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Storage Technology Drivers - 2018
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Executive Summary

* 3D NAND flash memory susceptible to retention errors
* Charge leaks out of flash cell
* Two unreported factors: self-recovery and temperature

* We study self-recovery and temperature effects
* Experimental characterization of real 3D NAND chips

* Unified Self-Recovery and Temperature (URT) Model

* Predicts impact of retention loss, wearout, self-recovery,
temperature on flash cell voltage

* Low prediction error rate: 4.9%

* We develop a new technique to improve flash reliability

* HeatWatch
* Uses URT model to find optimal read voltages for 3D NAND flash
* Improves flash lifetime by 3.85x
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3D NAND Flash Memory Background

3D NAND
Flash Memory
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Flash Cell

Charge = Threshold Voltage

Higher Voltage State
Data Value = 0

Read Reference Voltage

Lower Voltage State
Data Value =1



Flash Wearout

Program/Erase (P/E) - Wearout Wearout Effects:

1. Retention Loss

\ (voltage shift over time)

Insulator

2. Program Variation
(init. voltage difference b/w states)

Wearout Introduces Errors

Voltage



Improving Flash Lifetime

Errors introduced by wearout
limit flash lifetime
(measured in P/E cycles)

Exploiting the
Self-Recovery Effect
Two Ways to Improve ‘
Flash Lifetime Exploiting the

Temperature Effect



Exploiting the Self-Recovery Effect

Partially repairs damage due to wearout
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Exploiting the Temperature Effect

High Program
Temperature Voltage
Increases Program Variation
X
SR
seneV
High Storage
Temperature

Accelerates Retention Loss



Prior Studies of Self-Recovery/Temperature

Planar (2D) NAND 3D NAND

Self-Recovery
Effect \/ X

Mielke 2006
Temperature V X
Effect
JEDEC 2010

(no characterization)
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Characterization Methodology

* Modified firmware version in the flash controll

er

* Control the read reference voltage of the flash chip

* Bypass ECC to get raw NAND data (with raw bit

errors)
* Control temperature with a heat chamber

Heat Chamber

Server
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Characterized Devices

Real 30-39 Layer 3D MLC NAND Flash Chips

2-bit MLC

30-to
39-layer
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Probability

MLC Threshold Voltage Distribution Background
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Characterization Goal

=
Characterized O e
Metrics
Retention Loss Speed Program Variation
(how fast voltage shifts (initial voltage difference
over time) between states)

Characterized Self-Recovery Temperature
Phenomena Effect Effect
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Self-Recovery Effect Characterization Results
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Dwell time: Idle time between P/E cycles
Increasing dwell time from 1 minute to 2.3 hours

slows down retention loss speed by 40%




Program Temperature Effect
Characterization Results
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Program Temperature (Celsius)

Increasmg program temperature from 0°C to 70°C

ram variation by 21%




Storage Temperature Effect
Characterization Results
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Lowering storage temperature from 70°C to 0°C

slows down retention loss speed by 58%




Characterization Summary

i Major Results:

e Self-recovery affects retention loss speed

* Program temperature affects program variation
* Storage temperature affects retention loss speed

Unified Model

Other Characterizations Methods in the Paper:

* More detailed results on self-recovery and temperature
* Effects on error rate
* Effects on threshold voltage distribution
* Effects of recovery cycle (P/E cycles with
long dwell time) on retention loss speed
19
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Minimizing 3D NAND Errors

Optimal
Read Ref.
Voltage

Read Ref.
Voltage

Probability

Retention
Errors

Optimal read reference voltage
minimizes 3D NAND errors
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Predicting the Mean Threshold Voltage

Our URT Model:
V=V,+AV

Mean

Threshold
Voltage

Initial Voltage Voltage Shift

Before Retention Due to
(Program Variation) Retention Loss
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URT Model Overview

1. Program 3. Temperature
Variation Scaling
Component Component

2. Self-Recovery
and Retention
Component

Voltage Shift
Due to
Retention Loss

Initial Voltage
Before Retention




1. Program Variation Component

P/E Cycle Program
@ @ Temperature
VO
Initial
Voltage

Vo=A-T,-PEC+B-T,+ C-PEC+D

Validation: R2=91.7%
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2. Self-Recovery and Retention Component

Retention P/E Dwell
Time Cycle Time
AV
Retention Shift

I
AV (ter, t,g, PEC) = b- (PEC + ¢) - In (1 + = )
Ip+a-tey

Validation: 3x more accurate

than state-of-the-art model
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3. Temperature Scaling Component

Actual Actual

Retention Storage Dwell Dwell
Time Temp. Time Temp.

