
Improving DRAM Performance, Reliability, and Security
by Rigorously Understanding Intrinsic DRAM Operation

Hasan Hassan

SAFARI Live Seminar
15 September 2022

2

Dynamic Random Access Memory (DRAM)

[1970] [1992]

Samsung KM48SL2000
(16 Mbit)

The first
SDRAM

Intel 1103
(1Kbit)

The first
commercially

available
DRAM IC

Samsung DDR SDRAM
(64 Mbit)

The first
DDR memory

prototype

[1997][1968]

Dr. Robert Dennard
was granted the

patent for
one-transistor

DRAM cell

3

DRAM in 2022

(32Gbit)

GPUs
Personal Computers

Servers Mobile Devices

DRAM Scaling Challenges

Safety-critical
systems

4

Scaling Challenges of DRAM Technology

Data Integrity

Latency

Performance

Energy Efficiency

Reliability

Security

DRAM Cell
System-Level Problems

DRAM Scaling Problems

5

Our Goals

1 Build an infrastructure for characterization, analysis,
and understanding of real DRAM chips

Enable new mechanisms for improving DRAM
performance, energy consumption, reliability, and security2

To combat the system-level implications
of the DRAM scaling challenges:

6

Contributions

A flexible and easy-to-use
FPGA-based

DRAM characterization
infrastructure

A new methodology for
uncovering in -DRAM

RowHammer Protection
Mechanisms

A low-cost substrate for
improving DRAM

performance, energy
efficiency, and reliability

Self-Managing DRAM:
Enabling autonomous and

efficient in-DRAM
maintenance operations

SoftMC
(0#!ȭρχ

U-TRR
-)#2/ȭςρ

SMD
Ongoing
ÁÒ8ÉÖȭςς

CROW
)3#!ȭρω

https://arxiv.org/abs/2207.13358

DRAM Background
DRAM Technology, Organization, and Operation

8

DRAM Organization

CPU

Memory
Controller

DRAM
Row

Sense Amplifier

Memory
Bus

DRAM
Cell

DRAM Bank

9

DRAM Operation

Sense Amplifier

DRAM Bank

Activate

Precharge

Read/
Write

10

DRAM Cell

wordline

capacitor

access
transistor

b
itlin

e

charge
leakage
paths

A single bit is encoded in a small capacitor

and leaky

Stored data is corrupted
if too much charge leaks

11

DRAM Refresh

C
a

p
a

c
ito

r
vo

lt
a

g
e

 (V
d

d)

100%

0%

Vmin

Refresh Window

Refresh Operations

timeREF REFREF

Periodic refresh operations preserve stored data

12

Contributions

A flexible and easy-to-use
FPGA-based

DRAM characterization
infrastructure

A new methodology for
uncovering in -DRAM

RowHammer Protection
Mechanisms

A low-cost substrate for
improving DRAM

performance, energy
efficiency, and reliability

Self-Managing DRAM:
Enabling autonomous and

efficient in-DRAM
maintenance operations

SoftMC
(0#!ȭρχ

U-TRR
-)#2/ȭςρ

SMD
Ongoing
ÁÒ8ÉÖȭςς

CROW
)3#!ȭρω

https://arxiv.org/abs/2207.13358

13
3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

Reliability Effects of DRAM Timing Parameters

Many of the factors affecting DRAM reliability and latency
cannot be properly modeled

Activate

time

Read Precharge

Activation Latency

Ready-to-access
Latency Precharge

Latency

Activate

DRAM
Cell

Sense
Amplifier

14

Factors Affecting DRAM Reliability and Latency

We need to perform experimental studies
of real DRAM chips

DRAM timing
violation

Inter-cell
interference

VoltageTemperatureManufacturing
process

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

15

Goals of a DRAM Characterization Infrastructure

ÅFlexibility
ÅAbility to test any DRAM operation
ÅAbility to test anycombination of DRAM operations and custom

timing parameters

ÅEase of use
ÅSimpleprogramming interface (C++)
ÅMinimal programming effort and time
ÅAccessibleto a wide range of users
Åwho may lack experience in hardware design

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

16

SoftMC: High-Level View

The first publicly-availableFPGA-based
DRAM characterization infrastructure

Easily programmable using the SoftMC C++ API

[Y
a

g
likciϽ

ȟ

$
3
.
ȭ
φ
φ
Ɏ

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

17

Key Components

SoftMC API

PCIe Driver

SoftMC Hardware

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

18

SoftMCAPI

InstructionSequenceiseq;

iseq.insert(genACT(bank, row));

iseq.insert(genWAIT(tRCD));

iseq.insert(genWR(bank, col, data));

iseq.insert(genWAIT(tCL + tBL + tWR));

iseq.insert(genPRE(bank));

iseq.insert(genWAIT(tRP));

iseq.insert(genEND());

iseq.execute(fpga);

