manages the TLP at the CTA level, it
cannot reduce concurrency as much CM-CPU can. Third,
CM-BAL1, recovers the losses caused by CM-CPU for
Type-H and Type-M applications by providing more latency
tolerance. As a result, the worst performing GPU application

10

suffers only 4% performance loss. No workload has higher
GPU performance with CM-CPU than with CM-BAL1. As
k increases, GPU benefits of CM-BAL reduce. Overall, CM-
CPU causes 11% performance loss, and CM-BAL1 provides
7% performance improvement for GPU applications.

0

0.5

1

1.5

DYNCTA CM-CPU CM-BAL1 CM-BAL2 CM-BAL3 CM-BAL4

N
o

rm
a

lı
z
e

d
 G

P
U

 I
P

C

Type-H / L-MPKI Type-H / M-MPKI Type-H / H-MPKI
Type-M / L-MPKI Type-M / M-MPKI Type-M / H-MPKI
Type-L / L-MPKI Type-L / M-MPKI Type-L / H-MPKI

Figure 16: GPU speedup over baseline with 48 warps.

Figure 17 shows the performance of CPU workloads
with our schemes, normalized to that of our baseline.
First, as discussed in Section 3.1, DYNCTA is not suitable
for improving CPU performance, and we observe that it
provides only 2% performance improvement for CPUs.
Second, CM-CPU reduces the number of active warps very
aggressively, providing high benefits for CPUs. Because the
GPU performance loss of Type-M applications in CM-CPU
is substantial due to aggressive throttling, the corresponding
CPU benefits are high. Third, CM-BAL1 throttles Type-H
applications conservatively. Thus, CPU benefits for those
applications are low. As k increases, CPU benefits of CM-
BAL increase, and for the largest possible k (described
in Section 4.2), these benefits converge to those of CM-
CPU. Fourth, CM-BAL provides a knob for controlling
trade-offs between CPU and GPU performance, with CM-
BAL1 specifically helping GPU applications and CM-BAL4

helping CPU applications. Overall, CM-CPU and CM-BAL1

provide 24% and 7% average CPU performance improve-
ment, respectively, across all workloads.

0

0.5

1

1.5

DYNCTA CM-CPU CM-BAL1 CM-BAL2 CM-BAL3 CM-BAL4

N
o

rm
a

lı
z
e

d
 C

P
U

 W
S

Type-H / L-MPKI Type-H / M-MPKI Type-H / H-MPKI
Type-M / L-MPKI Type-M / M-MPKI Type-M / H-MPKI
Type-L / L-MPKI Type-L / M-MPKI Type-L / H-MPKI

Figure 17: CPU weighted speedup over baseline with 48 warps.

Figure 18 shows the effects of our schemes on the metrics
used by them, normalized to their values in our baseline.
We do not show stallnet because it is negligible in most
workloads. stallMC per cycle goes down significantly with
CM-CPU, due to aggressive throttling. However, this leads
to an increase in stallGPU per executed GPU instruction
in most workloads, i.e., lower latency tolerance for GPU
cores. CM-BAL1 reduces memory congestion, although not

as much as CM-CPU. Yet, it also does not cause lower
latency tolerance (i.e., increased stalls) for GPU cores; in
fact, it reduces GPU stalls in most Type-L applications.

0
0.2
0.4
0.6
0.8

1
1.2

N
o

rm
a

li
z
e

d

s
ta

ll
M

C
/c

y
c
le

CM-CPU CM-BAL1

(a) stallMC per cycle.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
o

rm
a
li

z
e

d

s
ta

ll
G

P
U
/i

n
s

t.

CM-CPU CM-BAL1

(b) stallGPU /GPU instruction.

Figure 18: stallMC and stallGPU normalized to 48 warps, for
each workload type. H-L denotes Type-H/L-MPKI workload.

Overall System Speedup. Figure 19 compares the base-
line, DYNCTA, and our schemes in terms of Overall System
Speedup (OSS) [4], defined in Section 5. Recall that a
higher α value indicates that GPU performance is more
important for overall system performance. Several observa-
tions are in order. First, DYNCTA is slightly better than
the baseline for all α values, indicating balanced improve-
ments for both CPUs and GPUs. Second, CM-BAL1 also
provides balanced improvement, but is significantly better
than DYNCTA. Third, for small α, where preference is
given to CPU performance, CM-CPU is the best scheme.
As α approaches 0.5, where the OSS metric equally weights
CPU and GPU performance, both schemes provide almost
equal performance. Because CM-CPU deteriorates GPU
performance, its OSS drops below that of the baseline
for large α. Fourth, with large k, CM-BAL becomes more
preferable for small α, but performs worse than the baseline
for large α, showing the trade-off between CPU and GPU
performance in CM-BAL. These results show that the user
can pick a different CM-BAL level (based on preference of
how important the GPU is relative to the CPU) that would
lead to the highest OSS. Hence, CM-BAL can be configured
to consistently provide better overall system performance
than state-of-the-art designs regardless of how important the
CPU or the GPU is to system performance.

