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Abstract—Pointer chasing is a fundamental operation, used by many
important data-intensive applications (e.g., databases, key-value stores,
graph processing workloads) to traverse linked data structures. This
operation is both memory bound and latency sensitive, as it (1) exhibits
irregular access patterns that cause frequent cache and TLB misses, and
(2) requires the data from every memory access to be sent back to the
CPU to determine the next pointer to access. Our goal is to accelerate
pointer chasing by performing it inside main memory, thereby avoiding
inefficient and high-latency data transfers between main memory and the
CPU. To this end, we propose the In-Memory PoInter Chasing Accelerator
(IMPICA), which leverages the logic layer within 3D-stacked memory for
linked data structure traversal.

This paper identifies the key design challenges of designing a pointer
chasing accelerator in memory, describes new mechanisms employed
within IMPICA to solve these challenges, and evaluates the performance
and energy benefits of our accelerator. IMPICA addresses the key
challenges of (1) how to achieve high parallelism in the presence of serial
accesses in pointer chasing, and (2) how to effectively perform virtual-
to-physical address translation on the memory side without requiring
expensive accesses to the CPU’s memory management unit. We show that
the solutions to these challenges, address-access decoupling and a region-
based page table, respectively, are simple and low-cost. We believe these
solutions are also applicable to many other in-memory accelerators, which
are likely to also face the two challenges.

Our evaluations on a quad-core system show that IMPICA improves the
performance of pointer chasing operations in three commonly-used linked
data structures (linked lists, hash tables, and B-trees) by 92%, 29%, and
18%, respectively. This leads to a significant performance improvement
in applications that utilize linked data structures — on a real database
application, DBx1000, IMPICA improves transaction throughput and
response time by 16% and 13%, respectively. IMPICA also significantly
reduces overall system energy consumption (by 41%, 23%, and 10% for
the three commonly-used data structures, and by 6% for DBx1000).

1. Introduction
Linked data structures, such as trees, hash tables, and linked lists are

commonly used in many important applications [21, 25, 28, 33, 60, 61,
89]. For example, many databases use B/B+-trees to efficiently index
large data sets [21,28], key-value stores use linked lists to handle colli-
sions in hash tables [25, 60], and graph processing workloads [1,2,81]
use pointers to represent graph edges. These structures link nodes
using pointers, where each node points to at least one other node by
storing its address. Traversing the link requires serially accessing con-
secutive nodes by retrieving the address(es) of the next node(s) from
the pointer(s) stored in the current node. This fundamental operation is
called pointer chasing in linked data structures.

Pointer chasing is currently performed by the CPU cores, as part
of an application thread. While this approach eases the integration of
pointer chasing into larger programs, pointer chasing can be inefficient
within the CPU, as it introduces several sources of performance degra-
dation: (1) dependencies exist between memory requests to the linked
nodes, resulting in serialized memory accesses and limiting the avail-
able instruction-level and memory-level parallelism [33,61,62,67,75];
(2) irregular allocation or rearrangement of the connected nodes leads
to access pattern irregularity [18,43,45,61,93], causing frequent cache
and TLB misses; and (3) link traversals in data structures that diverge
at each node (e.g., hash tables, B-trees) frequently go down different
paths during different iterations, resulting in little reuse, further lim-
iting cache effectiveness [59]. Due to these inefficiencies, a significant
memory bottleneck arises when executing pointer chasing operations in
the CPU, which stalls on a large number of memory requests that suffer
from the long round-trip latency between the CPU and the memory.

Many prior works (e.g., [14–16, 18, 36, 37, 43, 45, 55, 58, 59, 61, 75,
76,83,92,93,95,99]) proposed mechanisms to predict and prefetch the
next node(s) of a linked data structure early enough to hide the memory
latency. Unfortunately, prefetchers for linked data structures suffer

from several shortcomings: (1) they usually do not provide significant
benefit for data structures that diverge at each node [45], due to low
prefetcher accuracy and low miss coverage; (2) aggressive prefetchers
can consume too much of the limited off-chip memory bandwidth and,
as a result, slow down the system [18, 43, 84]; and (3) a prefetcher that
works well for some pointer-based data structure(s) and access patterns
(e.g., a Markov prefetcher designed for mostly-static linked lists [43])
usually does not work efficiently for different data structures and/or
access patterns. Thus, it is important to explore new solution directions
to alleviate performance and efficiency loss due to pointer chasing.