Effective Effective Dwell
Retention Time Time

Arrhenius Equation: AF-= el exp (Eﬂ ( — - — ))

Treaf Troom

Validation: Adjust an important parameter,

E, from 1.1 eVto 1.04 eV
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URT Model Summary

1. Program 3. Temperature
Variation Scaling
Component Component

2. Self-Recovery
and Retention
Component

Validation:
Prediction Error Rate = 4.9%
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HeatWatch Mechanism

* Key Idea

* Predict change in threshold voltage distribution
by using the URT model

* Adapt read reference voltage to near-optimal (V)
based on predicted change in voltage distribution
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HeatWatch Mechanism Overview

Tracking Components

SSD P/E Cycles &

Temperature Dwell Time Retention Time

Prediction Components

Fine-Tuning

V,pi Prediction

URT Parameters
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Tracking SSD Temperature

Tracking Components

Temperature

-

* Use existing sensors in the SSD

* Precompute temperature scaling factor
at logarithmic time intervals
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Tracking Dwell Time

Tracking Components

-

* Only need to log the timestamps of last 20 full drive writes
* Self-recovery effect diminishes after 20 P/E cycles
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Tracking P/E Cycles and Retention Time

Tracking Components
P/E Cycles &

Retention Time

* P/E cycle count already recorded by SSD
* Log write timestamp for each block
* Retention time = read timestamp - write timestamp
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Predicting Optimal Read Reference Voltage

-

* Calculate URT using tracked information
* Modeling error: 4.9%
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Fine-Tuning URT Parameters Online

-

* Accommodates chip-to-chip variation
* Uses periodic sampling

Fine-Tuning

URT Parameters
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HeatWatch Mechanism Summary

Tracking Components

: P/E Cycles &
pwel Time :

[ Storage Overhead: 0.16% of DRAM in 1TB SSD ]"’

SSD

Temperature

Prediction Components

Fine-Tuning

Vopt Prediction URT Parameters

[’ Latency Overhead: < 1% of flash read latency J 26




HeatWatch Evaluation Methodology

28 real workload storage traces
* MSR-Cambridge

* We use real dwell time, retention time values
obtained from traces

 Temperature Model:
Trigonometric function + Gaussian noise

* Represents periodic temperature variation in each day
* Includes small transient temperature variation

37



HeatWatch Greatly Improves Flash Lifetime

5 Y
] —— Fixed V 4 —— Oracle 3857( ove
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HeatWatch improves lifetime by
capturing the effect of

retention, wearout, self—recovery, temperature
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Conclusion

* 3D NAND flash memory susceptible to retention errors
* Charge leaks out of flash cell
* Two unreported factors: self-recovery and temperature

* We study self-recovery and temperature effects
* Experimental characterization of real 3D NAND chips

* Unified Self-Recovery and Temperature (URT) Model

* Predicts impact of retention loss, wearout, self-recovery,
temperature on flash cell voltage

* Low prediction error rate: 4.9%

* We develop a new technique to improve flash reliability

* HeatWatch
* Uses URT model to find optimal read voltages for 3D NAND flash
* Improves flash lifetime by 3.85x
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SSD Architecture

'SSD
STl DRAM . Controlier

- .
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3D vs. 2D Flash Cell Design

S Charge Trap
Gate Oxide w (Insulator)
)
w il Floating Gate g Control
*YY (Conductor) @ Cate
1nnel Oxide =
D Gate Oxide
Substrate D

Tunnel Oxide

Floating-Gate Cell 3D Charge-Trap Cell
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3D vs. 2D Retention Characteristics

CIW/E=1 O W/E=100 [JW/E=300 /. W/E=500
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103 5 103
3D TLC, 85degC & 2D (1Xnm) TLC, 85deg
102 } W/o Vg shift E 102
2 10
2
a 10°
]
1
= 10"

2D NAND very
sensitive to
wearout

3D NAND uniformly
affected by wearout

Source: K. Mizoguchi, et al,, “Data-Retention Characteristics Comparison of 2D and 3D TLC NAND Flash Memories,” IMW, 2017.