0.875

1

1.125

1.25

0.0 0.5 1.0

N
o

rm
al

iz
e

d
 O

SS
(α

)

α

48 warps DYNCTA CM-CPU CM-BAL1

CM-BAL2 CM-BAL3 CM-BAL4

Figure 19: Normalized Overall System Speedup of our schemes
over baseline with 48 warps for all α.

6.3 Comparison to Static Warp Limiting
Figure 20a compares the GPU performance of our

schemes with static limiting (SWL) schemes, where the
GPU cores execute a constant number of warps concurrently
throughout the whole execution. Throttling down from 48

11

0

0.5

1

1.5

N
o

rm
a
li

z
e
d

 G
P

U
 I
P

C Type-H Type-M Type-L

(a) GPU performance.

0

0.5

1

1.5

2

N
o

rm
a
li

z
e
d

 C
P

U
 I

P
C L-MPKI M-MPKI H-MPKI

(b) CPU performance.
Figure 20: Our schemes vs. static warp limiting. Performance
comparisons are clustered based on GPU/CPU application types.

warps to 4 causes performance loss for Type-H applications,
improves Type-L applications, and does not affect Type-
M applications. Further throttling hurts GPU applications
significantly. CM-BAL1 provides better performance for
GPUs compared to all static warp limits. Figure 20b shows
the effect of static warp throttling on CPU performance.
Although limiting the number of warps to 4 or 6 benefits
CPU performance, this comes at the expense of significant
GPU performance degradation.14 We conclude that static
warp throttling cannot enable flexible performance trade-off
between the CPU and the GPU and optimization of overall
system performance as CM-BAL does (Section 6.2).

6.4 Sensitivity Experiments

Scalability. Our scalability analysis shows that varying the
number of GPU cores in a tile between 2, 4 (default), and
6 shows minimal change in performance benefits of our
techniques. We also evaluated a smaller and less power-
hungry system with 4 GPU cores, 3 CPU cores, and 2 MCs
connected via a 3× 3 mesh. This configuration is closer to
currently available systems in terms of the number of cores.
CM-BAL1 provides 13% and 2% average CPU and GPU
performance improvement, respectively, on this system, even
with unoptimized thresholds.
Partitioned vs. Shared Resources. We evaluated CM-
BAL1 using a partitioned network and shared MCs. On this
baseline, which performs significantly worse than the shared
network-shared MC baseline (Section 2.2), CM-BAL1 pro-
vides 15% GPU and 8% CPU performance improvement.

6.5 Other Analyses and Discussion

LLC Contention. Our mechanisms reduce LLC contention
mainly due to two reasons. First, TLP management reduces
the rate at which memory requests are issued from GPU
cores. Second, TLP management reduces L1 miss rates,
leading to fewer LLC accesses. Overall, we observe that
CM-BAL1 reduces the number of LLC accesses by 13%.
Power Consumption. Recent works [16, 45] show that
concurrency management in GPUs not only improves per-
formance but also increases energy-efficiency for memory-
intensive applications. Thus, we expect our schemes to
improve energy-efficiency for memory-intensive workloads,
and not reduce it for compute-intensive workloads.

14At the extreme case, completely disabling GPU execution leads to 69%
higher CPU performance over the baseline.

Effect of GPU Aggressiveness. Although we evaluate our
proposal with a Fermi-like GPU model (Section 5), we also
expect to observe benefits in newer architectures, due to
increased TLP and increased contention for shared memory
resources. For example, in the newer NVIDIA Kepler [39]:
1) GPU cores have more processing elements, leading to
more GPU TLP, 2) L1 cache capacity is the same as
Fermi [38], leading to higher cache contention, 3) GDDR5
memory bandwidth [1] has not increased proportionally
with core count, leading to higher memory contention. We
envision that these three factors, which indicate trends in
GPU platform design, will make concurrency management
even more important in newer and future architectures.