Our goal in this work is to accelerate pointer chasing by di-
rectly minimizing the memory bottleneck caused by pointer chasing
operations. To this end, we propose to perform pointer chasing in-
side main memory by leveraging processing-in-memory (PIM) mecha-
nisms, avoiding the need to move data to the CPU. In-memory pointer
chasing greatly reduces (1) the latency of the operation, as an address
does not need to be brought all the way into the CPU before it can be
dereferenced; and (2) the reliance on caching and prefetching in the
CPU, which are largely ineffective for pointer chasing.

Early work on PIM proposed to embed general-purpose logic in
main memory [20,30,44,48,69,70,80,85], but was not commercialized
due to the difficulty of fabricating logic and memory on the same die.
The emergence of 3D die-stacked memory, where memory layers are
stacked on top of a logic layer [38, 39, 41, 42, 50], provides a unique
opportunity to embed simple accelerators or cores within the logic
layer. Several recent works recognized and explored this opportunity
(e.g., [1–3,6,7,10,12,22,27,31,34,46,51,56,71,72,96,97]) for various
purposes. For the first time, in this work, we propose an in-memory
accelerator for chasing pointers in any linked data structure, called the
In-Memory PoInter Chasing Accelerator (IMPICA). IMPICA lever-
ages the low memory access latency at the logic layer of 3D-stacked
memory to speed up pointer chasing operations.

We identify two fundamental challenges that we believe exist for a
wide range of in-memory accelerators, and evaluate them as part of a
case study in designing a pointer chasing accelerator in memory. These
fundamental challenges are (1) how to achieve high parallelism in the
accelerator (in the presence of serial accesses in pointer chasing), and
(2) how to effectively perform virtual-to-physical address translation
on the memory side without performing costly accesses to the CPU’s
memory management unit. We call these, respectively, the parallelism
challenge and the address translation challenge.

The Parallelism Challenge. Parallelism is challenging to exploit
in an in-memory accelerator even with the reduced latency and higher
bandwidth available within 3D-stacked memory, as the performance
of pointer chasing is limited by dependent sequential accesses. The
serialization problem can be exacerbated when the accelerator tra-
verses multiple streams of links: while traditional out-of-order or mul-
ticore CPUs can service memory requests from multiple streams in
parallel due to their ability to exploit high levels of instruction- and
memory-level parallelism [29, 33, 62, 64–67, 86], simple accelerators
(e.g., [1, 22, 72, 97]) are unable to exploit such parallelism unless they
are carefully designed.

We observe that accelerator-based pointer chasing is primarily bot-
tlenecked by memory access latency, and that the address generation
computation for link traversal takes only a small fraction of the to-
tal traversal time, leaving the accelerator idle for a majority of the
traversal time. In IMPICA, we exploit this idle time by decoupling
link address generation from the issuing and servicing of a memory
request, which allows the accelerator to generate addresses for one



link traversal stream while waiting on the request associated with a
different link traversal stream to return from memory. We call this
design address-access decoupling. Note that this form of decoupling
bears resemblance to the decoupled access/execute architecture [82],
and we in fact take inspiration from past works [17,49,82], except our
design is specialized for building a pointer chasing accelerator in 3D-
stacked memory, and this paper solves specific challenges within the
context of pointer chasing acceleration.

