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Abstract—Bitwise operations are an important component of modern day programming, and are used in a variety of applications such
as databases. In this work, we propose a new and simple mechanism to implement bulk bitwise AND and OR operations in DRAM,
which is faster and more efficient than existing mechanisms. Our mechanism exploits existing DRAM operation to perform a bitwise
AND/OR of two DRAM rows completely within DRAM. The key idea is to simultaneously connect three cells to a bitline before the
sense-amplification. By controlling the value of one of the cells, the sense amplifier forces the bitline to the bitwise AND or bitwise OR
of the values of the other two cells. Our approach can improve the throughput of bulk bitwise AND/OR operations by 9.7X and reduce
their energy consumption by 50.5X. Since our approach exploits existing DRAM operation as much as possible, it requires negligible
changes to DRAM logic. We evaluate our approach using a real-world implementation of a bit-vector based index for databases. Our
mechanism improves the performance of commonly-used range queries by 30% on average.

1 INTRODUCTION
Bitwise operations (e.g., AND, OR) are an important compo-
nent of modern day programming. They have a wide variety
of applications, and can often replace arithmetic operations
with more efficient algorithms [13,21]. In fact, most modern
processors provide support to accelerate a variety of bitwise
operations (e.g., Intel AVX [10]).

We focus our attention on two operations: bitwise AND
and bitwise OR. In addition to their uses in simple masking
and initializing, these operations are heavily used in databases
with bitmap indices [6,17]. Bitmap indices are an alternative to
commonly-used data structures like the B-tree. Bitmap indices
can be more efficient than B-trees for performing range queries
and joins [1,6,22]. These queries frequently perform bitwise
AND or OR operations on a large amount of data (multiple
KBs/MBs), which we refer to as a bulk bitwise operation.

To perform a bulk bitwise operation, existing systems must
first read the source data into the processor from main memory
and later write the result back to main memory. The drawback
of this approach is that it requires a large amount of data to
be transferred between the processor and main memory. As
a result, existing systems incur high latency, bandwidth, and
energy to execute these bulk bitwise operations.

In this work, we propose a new mechanism to perform
bulk bitwise AND and OR operations completely within DRAM.
DRAM stores data in terms of charge in a capacitor. Since the
capacitors are very small, a sense amplifier is used to detect the
charge on a capacitor. Our mechanism exploits the fact that
each sense amplifier is connected to many DRAM cells. We
show that by simultaneously connecting three cells (rather than
one) to a sense amplifier, and by controlling the value of one
of the cells, the sense amplifier can be forced to perform the
bitwise AND or the bitwise OR of the values in the remaining
two cells. We develop this idea into a simple mechanism that
simultaneously activates three rows of DRAM cells to perform
bitwise AND/OR of two of the three rows—essentially a
multiple-kilobyte-wide bitwise AND/OR operation.

Our mechanism heavily exploits both the internal operation
of DRAM and the external interface with the memory con-
troller. Specifically, the main change required by our mecha-
nism to existing DRAM chips is the support to simultaneously
activate three rows within any given subarray. This requires
changes to only the row decoding logic, and as a result, our
mechanism incurs low implementation cost (Section 3.2).
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We compare the throughput of performing bitwise AND/OR
operations using our mechanism to a state-of-the-art baseline
mechanism that uses the Intel AVX instructions [10] instead.
Our mechanism, which uses DRAM as a co-processor, can
achieve 9.7X higher throughput and consume 50.5X lower
energy compared to a baseline that has to read all the data
from DRAM into the CPU (Section 4). Our evaluation of an
open source bitmap index implementation (FastBit [1]) shows
that our mechanism can improve performance of commonly-
used index-intensive queries by 30% on average (Section 5).

2 BACKGROUND ON DRAM OPERATION
At a high level, each DRAM chip consists of multiple banks
that can be accessed mostly independently. Each bank is
further divided into multiple subarrays [12]. Figure 1 shows
the organization of a DRAM subarray. Each subarray consists
of multiple rows of DRAM cells connected to an array of
sense amplifiers. Each row of DRAM cells share a wordline that
controls the connection between the cells of that row and the
sense amplifiers. Similarly, each column of DRAM cells share
a bitline that connects those cells to the corresponding sense
amplifier. Each DRAM cell contains 1) a capacitor, and 2) an
access transistor that acts as a switch between the capacitor
and the bitline (as shown in Figure 2). The access transistor is
controlled by the wordline of the corresponding DRAM row.