Limitations

* Vendor-to-vendor variation

* Self-recovery and temperature effect should be similar for
3D charge trap NAND (Samsung, Hynix, Toshiba, Sandisk)

* Chip-to-chip variation
* Each of our experiments takes several months
* Expect future large-scale study on 3D NAND errors

Not our limitation:

* Any process variation within a chip
* Our results include tens of randomly selected flash blocks
* ~1 million cells

46



Generalizability of Results

* Should apply to other 3D NAND flash memory that uses charge
trap cells (Samsung, Hynix, Toshiba, Sandisk)
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Self-Recovery and Temperature in Planar NAND

* UDM [Mielke 2006]

* Only models retention shift, no initial voltage
* Exponential P/E cycle effect

* Activation energy for planar NAND

* 3 other works propose mechanism and speculate different
lifetime improvements

* 211x [Mohan+ HotStorage10]
* 5.8x [Wu+ HotStorage11]
 2.8x [Lee+ FAST12]
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Novelty vs. UDM

* 3D charge trap cells are more resilient to P/E cycling than
floating-gate cells in planar NAND

* Different activation energy
* Program temperature effect not discussed in planar NAND
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[deal SSD Temperature

* [t depends!
* High program temperature increases program variation (good)
* High dwell temperature accelerates self-recovery (good)
 High retention temperature accelerates retention loss (bad)
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— 0% — 6 — ADE — GO °C
250001 — 10°c — 30°C — 50°C — 70°C
L
8 20000 2
Q [0}
> \ k=
O 15000 A =
o — Seg
a 10000 - - Ss3
5000 - , D S
Higher temperature better

1071 10° 10! 102 103 104 10°
Full Drive Writes Per Day

Figure 12: Change in flash lifetime due to write intensity and

environmental temperature (tr = 3 months).
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URT Fine Tuning

* Randomly sample 10 wordlines in each chip
* Learn V__. by sweeping V

opt ref

* Fit URT model with newly learned V,
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HeatWatch Overhead

Storage Overhead:

* Tracking SSD Temperature
26 logarithmic intervals
208 B

* Program temperature, dwell time, program time per block
1.5 MB

 Dwell time

* Timestamp for last 20 full drive writes
*85B

* Latency Overhead:
* <1% of flash read latency (25 us)
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HeatWatch: Tracking Components

1. Tracking SSD temperature

* Use existing sensors in the SSD

* Precompute temperature scaling factor

at logarithmic time intervals

Temperature Effect

>

Area =

/ ~T N Effective
/ Ret. Time
// N \/
n| 2n 4n 8n
O€E—><€ >€ >
1| 2 3 4

Actual Retention Time

>
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HeatWatch: Tracking Components

2. Tracking dwell time
* Only need to track write frequency for last 20 P/E cycles
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URT vs. Conventional Model

ConventionalK Q

V = V+AV

self-recovery, temperature
to conventional model
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Threshold Voltage Distribution Shifts

2.1 /A /A V. , Shifted
E% | 5 ./ « Original
25 N P3O\
Q&:Q 00 \4 /10 \

Thre‘s’hold Voltage (V) g

* Shifts occur over time due to multiple factors (e.g., retention)

* Can cause distribution of one state to cross over the
read reference voltage boundary

* Some cells get misread
* Introduces raw bit errors
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Per-Workload Flash Lifetime Improvements

Lifetime (P/E cycles)

igi _lFixed Vref [ Retention-Only M HeatWatch & Oracle
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Dwell Time Impact on Error Rate After Retention

RBER
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Dwell Time Impact on Threshold Voltage Distributions

(a) Dwell time (tg) = 64 seconds
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Mean Distribution Voltage vs. Retention
for Different Dwell Times

(a) P1 Mean
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Impact of Dwell Time on Error Rate and
Threshold Voltage Distribution Means
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Temperature Impact on Error Rate After Retention

RBER

1071
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Impact of Programming Temperature on
Threshold Voltage Distributions
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Impact of Programming Temperature on Error Rate
and Threshold Voltage Distribution Means

Normalized
Retention Loss Speed (Q)
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Measured |AV/|
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Change in Flash Lifetime Due to
Programming Temperature and Write Intensity
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Normalized V¢,
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Optimal Read Reference Voltage:
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RBER

Inaccurate Read Reference Voltages
Increase Error Rate
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Voltage Steps Between |Vyer — Vopt]
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