7 RELATED WORK

When CPU and GPU applications are co-scheduled on the
same hardware, they interfere with each other in the shared
resources. In this context, we discuss the prior works that
address such interference at various points in the hierarchy.
Managing Interference at NoC, Caches, and Memory.
Lee et al. characterize network contention [31] and propose
virtual channel partitioning [30] to mitigate it. Ausavarung-
nirun et al. [4] propose a memory scheduling design that re-
duces the interference of CPU and GPU applications. Jeong
et al. [19] provide a mechanism that provides QoS for GPU
applications in a CPU-GPU system by aptly prioritizing
requests at the MCs. Lee and Kim [29] observe interference
between CPU and GPU applications at the LLC, and propose
cache management techniques that also consider TLP of
GPU applications. Jog et al. [21] propose a simple round-
robin memory scheduler for reducing contention caused by
multiple GPU applications. The focus of all these works is to
handle the application interference at only one of the levels
of the memory hierarchy. In contrast, we show that GPUs
create interference to CPUs at all parts of the shared memory
hierarchy. To address this interference, we modulate the TLP
of GPU applications by considering system-wide congestion
metrics and GPU latency tolerance.
Managing Interference from the Core. Kayiran et al. [24]
and Rogers et al. [43] modulate TLP in GPUs to reduce
contention in the memory system and L1 caches, respec-
tively. Jog et al. [22, 23] propose warp scheduling techniques
to address contention in GPU caches and memory. Many
source throttling schemes [8, 10, 15, 40, 41, 48] are proposed
in the context of CPUs to address congestion in NoCs and
memory. None of these works are designed or evaluated for
CPU-GPU architectures. To our knowledge, this is the first
work that uses source throttling to 1) to control interference
between both CPU and GPU applications, and 2) to reduce
interference both at the NoCs and main memory in a
heterogeneous CPU-GPU system.

8 CONCLUSIONS

TLP management in GPUs is essential in hybrid CPU-
GPU environments with shared resources to maximize over-
all system throughput. In this paper, we introduce a new
GPU concurrency throttling strategy that tunes the impact

12

of GPU applications on both CPU applications and system
performance. Our strategy takes into account both system-
wide memory/network congestion and GPU latency toler-
ance to dynamically decide the level of GPU concurrency.
We propose two different implementations of our strategy: 1)
to boost the performance of CPUs, and 2) to flexibly improve
overall system performance based on the user’s preference
for higher CPU or GPU performance. Experimental eval-
uations show that the first scheme significantly improves
average CPU performance, but causes some GPU perfor-
mance loss. The tunable second scheme, when configured to
improve CPU and GPU performance in a balanced manner,
provides 7% performance benefit for both CPU and GPU
applications, without significantly hurting any workload’s
performance. We conclude that our GPU TLP management
framework provides a flexible and efficient substrate to
maximize system performance and control CPU-GPU per-
formance trade-offs in modern heterogeneous architectures.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
feedback. This research is supported in part by NSF grants
#1212962, #1205618, #1213052, #1302225, #1302557,
#1317560, #1320478, #1409095, #1439021, #1439057,
#1409723, the Intel Science and Technology Center on
Cloud Computing, SRC and Intel.

REFERENCES

[1] G. Abbas. (2012) NVIDIA CUDA: Kepler vs.
Fermi Architecture. Available: http://blog.cuvilib.com/2012/03/28/
nvidia-cuda-kepler-vs-fermi-architecture/

[2] Advanced Micro Devices, Inc. (2013) What is Heterogeneous
System Architecture (HSA)? Available: http://www.amd.com/en-gb/
innovations/software-technologies/hsa

[3] AMD. (2014) Compute Cores. Available: http://www.amd.com/
Documents/Compute Cores Whitepaper.pdf

[4] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving
High Prformance and Scalability in Heterogeneous Systems,” in ISCA,
2012.

[5] A. Bakhoda et al., “Analyzing CUDA Workloads Using a Detailed
GPU Simulator,” in ISPASS, 2009.

[6] A. Bakhoda et al., “Throughput-effective On-chip Networks for
Manycore Accelerators,” in MICRO, 2010.

[7] M. Burtscher et al., “A Quantitative Study of Irregular Programs on
GPUs,” in IISWC, 2012.

[8] K. K.-W. Chang et al., “HAT: Heterogeneous Adaptive Throttling for
On-Chip Networks,” in SBAC-PAD, 2012.

[9] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in IISWC, 2009.

[10] H. Cheng et al., “Memory Latency Reduction via Thread Throttling,”
in MICRO, 2010.

[11] W. Dally, “GPU Computing to Exascale and Beyond,” in SC, 2010.
[12] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2003.
[13] R. Das et al., “Application-to-core Mapping Policies to Reduce

Memory System Interference in Multi-core Systems,” in HPCA, 2013.
[14] R. Das et al., “Application-aware prioritization mechanisms for on-

chip networks,” in MICRO, 2009.
[15] E. Ebrahimi et al., “Fairness via Source Throttling: A Configurable

and High-performance Fairness Substrate for Multi-core Memory
Systems,” in ASPLOS, 2010.

[16] M. Gebhart et al., “Energy-efficient Mechanisms for Managing
Thread Context in Throughput Processors,” in ISCA, 2011.