Figure 3 shows the steps involved in DRAM cell access. We
start with a fully charged cell in this example. The operation is
similar if the cell is empty. In the initial precharged state Ê, the
bitline is charged to 1

2
VDD , and the sense amplifier is disabled

(indicated by the dis subscript). The cell access is triggered
by the ACTIVATE command to the corresponding DRAM row,
which raises the wordline corresponding to the row Ë. In the
phase that follows, known as charge sharing, charge flows from
the cell to the bitline, raising the voltage level of the bitline to
1
2

VDD+δ (state Ì). In this state, the sense amplifier is enabled
(Í), and it senses the deviation in the voltage level of the bitline
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Fig. 1. DRAM subarray. Each circle denotes a DRAM cell, which
contains a capacitor and an access transistor.
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Fig. 3. DRAM cell operation: Steps involved in accessing a DRAM cell

from 1
2

VDD and amplifies the deviation until the bitline reaches
VDD Î. Since the capacitor remains connected to the bitline,
the capacitor also gets restored to its original fully charged
state. As each wordline is shared by an entire row of DRAM
cells, a single activation process transfers the data from all the
cells of that row to the corresponding sense amplifiers.

After the sense amplification, data can be accessed from
the sense amplifiers using the READ/WRITE command to the
corresponding column of data within the DRAM row. Once
the data is accessed, the subarray can be taken back to the
precharged state by issuing a PRECHARGE command.

The main takeaway from the DRAM cell operation is that
the final state of the bitline depends on the deviation of the
bitline voltage from 1

2
VDD after the charge sharing phase. If the

deviation is positive (i.e., towards VDD), the bitline is driven
to VDD . On the other hand, if the deviation is negative (i.e.,
towards 0), the bitline is driven to 0.

3 IN-DRAM AND AND OR
Our idea is simple. When three cells are simultaneously con-
nected to a bitline, the deviation on the bitline voltage after
charge sharing is towards the majority value of the three cells.
Specifically, if at least two of the three cells are initially in the
charged state, the effective voltage level of the three cells is
more than 2

3
VDD , resulting in a positive deviation on the bitline

voltage. On the other hand, if at most one cell is initially in
the charged state, the effective voltage level of the three cells
is less than 1

3
VDD , resulting in a negative deviation on the

bitline voltage. Figure 4 shows an example of this operation
with two of the three cells in the charged state Ê. As a result,
there is a positive deviation on the bitline voltage after charge
sharing Ë, and sense amplification drives the bitline to VDD ,
and all the three cells become fully charged Ì.

If R, A, and B represent the logical states of the three cells,
the final state of the bitline after sense amplification is RA +
RB + AB (i.e., at least two values should be 1 for the final
state to be 1). Importantly, this expression can be rewritten as
R(A + B) + R(AB). In other words, if the initial state of R
is 1, the final state of the bitline is the bitwise OR of A and
B. Otherwise, if the initial state of R is 0, the final state of the
bitline is the bitwise AND of A and B. Therefore, by controlling
the initial state of the cell R, we can execute a bitwise AND or
bitwise OR operation using the sense amplifier.

There are two challenges with our approach. First, when
connecting three cells, the deviation on the bitline (positive
or negative) will be lower than the deviation on the bitline
when only one cell is connected. For a typical bitline to cell
capacitance ratio of 6 [23], the reduction in the deviation is only
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Fig. 4. Simultaneously connecting three cells to the bitline

20% even in the worst case. As we will describe in Section 3.1,
our implementation ensures that the cells are fully refreshed
before the triple-row activation. Second, our mechanism causes
all the three source rows to be overwritten with the result of
the bitwise operation.

To ensure that the source data does not get modified, our
mechanism first copies the data from the two source rows to two
temporary rows (D1 and D2). Depending on the operation to
be performed, our mechanism initializes a third temporary row
(D3) to 0 or 1, and simultaneously activates the three rows D1,
D2, and D3. It finally copies the result to row C. For example,
to perform a bitwise AND of rows A and B, our mechanism
performs the following five steps: 1) Copy data from row A to
row D1, 2) Copy data from row B to row D2, 3) Initialize all
bits of row D3 to 0, 4) Simultaneously activate D1, D2, and
D3, and 5) Copy result to row C.