Writing data to DRAM:

Instruction generator
functions

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

19

Key Components

SoftMC API

PCIe Driver

SoftMC Hardware

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

20

SoftMCHardware

P
C

Ie
C

o
n

tr
o

lle
r

Instruction
Receiver
Instruction

Queue

In
st

ru
ct

io
n

D

is
p

a
tc

h
e

r

DDR
PHY

Auto-
refresh

Controller

Calibration
Controller

Read
Capture

SoftMCHardware (FPGA)

Instructions

ActivateReadWait (Ready-to-access Latency)

Data

Host
Machine

DRAM

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

21

Use Cases

1 Retention Time Distribution Study

2 Evaluating the Effectiveness of
New DRAM Latency Reduction Techniques

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

22

Use Case 1: Retention Time Distribution Study

Increase the
refresh interval

Observe
Errors

Read
Back

Wait
(Refresh Interval)

Write Reference
Data to a Row

Can be implemented with just ~100 lines of C++ code

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

23

Use Case 1: Results

0

2000

4000

6000

8000

0 1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

E
rr

o
n

e
o

u
s
 B

y
te

s

Refresh Interval (s)

@ ~20ώC (room temperature)

Module A

Module B

Module C

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

Validates the correctness of
the SoftMC Infrastructure

24

Use Case 2: Accessing Highly-Charged Cells Faster

NUAT
(Shin+, HPCA 2014)

ChargeCache
(Hassan+, HPCA 2016)

A highly-chargedcell can be
accessed with low latency

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

25

Activate

DRAM
Cell

Sense
Amplifier

time

Read Precharge

Activation Latency

Ready-to-access
Latency Precharge

Latency

Activate

0 (refresh) 64 ms

Use Case 2: How a Highly-Charged Cell Is Accessed Faster?

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

26

Use Case 2: Ready-to-Access Latency Test

Change
the Wait
Interval

Observe
Errors

Read
Back

Wait for the
Wait Interval

Write
Reference

Data

Longer wait

Shorter wait Higher cell charge

Lower cell charge

With custom ready-to-access
latency parameter

Can be implemented with just ~150 lines of C++ code

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

27

Use Case 2: Results

0

100

200

300

400

500

8
3
2

5
6

8
0

1
0

4
1
2

8
1
5

2
1
7

6
2
0

0
2
2

4
2
4

8
2
7

2
2
9

6
3
2

0
3
4

4
3
6

8
3
9

2
4
1

6
4
4

0
4
6

4
4
8

8N
u

m
b

e
r

o
f
E

rr
o

n
e

o
u

s
B

yt
e

s

Wait Interval (ms)

6 5 4 3

Latency (cycles)

@ 80ώC temperature

Real Curves

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

We do not observe the expected latency
reduction effect in existing DRAM chipsN
u

m
b

e
r

o
f

E
rr

o
n

e
o

u
s
 B

y
te

s

Refresh Interval

6 5 4 3

Latency (cycles)

Expected Curves

28

The memory controller cannot externally control when a
sense amplifier gets enabled in existing DRAM chips

Data 0

Data 1

Cell

time

ch
a

rg
e

Sense Amp

R/WACT

Ready to Access
Charge Level

Ready to Access

Fixed Latency!

Enabling the
Sense Amplifier

Potential Reduction

5ÓÅ #ÁÓÅ ςȡ 7ÈÙ $ÏÎȭÔ 7Å 3ÅÅ ÔÈÅ ,ÁÔÅÎÃÙ 2ÅÄÕÃÔÉÏÎ %ÆÆÅÃÔȩ

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

29

Research Enabled by SoftMC (from SAFARI)
1) ɍ-)#2/ȭςς, to appear] YaglikciϹȟ Ȱ()2!ȡ (ÉÄÄÅÎ 2Ï× !ÃÔÉÖÁÔÉÏÎ ÆÏÒ 2ÅÄÕÃÉÎÇ 2ÅÆÒÅÓÈ ,ÁÔÅÎÃÙ ÏÆ /ÆÆ-the-3ÈÅÌÆ $2!- #ÈÉÐÓȱ

2) ɍ$3.ȭςςɎ YaglikciϹȟ ȰUnderstanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devicesȱ

3) ɍ-)#2/ȭςρɎ OrosaϹȟ ȰA Deeper Look into 2Ï×(ÁÍÍÅÒȭÓSensitivities: Experimental Analysis of Real DRAM Chips and Implications on
Future Attacks and Defensesȱ

4) ɍ-)#2/ȭςρɎ (ÁÓÓÁÎϹȟ ȰUncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns,
and Implicationsȱ