The Address Translation Challenge. An in-memory pointer chas-
ing accelerator must be able to perform address translation, as each
pointer in a linked data structure node stores the virtual address of
the next node, even though main memory is physically addressed.
To determine the next address in the pointer chasing sequence, the
accelerator must resolve the virtual-to-physical address mapping. If
the accelerator relies on existing CPU-side address translation mech-
anisms, any performance gains from performing pointer chasing in
memory could easily be nullified, as the accelerator needs to send a
long-latency translation request to the CPU via the off-chip channel
for each memory access. The translation can sometimes require a page
table walk, where the CPU must issue multiple memory requests to
read the page table, which further increases traffic on the memory
channel. While a naive solution is to simply duplicate the TLB and
page walker within memory, this is prohibitively difficult for three
reasons: (1) coherence would have to be maintained between the CPU
and memory-side TLBs, introducing extra complexity and off-chip
requests; (2) the duplication is very costly in terms of hardware; and
(3) a memory module can be used in conjunction with many different
processor architectures, which use different page table implementa-
tions and formats, and ensuring compatibility between the in-memory
TLB/page walker and all of these designs is difficult.

We observe that traditional address translation techniques do not
need to be employed for pointer chasing, as link traversals are (1) lim-
ited to linked data structures, and (2) touch only certain data structures
in memory. We exploit this in IMPICA by allocating data structures
accessed by IMPICA into contiguous regions within the virtual mem-
ory space, and designing a new translation mechanism, the region-
based page table, which is optimized for in-memory acceleration. Our
approach provides translation within memory at low latency and low
cost, while minimizing the cost of maintaining TLB coherence.

Evaluation. By solving both key challenges, IMPICA provides
significant performance and energy benefits for pointer chasing op-
erations and applications that use such operations. First we examine
three microbenchmarks, each of which performs pointer chasing on a
widely used data structure (linked list, hash table, B-tree), and find that
IMPICA improves their performance by 92%, 29%, and 18%, respec-
tively, on a quad-core system over a state-of-the-art baseline. Second,
we evaluate IMPICA on a real database workload, DBx1000 [94], on a
quad-core system, and show that IMPICA increases overall database
transaction throughput by 16% and reduces transaction latency by
13%. Third, IMPICA reduces overall system energy, by by 41%, 23%,
and 10% for the three microbenchmarks and by 6% for DBx1000.
These benefits come at a very small hardware cost: our evaluations
show that IMPICA comprises only 7.6% of the area of a small embed-
ded core (the ARM Cortex-A57 [4]).

We make the following major contributions in this paper:
• This is the first work to propose an in-memory accelerator for

pointer chasing. Our proposal, IMPICA, accelerates linked data
structure traversal by chasing pointers inside the logic layer of
3D-stacked memory, thereby eliminating inefficient, high-latency
serialized data transfers between the CPU and main memory.
• We identify two fundamental challenges in designing an efficient

in-memory pointer chasing accelerator (Section 3). These chal-
lenges can greatly hamper performance if the accelerator is not
designed carefully to overcome them. First, multiple streams of
link traversal can unnecessarily get serialized at the accelerator,
degrading performance (the parallelism challenge). Second, an in-
memory accelerator needs to perform virtual-to-physical address
translation for each pointer, but this critical functionality does not
exist on the memory side (the address translation challenge).
• IMPICA solves the parallelism challenge by decoupling link ad-

dress generation from memory accesses, and utilizes the idle
time during memory accesses to service multiple pointer chasing

streams simultaneously. We call this approach address-access de-
coupling (Section 4.1).
• IMPICA solves the address translation challenge by allocating

data structures it accesses into contiguous virtual memory regions,
and using an optimized and low-cost region-based page table
structure for address translation (Section 4.2).
• We evaluate IMPICA extensively using both microbenchmarks

and a real database workload. Our results (Section 7) show that
IMPICA improves both system performance and energy efficiency
for all of these workloads, while requiring only very modest hard-
ware overhead in the logic layer of 3D-stacked DRAM.