While the above implementation is simple, the copy op-
erations, if performed naively, will nullify the benefits of
our mechanism to perform bitwise operations completely in
DRAM. Fortunately, our recent prior work, RowClone [20],
has proposed two techniques to perform row-to-row copy
operations quickly and efficiently within DRAM. The first
technique, RowClone-FPM (Fast Parallel Mode), which is the
fastest and most efficient (85ns), copies data between two rows
within a subarray by simply issuing back-to-back ACTIVATEs
to the source row and the destination row, without an in-
tervening PRECHARGE. The second technique, RowClone-PSM
(Pipelined Serial Mode), efficiently copies data between banks
by overlapping the read to the source bank with the write to
the destination bank.

With RowClone, all three copy operations (Steps 1, 2, and 5),
and the initialization operation (Step 3) can be performed ef-
ficiently within DRAM. To use RowClone for the initialization
operation, we reserve two additional rows (R0 and R1) that
are pre-initialized to 0 and 1, respectively. Depending on the
operation to be performed (AND or OR), our mechanism uses
RowClone to copy either R0 or R1 to row D3. Furthermore,
to maximize the use of RowClone-FPM, we reserve five rows
(D1, D2, D3, R0, and R1) in each subarray.

In the best case, when all the three rows involved in the
operation (A, B, and C) are present in the same subarray,
our mechanism reduces to performing four RowClone-FPM
operations. The first three steps (two copies and one initializa-
tion) each involve one RowClone-FPM. Steps 4 and 5 together
involve a single RowClone-FPM, with the first activation being
a triple-row activation. In the worst case, when the three rows
are in different subarrays within the same bank, the three
copy operations (1, 2, and 4/5) need to be performed using
RowClone-PSM while the initialization operation (Step 3) can
still be performed using RowClone-FPM.

3.1 Positive Aspects of Our Mechanism
Our mechanism has three positive aspects. First, the source
data is copied into the rows D1, D2, and D3 just before the
triple-row activation. Since each copy operation takes much
less than 1µs (five orders of magnitude less than the refresh
interval), the cells involved in the triple-row activation are very
close to the fully refreshed state before the operation. This
ensures reliable operation of our mechanism and results in
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low impact on the latency of triple-row activation.1 Second,
in any subarray, the triple-row activation is always performed
on the rows D1, D2, and D3, as opposed to any three arbitrary
set of rows within the subarray. These rows can be chosen
at design time and can be controlled by a separate small row
decoder. While using three arbitrary rows for the triple-row
activation may require three independent full row decoders,
our approach of choosing the three rows at design time and
controlling them using a separate small decoder incurs signif-
icantly lower cost. The separate row decoder can determine
if the three rows are activated individually (for the copy
operations) or together (for the triple-row activation). Finally,
as we will describe in Section 4, having a separate row decoder
for D1, D2, and D3 allows us to further accelerate the copy
operations using a more aggressive copy mechanism.
3.2 Changes to DRAM
Our mechanism requires three changes to the DRAM logic and
interface. First, as mentioned in Section 3.1, our mechanism
requires each subarray to have a separate small row decoder
to control the three reserved rows (D1, D2, and D3). Second,
our mechanism requires a variant of the ACTIVATE command
through which the memory controller can communicate the
triple-row activation to DRAM. Finally, our mechanism re-
quires the DRAM and the controller to support RowClone [20].
RowClone itself incurs very low cost (less than 0.01% die area).
In addition to these changes, our mechanism also reserves
five rows in each subarray. For a typical subarray with 1024
rows [12], this results in less than 0.5% loss in memory capacity.
3.3 Processor and Software Support
The processor support required by our mechanism is similar
to the support required by RowClone [20]. The processor must
1) provide instructions with which the software can communi-
cate occurrences of bulk bitwise operations, 2) support cache
coherence for data read and modified directly in DRAM, and
3) communicate to software the minimum size of the bitwise
operation that can be accelerated by DRAM (depending on
how the physical address space is interleaved on to the DRAM
hierarchy). The application must be modified to use the new
bulk bitwise instructions. Fortunately, this may require changes
only to some libraries (e.g., FastBit [1]) that are shared by many
applications. These libraries are generally optimized to exploit
any available hardware acceleration.