5) ɍ)3#!ȭςρɎ OlgunϹȟ ȰQUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity
DRAM Chipsȱ

6) ɍ)3#!ȭςρɎOrosaϹȟ ȰCODIC: A Low-Cost Substrate for Enabling Custom In-DRAM Functionalities and Optimizationsȱ

7) ɍ)3#!ȭςπɎ +ÉÍϹȟ ȰRevisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniquesȱ

8) ɍ3Ǫ0ȭςπɎ &ÒÉÇÏϹȟ ȰTRRespass: Exploiting the Many Sides of Target Row Refreshȱ

9) ɍ(0#!ȭρωɎ +ÉÍϹȟ ȰD-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High
Throughputȱ

10) ɍ-)#2/ȭρωɎ KoppulaϹȟ ȰEDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAMȱ

11) ɍ3)'-%42)#3ȭρψɎ 'ÈÏÓÅϹȟ ȰWhat Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Studyȱ

12) ɍ3)'-%42)#3ȭρχɎ #ÈÁÎÇϹȟ ȰUnderstanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization,
Analysis, and Mechanismsȱ

13) ɍ-)#2/ȭρχɎ +ÈÁÎϹȟ ȰDetecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Contentȱ

14) ɍ3)'-%42)#3ȭρφɎ #ÈÁÎÇϹȟ ȰUnderstanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and
Optimizationȱ

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/CODIC-DRAM-internal-timing-control-substrate_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

30

Research Enabled by SoftMC (others)
1) ɍ!ÐÐÌÉÅÄ 3ÃÉÅÎÃÅÓȭςςɎBeparyϹȟ ȰDRAM Retention Behavior with Accelerated Aging in Commercial Chipsȱ

2) ɍ%43ȭςρɎ&ÁÒÍÁÎÉϹȟ ȰRHAT: Efficient RowHammer-Aware Test for Modern DRAM Modulesȱ

3) ɍ(/34ȭςπɎTalukderϹȟ ȰTowards the Avoidance of Counterfeit Memory: Identifying the DRAM Originȱ

4) ɍ-)#2/ȭρωɎ 'ÁÏϹȟ ȰComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMsȱ

5) ɍ)%%% !ÃÃÅÓÓȭρωɎTalukderϹȟ ȰPreLatPUF: Exploiting DRAM Latency Variations for Generating Robust Device Signaturesȱ

6) ɍ)##%ȭρψɎTalukderϹȟ ȰExploiting DRAM Latency Variations for Generating True Random Numbersȱ

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

https://www.mdpi.com/2076-3417/12/9/4332
https://ieeexplore.ieee.org/document/9465436
https://ieeexplore.ieee.org/document/9300125
https://dl.acm.org/doi/10.1145/3352460.3358260
https://ieeexplore.ieee.org/abstract/document/8736949
https://ieeexplore.ieee.org/document/8662060

31

Summary

SoftMC
The first publicly -available DRAM characterization infrastructure

github.com/CMU-SAFARI/SoftMC

[YaglikciϽȟ $3.ȭφφɎ

ÅFlexibleand Easy to Use

ÅSource code available on GitHub:

SoftMC enables many studies, ideas, and methodologies
in the design of future memory systems

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

32

Contributions

A flexible and easy-to-use
FPGA-based

DRAM characterization
infrastructure

A new methodology for
uncovering in -DRAM

RowHammer Protection
Mechanisms

A low-cost substrate for
improving DRAM

performance, energy
efficiency, and reliability

Self-Managing DRAM:
Enabling autonomous and

efficient in-DRAM
maintenance operations

SoftMC
(0#!ȭρχ

U-TRR
-)#2/ȭςρ

SMD
Ongoing
ÁÒ8ÉÖȭςς

CROW
)3#!ȭρω

https://arxiv.org/abs/2207.13358

33

RowHammer

Row 0

Row 1

Row 2

Row 3

Row 4

Row 2open

Row 1

Row 3

Row 2closed Row 2open

Row 1

Row 3

Row 0

Row 4

Row 2open Row 2closed

DRAM Chip

Victim Row

Victim Row

Victim Row

Victim Row

Aggressor Row

Repeatedly opening (activating) and closing (precharging)
a DRAM row causes RowHammer bit flips in nearby cells

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

34

Target Row Refresh (TRR)

DRAM vendors equip their DRAM chips with a proprietary
mitigation mechanisms known as Target Row Refresh (TRR)

