HeatWatch

Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo Saugata Ghose Yu Cai Erich F. Haratsch Onur Mutlu

Storage Technology Drivers - 2018

Executive Summary

- 3D NAND flash memory susceptible to **retention errors**
 - Charge leaks out of flash cell
 - Two unreported factors: *self-recovery* and *temperature*
- We study *self-recovery* and *temperature* effects
 - Experimental characterization of *real* 3D NAND chips
 - Unified Self-Recovery and Temperature (URT) Model
 - Predicts impact of retention loss, wearout, self-recovery, temperature on **flash cell voltage**
 - Low prediction error rate: 4.9%
- We develop a new technique to improve flash reliability
 - HeatWatch
 - Uses URT model to find optimal read voltages for 3D NAND flash
 - Improves flash lifetime by 3.85x

Outline

- Executive Summary
- Background on NAND Flash Reliability
- Characterization of Self-Recovery and Temperature Effect on Real 3D NAND Flash Memory Chips
- URT: Unified Self-Recovery and Temperature Model
- HeatWatch Mechanism
- Conclusion

3D NAND Flash Memory Background

Flash Wearout

Program/Erase (P/E) → Wearout

Wearout Effects:

1. Retention Loss (voltage shift over time)

Wearout Introduces Errors

2. Program Variation

6

Improving Flash Lifetime

Errors introduced by wearout limit flash lifetime (measured in P/E cycles)

Two Ways to Improve Flash Lifetime

Exploiting the Temperature Effect

Exploiting the

Exploiting the Temperature Effect

High Program Temperature

High Storage Temperature

Accelerates Retention Loss

Prior Studies of Self-Recovery/Temperature

Planar (2D) NAND 3D NAND

Temperature Effect

JEDEC 2010 (no characterization)

Χ

Outline

- Executive Summary
- Background on NAND Flash Reliability
- Characterization of Self-Recovery and Temperature Effect on Real 3D NAND Flash Memory Chips
- URT: Unified Self-Recovery and Temperature Model
- HeatWatch Mechanism
- Conclusion

Characterization Methodology

- Modified firmware version in the flash controller
 - Control the read reference voltage of the flash chip
 - Bypass ECC to get raw NAND data (with raw bit errors)
- Control temperature with a heat chamber

Characterized Devices

Real 30-39 Layer 3D MLC NAND Flash Chips

MLC Threshold Voltage Distribution Background

Threshold Voltage

Threshold Voltage Distribution

Characterization Goal

Self-Recovery Effect Characterization Results

Program Temperature Effect Characterization Results

Increasing program temperature from 0°C to 70°C improves program variation by 21%

Storage Temperature Effect Characterization Results

Lowering storage temperature from 70°C to 0°C slows down retention loss speed by 58%

Characterization Summary

Major Results:

- Self-recovery affects retention loss speed
- Program *temperature* affects program variation
- Storage temperature affects retention loss speed
 Unified Model

Other Characterizations Methods in the Paper:

- More detailed results on self-recovery and temperature
 - Effects on error rate
 - Effects on threshold voltage distribution
- Effects of recovery cycle (P/E cycles with long dwell time) on retention loss speed

Outline

- Executive Summary
- Background on NAND Flash Reliability
- Characterization of Self-Recovery and Temperature Effect on Real 3D NAND Flash Memory Chips
- URT: Unified Self-Recovery and Temperature Model
- HeatWatch Mechanism
- Conclusion

Minimizing 3D NAND Errors

Optimal read reference voltage minimizes 3D NAND errors

Predicting the Mean Threshold Voltage

Our URT Model: $V = V_0 + \Delta V$

Mean Threshold Voltage

> Initial Voltage Before Retention (Program Variation)

Voltage Shift Due to Retention Loss

URT Model Overview

1. Program Variation Component

2. Self-Recovery and Retention Component

URT Model Summary

Outline

- Executive Summary
- Background on NAND Flash Reliability
- Characterization of Self-Recovery and Temperature Effect on Real 3D NAND Flash Memory Chips
- URT: Unified Self-Recovery and Temperature Model
- HeatWatch Mechanism
- Conclusion

HeatWatch Mechanism

- Key Idea
 - **Predict change in threshold voltage distribution** by using the URT model
 - Adapt read reference voltage to near-optimal (V_{opt}) based on predicted change in voltage distribution

HeatWatch Mechanism Overview

Tracking SSD Temperature

Tracking Dwell Time

- Only need to log the timestamps of last 20 full drive writes
 - Self-recovery effect diminishes after 20 P/E cycles

Tracking P/E Cycles and Retention Time

Predicting Optimal Read Reference Voltage

- Calculate URT using tracked information
- Modeling error: 4.9%

Fine-Tuning URT Parameters Online

HeatWatch Mechanism Summary

HeatWatch Evaluation Methodology

- •28 real workload storage traces
 - MSR-Cambridge
 - We use **real dwell time, retention time values** obtained from traces

• Temperature Model:

Trigonometric function + Gaussian noise

- Represents periodic temperature variation in each day
- Includes small transient temperature variation

HeatWatch Greatly Improves Flash Lifetime

HeatWatch improves lifetime by capturing the effect of retention, wearout, self-recovery, temperature

Outline

- Executive Summary
- Background on NAND Flash Reliability
- Characterization of Self-Recovery and Temperature Effect on Real 3D NAND Flash Memory Chips
- URT: Unified Self-Recovery and Temperature Model
- HeatWatch Mechanism
- Conclusion

Conclusion

- 3D NAND flash memory susceptible to **retention errors**
 - Charge leaks out of flash cell
 - Two unreported factors: *self-recovery* and *temperature*
- We study *self-recovery* and *temperature* effects
 - Experimental characterization of *real* 3D NAND chips
 - Unified Self-Recovery and Temperature (URT) Model
 - Predicts impact of retention loss, wearout, self-recovery, temperature on **flash cell voltage**
 - Low prediction error rate: 4.9%
- We develop a new technique to improve flash reliability
 - HeatWatch
 - Uses URT model to find optimal read voltages for 3D NAND flash
 - Improves flash lifetime by 3.85x

HeatWatch

Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo Saugata Ghose Yu Cai Erich F. Haratsch Onur Mutlu

Backup Slides

SSD Architecture

3D vs. 2D Flash Cell Design

Floating-Gate Cell

3D Charge-Trap Cell

Charges stored in insulator, thinner tunnel oxide → Faster data retention

3D vs. 2D Retention Characteristics

Source: K. Mizoguchi, et al., "Data-Retention Characteristics Comparison of 2D and 3D TLC NAND Flash Memories," IMW, 2017.

Limitations

- Vendor-to-vendor variation
 - Self-recovery and temperature effect should be similar for 3D charge trap NAND (Samsung, Hynix, Toshiba, Sandisk)
- Chip-to-chip variation
 - Each of our experiments takes several months
 - Expect future large-scale study on 3D NAND errors

Not our limitation:

- Any process variation within a chip
 - Our results include tens of randomly selected flash blocks
 - ~1 million cells

Generalizability of Results

• Should apply to other 3D NAND flash memory that uses charge trap cells (Samsung, Hynix, Toshiba, Sandisk)

Self-Recovery and Temperature in Planar NAND

- UDM [Mielke 2006]
- Only models retention shift, no initial voltage
- Exponential P/E cycle effect
- Activation energy for planar NAND
- 3 other works propose mechanism and speculate different lifetime improvements
 - 211x [Mohan+ HotStorage10]
 - 5.8x [Wu+ HotStorage11]
 - 2.8x [Lee+ FAST12]

Novelty vs. UDM

- 3D charge trap cells are more resilient to P/E cycling than floating-gate cells in planar NAND
- Different activation energy
- Program temperature effect not discussed in planar NAND

Ideal SSD Temperature

- It depends!
 - High program temperature increases program variation (good)
 - High dwell temperature accelerates self-recovery (good)
 - High retention temperature accelerates retention loss (bad)

Figure 12: Change in flash lifetime due to write intensity and environmental temperature ($t_r = 3$ months).

URT Fine Tuning

- Randomly sample 10 wordlines in each chip
- Learn V_{opt} by sweeping V_{ref}
- Fit URT model with newly learned V_{opt}

HeatWatch Overhead

Storage Overhead:

- Tracking SSD Temperature
 - 26 logarithmic intervals
 - 208 B
- Program temperature, dwell time, program time per block
 - 1.5 MB
- Dwell time
 - Timestamp for last 20 full drive writes
 - 85 B
- Latency Overhead:
 - <1% of flash read latency (25 us)

HeatWatch: Tracking Components

- 1. Tracking SSD temperature
 - Use existing sensors in the SSD
 - **Precompute** temperature scaling factor at **logarithmic time intervals**

Actual Retention Time

HeatWatch: Tracking Components

2. Tracking dwell time

• Only need to track write frequency for last 20 P/E cycles

Self-recovery effect plateaus after 20 P/E cycles

Threshold Voltage Distribution Shifts

- Shifts occur over time due to multiple factors (e.g., retention)
- Can cause distribution of one state to cross over the read reference voltage boundary
 - Some cells get misread
 - Introduces raw bit errors

Per-Workload Flash Lifetime Improvements

Dwell Time Impact on Error Rate After Retention

Dwell Time Impact on Threshold Voltage Distributions

Mean Distribution Voltage vs. Retention for Different Dwell Times

Impact of Dwell Time on Error Rate and Threshold Voltage Distribution Means

Temperature Impact on Error Rate After Retention

Impact of Programming Temperature on Threshold Voltage Distributions

Impact of Programming Temperature on Error Rate and Threshold Voltage Distribution Means

SRRM Prediction Accuracy

Change in Flash Lifetime Due to Programming Temperature and Write Intensity

Optimal Read Reference Voltage: Measured vs. Predicted by URT

Inaccurate Read Reference Voltages Increase Error Rate