4 LATENCY, THROUGHPUT, AND ENERGY ANALYSIS
As our goal in this paper is to demonstrate the potential of our
mechanism, we focus our attention on the case when we can
use RowClone-FPM to perform all the copy operations.
Latency. To complete an intra-subarray copy, RowClone-FPM
uses two ACTIVATEs (back-to-back) followed by a PRECHARGE
operation. Assuming typical DRAM timing parameters (tRAS =
35ns and tRP = 15ns), each copy operation consumes 85ns. As
our mechanism is essentially four RowClone-FPM operations
(as described in the previous section), the overall latency of a
bitwise AND/OR operation is 4× 85ns = 340ns.

In a RowClone-FPM operation, although the second
ACTIVATE does not involve any sense amplification (the sense
amplifiers are already activated), the RowClone paper [20]
assumes the ACTIVATE consumes the full tRAS latency. How-
ever, by controlling the rows D1, D2, and D3 using a separate
row decoder, it is possible to overlap the ACTIVATE to the
destination fully with the ACTIVATE to the source row, by
raising the wordline of the destination row towards the end
of the sense amplification of the source row. This mechanism

1. As described in Section 5, even if we conservatively assume a 2X
higher latency for the triple-row activation, our mechanism yields 20%
performance improvement on our database benchmark.

is similar to the inter-segment copy operation described in
Tiered-Latency DRAM [15] (Section 4.4). With this aggressive
mechanism, the latency of a RowClone-FPM operation reduces
to 50ns (one ACTIVATE and one PRECHARGE). Therefore, the
overall latency of a bitwise AND/OR operation is 200ns.
We will refer to this enhanced mechanism as aggressive, and
the approach that uses the simple back-to-back ACTIVATE
operations as conservative.
Throughput. To compare the potential throughput of bitwise
AND/OR operations enabled by our mechanism to a baseline
system, we created a benchmark that repeatedly performs
bitwise AND of two vectors of a given size (S), and stores the
result in a third vector (the throughput results with bitwise OR
are same as that of bitwise AND). We ran this microbenchmark
(with various values of S) on a single-socket Intel Core i7-
4790K processor connected to two 8GB DDR3-1333 DIMMs
each on a different channel. Our baseline implementation uses
the AVX support [10] provided by the x86 ISA to perform
bitwise AND operations. The processor has a 32KB L1 cache,
256KB L2 cache, and an 8MB L3 cache. The throughput of the
baseline heavily depends on whether the working set of the
benchmark fits in the L1, L2 or the L3 cache.

Figure 5 plots the results of this experiment. The x-axis
shows the value of S (i.e., vector size) and the y-axis plots
the throughput of the bitwise operation in terms of gigabytes
of AND (or OR) operations per second. The figure also plots
the estimated throughput of our conservative and aggressive
mechanisms. There are three conclusions we can draw from
the figure.
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Fig. 5. Throughput comparison with Intel AVX extensions

First, as the vector size (S) increases, the throughput of the
baseline system drops — with sharp dips at points (highlighted
in the figure) when the cumulative working set no longer fits in
a particular level of cache. Note that the working set is roughly
three times S. While the baseline starts with an impressive 71
GB/s of AND operations when the working set fits the L1
cache, the throughput drops to 3.9 GB/s when the working
set does not fit into any level of on-chip cache.

Second, both of our mechanisms significantly outperform the
baseline throughput when the working set of the application
does not fit into any on-chip cache (e.g., S ≥ 4MB). The
throughput of our conservative mechanism (22.4 GB/s) is over
5X the baseline throughput and that of our aggressive mech-
anism (38.2 GB/s) is close to 10X the baseline throughput.