Key Idea: TRR refreshes nearby rows upon detecting an aggressor row

Row 0

Row 1

Row 2

Row 3

Row 4

TRR-equipped DRAM Chip

T
R
R

Aggressor detected: Row 2

closedopen

Refreshneighbor rows
TRR-induced refreshes

Memory
Controller

REF

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

35

The Problem with TRR

TRR is obscure, undocumented, and proprietary

Wecannoteasily study the security propertiesof TRR

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

36

Goal

Study in -DRAM TRR mechanisms to

1 understand how they operate

2 assesstheir security

3 secure DRAM completely against RowHammer

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

37

U-TRR: Uncovering Inner Workings of TRR

A new methodology to
uncoverthe inner workings of TRR

Key Idea:

Usedata retention failures as a side channel
to detect when a row is refreshed by TRR

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

38

U-TRR: High-Level Overview

Analysis

RPRs refreshed by
TRR-induced refresh

U-TRR has two main components
Row Scout (RS)

TRR Analyzer (TRR-A)

Row Scout
(RS)

Profiling
Configuration

row group layout

row group count

bank

range

...

Retention
Profiled
Rows
(RPR)

TRR Analyzer
(TRR-A)

Experiment
Configuration

aggressor (A) row addr.

A/D hammer counts

dummy (D) row addr.

hammering mode

REF count

number of rounds

...

Finds a set of DRAM rows that meet certain requirements as needed by TRR-A and
identifies the data retention times of these rows

Uses RS-provided rows to distinguish between TRR -induced and regular refreshes ,
and thus builds an understanding of the underlying TRR mechanism

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

39

High-Level U-TRR Experiment

time

Row 0

Row 1

Row 2

Retention
Failure

0 T

data
initialization

T/2

refresh

Retention
Failure

Retention
Failure

Retention
Success

5x ACT

issuing a REF
command

100x ACT

refresh
Retention
Success

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

We perform many experiments to understand
the operation of different TRR mechanisms

40

U-TRR: Implementation

We implement U-TRR using SoftMC,
modified to support DDR4 DRAM

SoftMCprovides fine-grained control
over DRAM commands ,
timing parameters and temperature

15x Vendor A
DDR4 modules

15x Vendor B
DDR4 modules

15x Vendor C
DDR4 modules

We analyze 45 DDR4 DRAM modules
from three vendors

Table 1 in the paper provides more
information about the analyzed modules

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

41

#ÁÓÅ 3ÔÕÄÙȡ 5ÎÄÅÒÓÔÁÎÄÉÎÇ 6ÅÎÄÏÒ !ȭÓ 422

Refresh Types:
ÅRegular Refresh (RR)
ÅTRR-capable Refresh (TREF1 and TREF2)

TREF2

ȣ

TREF1: Refreshes the victims of row ID
with the largest counter value

TREF2: Refreshes the victims of
row ID that TREF2 pointer refers to

TREF2

pointer

ȣ

Counter Table

row ID counter value

row ID counter value

1
6

 e
n

trie
srow ID counter value

time
TREF1

Observation: TRR tracks potentially aggressor rows using a Counter Table

RR

8x regular refresh

RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR

8x regular refresh

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

42
3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

#ÁÓÅ 3ÔÕÄÙȡ #ÉÒÃÕÍÖÅÎÔÉÎÇ 6ÅÎÄÏÒ !ȭÓ 422

Approach: Ensure an aggressorrow
is discarded from the Counter Table

prior to a REF command

REF ACT ([A1, A2]) ACT(D1) ACT(D2) REFȣ ACT(D16)

N times N+1 times N+1 times N+1 times

A1

A2

This RowHammeraccess pattern requires
synchronizing accesseswith REF commands

RR TREF1 TREF2

[A1, A2] not
refreshed by TRR

Ai: aggressor row
Di: dummy row

ȣ

Counter Table

row ID counter value

row ID counter value

1
6

 e
n

trie
srow ID counter value

#ÉÒÃÕÍÖÅÎÔÉÎÇ 6ÅÎÄÏÒ !ȭÓ 422 ÂÙdiscarding the actual
aggressor rowsfrom the Counter Table

43

Bypassing TRR with New RowHammer Access Patterns

We craftnew RowHammer access patterns
that circumvent TRRof three major DRAM vendors

On the 45 DDR4 modules we test, thenew access
patterns causea large number of RowHammer bit flips

3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

44
3ÏÆÔ-# ɉ(0#!ȭρχɊU-422 ɉ-)#2/ȭςρɊ #2/7 ɉ)3#!ȭρωɊSMD (Ongoing)

Effect on Individual Rows

Why are some modules less vulnerable?
1) Fundamentally less vulnerable to RowHammer
2) Different TRR mechanisms
3) Unique row organization

All 45 modules we tested are vulnerable
to our new RowHammer access patterns

For many modules, our RowHammer access patterns
cause bit flips in more than 99.9% of the rows