[17] B. He et al., “Mars: A MapReduce Framework on Graphics Proces-
sors,” in PACT, 2008.

[18] Intel. (2012) Products (Formerly Ivy Bridge). Available: http:
//ark.intel.com/products/codename/29902/

[19] M. K. Jeong et al., “A QoS-aware Memory Controller for Dynam-
ically Balancing GPU and CPU Bandwidth Use in an MPSoC,” in
DAC, 2012.

[20] M. K. Jeong et al., “Balancing DRAM Locality and Parallelism in
Shared Memory CMP Systems,” in HPCA, 2012.

[21] A. Jog et al., “Application-aware Memory System for Fair and
Efficient Execution of Concurrent GPGPU Applications,” in GPGPU,
2014.

[22] A. Jog et al., “Orchestrated Scheduling and Prefetching for GPGPUs,”
in ISCA, 2013.

[23] A. Jog et al., “OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance,” in ASPLOS, 2013.

[24] O. Kayiran et al., “Neither More Nor Less: Optimizing Thread-level
Parallelism for GPGPUs,” in PACT, 2013.

[25] Khronos OpenCL Working Group, “The OpenCL Specification,”
2008.

[26] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” in HPCA, 2010.

[27] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior,” in MICRO, 2010.

[28] C. J. Lee et al., “Improving Memory Bank-Level Parallelism in the
Presence of Prefetching” ,” in MICRO, 2009.

[29] J. Lee and H. Kim, “TAP: A TLP-aware Cache Management Policy
for a CPU-GPU Heterogeneous Architecture,” in HPCA, 2012.

[30] J. Lee et al., “Adaptive Virtual Channel Partitioning for Network-on-
chip in Heterogeneous Architectures,” ACM TODAES, 2013.

[31] J. Lee et al., “Design Space Exploration of On-chip Ring Intercon-
nection for a CPU-GPU Heterogeneous Architecture,” JPDC, 2013.

[32] E. Lindholm et al., “NVIDIA Tesla: A Unified Graphics and Com-
puting Architecture,” Micro, IEEE, vol. 28, no. 2, 2008.

[33] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI, 2005.

[34] A. K. Mishra et al., “A Heterogeneous Multiple Network-on-chip
Design: An Application-aware Approach,” in DAC, 2013.

[35] S. P. Muralidhara et al., “Reducing Memory Interference in Multicore
Systems via Application-aware Memory Channel Partitioning,” in
MICRO, 2011.

[36] V. Narasiman et al., “Improving GPU Performance via Large Warps
and Two-level Warp Scheduling,” in MICRO, 2011.

[37] NVIDIA. (2011) CUDA C/C++ SDK Code Samples. Available:
http://developer.nvidia.com/cuda-cc-sdk-code-samples

[38] NVIDIA. (2011) Fermi: NVIDIA’s Next Gen-
eration CUDA Compute Architecture. Available:
http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA
Fermi Compute Architecture Whitepaper.pdf

[39] NVIDIA. (2012) NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Kepler GK110. Available: http://www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[40] G. Nychis et al., “Next Generation On-Chip Networks: What Kind
of Congestion Control Do We Need?” in Hotnets, 2010.

[41] G. Nychis et al., “On-chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects,” in SIG-
COMM, 2012.

[42] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
[43] T. G. Rogers et al., “Cache-Conscious Wavefront Scheduling,” in

MICRO, 2012.
[44] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a

Simultaneous Multithreaded Processor,” in ASPLOS, 2000.
[45] S. Song et al., “Energy-efficient Scheduling for Memory-intensive

GPGPU Workloads,” in DATE, 2014.
[46] J. A. Stratton et al., “Parboil: A Revised Benchmark Suite for

Scientific and Commercial Throughput Computing,” Univ. of Illinois,
Tech. Rep. IMPACT-12-01, March 2012.

[47] M. A. Suleman et al., “Feedback-driven Threading: Power-efficient
and High-performance Execution of Multi-threaded Workloads on
CMPs,” in ASPLOS, 2008.

[48] M. Thottethodi et al., “Self-Tuned Congestion Control for Multipro-
cessor Networks,” in HPCA, 2001.

[49] M. Xie et al., “Improving System Throughput and Fairness Si-
multaneously in Shared Memory CMP Systems via Dynamic Bank
Partitioning,” in HPCA, 2014.

[50] X. Zhang et al., “Hardware Execution Throttling for Multi-core
Resource Management,” in USENIX, 2009.

[51] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous
DRAM that Maximizes Throughput by Allowing Memory Requests
and Commands to be Issued Out of Order,” Patent U.S. 5,630,096,
1997.

13