Third, although we run our benchmark on only a single
core, the throughput of the baseline is limited by the available
memory bandwidth. In sharp contrast, the throughput of our
mechanism scales linearly with the number of banks, since
our mechanism can be employed simultaneously in many
DRAM banks. In other words, with just two DRAM banks, our
mechanism can achieve a throughput of 76.4 GB/s of AND/OR
operations, whereas the throughput of the baseline, even with
multiple cores, will not be much better than 3.9 GB/s.
Energy. We use the Rambus power model [19] to estimate the
energy consumption of our mechanisms and the baseline. For
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the baseline, our estimate only includes the energy of accessing
DRAM and does not include the energy consumed in accessing
the on-chip caches and performing the computation. Based
on our estimates, our conservative mechanism reduces energy
consumption by 31.6X , and our aggressive mechanism reduces
energy consumption by 50.5X compared to the baseline.

In summary, our mechanism is significantly more efficient
than the baseline system, providing more than an order of mag-
nitude improvement in throughput and reduction in energy
consumption of bulk bitwise AND/OR operations.

5 ANALYSIS OF A REAL-WORLD BITMAP INDEX
We analyze our mechanism’s performance on a real-world
bitmap index library, FastBit [1], widely-used in physics sim-
ulations and network analysis. Fastbit can enable faster and
more efficient searching/retrieval compared to B-trees.

To construct an index, FastBit uses multiple bitmap bins,
each corresponding to either a distinct value or a range of
values. FastBit relies on fast bitwise AND/OR operations on
these bitmaps to accelerate joins and range queries. For example,
to execute a range query, FastBit performs a bitwise OR of all
bitmaps that correspond to the specified range.

We initialized FastBit on our baseline system using the
sample STAR [3] data set. We then ran a set of indexing-
intensive range queries that touch various numbers of bitmap
bins. For each query, we measure the fraction of query exe-
cution time spent on bitwise OR operations. Table 1 shows
the corresponding results. For each query, the table shows
the number of bitmap bins involved in the query and the
percentage of time spent in bitwise OR operations. On average,
31% of the query execution is spent on bitwise OR operations
(with small variance across queries).

TABLE 1. Fraction of time spent in OR operations

Number of bins 3 9 20 45 98 118 128

Fraction of time
spent in OR 29% 29% 31% 32% 34% 34% 34%

To estimate the performance of our mechanism, we measure
the number of bitwise OR operations required to complete
the query. We then compute the amount of time taken by our
mechanism to complete these operations and then use that to
estimate the performance of the overall query execution. To
perform a bitwise OR of more than two rows, our mechanism
is invoked two rows at a time. Figure 6 shows the potential
performance improvement using our two mechanisms (con-
servative and aggressive), each with either 1 bank or 4 banks.

As our results indicate, our aggressive mechanism with 4
banks improves the performance of range queries by 30% (on
average) compared to the baseline, eliminating almost all the
overhead of bitwise operations. As expected, the aggressive
mechanism performs better than the conservative mechanism.
Similarly, using more banks provides better performance. Even
if we assume a 2X higher latency for the triple-row activation,
our conservative mechanism with 1 bank improves perfor-
mance by 18% (not shown in the figure).
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Fig. 6. Range query performance improvement over baseline

6 RELATED WORK
To our knowledge, this is the first work to exploit the analog
operation of DRAM to perform bitwise operations. Many
works (e.g., EXECUBE [14], IRAM [18], DIVA [7]) have pro-
posed mechanisms to integrate logic on the DRAM chip to
perform bandwidth-intensive operations. The main limitation
of such approaches is that adding large amounts of logic to
DRAM significantly increases DRAM cost. Some new DRAM
architectures [2,11,16] contain a logic layer. Many techniques
(e.g., [4,5,8,9,24]) have been proposed to exploit the logic
layer to implement some computation close to DRAM. How-
ever, these architectures still have limited memory bandwidth
available to the logic layer, and our mechanism can provide
much higher throughput and efficiency for bitwise AND/OR
operations. Therefore, the spare space in the logic layer can be
used to implement other functionality, while our mechanism
can still be used to implement bitwise AND/OR operations.

7 CONCLUSION
We presented a new and simple mechanism to perform bulk
bitwise AND/OR operations completely within DRAM. Our
mechanism exploits the analog operation of modern DRAM,
and hence incurs low implementation cost. Our evaluations
show that our approach can potentially increase throughput
and energy-efficiency of bitwise AND/OR operations by more
than an order of magnitude compared to the baseline, and sig-
nificantly improve the performance of real-world applications.
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