2. Motivation
To motivate the need for a pointer chasing accelerator, we first exam-

ine the usage of pointer chasing in contemporary workloads. We then
discuss opportunities for acceleration within 3D-stacked memory.
2.1. Pointer Chasing in Modern Workloads

Pointers are ubiquitous in fundamental data structures such as linked
lists, trees, and hash tables, where the nodes of the data structure are
linked together by storing the addresses (i.e., pointers) of neighboring
nodes. Pointers make it easy to dynamically add/delete nodes in these
data structures, but link traversal is often serialized, as the address of
the next node can be known only after the current node is fetched. The
serialized link traversal is commonly referred to as pointer chasing.

Due to the flexibility of insertion/deletion, pointer-based data struc-
tures and link traversal algorithms are essential building blocks in
programming, and they enable a very wide range of workloads. For
instance, at least six different types of modern data-intensive appli-
cations rely heavily on linked data structures: (1) databases and
file systems use B/B+-trees for indexing tables or metadata [21, 28];
(2) in-memory caching applications based on key-value stores, such
as Memcached [25] and Masstree [60], use linked lists to resolve hash
table collisions and trie-like B+-trees as their main data structures;
(3) graph processing workloads use pointers to represent the edges
that connect the vertex data structures together [1,81]; (4) garbage col-
lectors in high level languages typically maintain reference relations
using trees [89]; (5) 3D video games use binary space partitioning
trees to determine the objects that need to be rendered [68]; and (6) dy-
namic routing tables in networks employ balanced search trees for
high-performance IP address lookups [88].

While linked data structures are widely used in many modern appli-
cations, chasing pointers is very inefficient in general-purpose proces-
sors. There are three major reasons behind the inefficiency. First, the
inherent serialization that occurs when accessing consecutive nodes
limits the available instruction-level and memory-level parallelism [43,
55, 59, 61–67, 75, 76]. As a result, out-of-order execution provides
only limited performance benefit when chasing pointers [61, 62, 64].
Second, as nodes can be inserted and removed dynamically, they can
get allocated to different regions of memory. The irregular allocation
causes pointer chasing to exhibit irregular access patterns, which lead
to frequent cache and TLB misses [18, 43, 45, 61, 93]. Third, for data
structures that diverge at each node, such as B-trees, link traversals
often go down different paths during different iterations, as the inputs
to the traversal function change. As a result, lower-level nodes that
were recently referenced during a link traversal are unlikely to be
reused in subsequent traversals, limiting the effectiveness of many
caching policies [47, 55, 59], such as LRU replacement.

To quantify the performance impact of chasing pointers in real-
world workloads, we profile two popular applications that heavily de-
pend on linked data structures, using a state-of-art Intel Xeon system:1

(1) Memcached [25], using a real Twitter dataset [23] as its input; and
(2) DBx1000 [94], an in-memory database system, using the TPC-
C benchmark [87] as its input. We profile the pointer chasing code
within the application separately from other parts of the application
code. Figure 1 shows how pointer chasing compares to the rest of the
application in terms of execution time, cycles per instruction (CPI),
and the ratio of last-level cache (LLC) miss cycles to the total cycles.

We make three major observations. First, both Memcached and
DBx1000 spend a significant fraction of their total execution time (7%

1We use the Intel R© VTuneTM profiling tool on a machine with a Xeon R©
W3550 processor (3GHz, 8-core, 8 MB LLC) [40] and 18 GB memory. We
profile each application for 10 minutes after it reaches steady state.
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Fig. 1. Profiling results of pointer chasing portions of code vs. the rest of the
application code in Memcached and DBx1000.

and 19%, respectively) on pointer chasing, as a result of dependent
cache misses [33,61,75]. Though these percentages might sound small,
real software often does not have a single type of operation that con-
sumes this significant a fraction of the total time. Second, we find that
pointer chasing is significantly more inefficient than the rest of the
application, as it requires much higher cycles per instruction (6× in
Memcached, and 1.6× in DBx1000). Third, pointer chasing is largely
memory-bound, as it exhibits much higher cache miss rates than the
rest of the application and as a result spends a much larger fraction
of cycles waiting for LLC misses (16× in Memcached, and 1.5×
in DBx1000). From these observations, we conclude that (1) pointer
chasing consumes a significant fraction of execution time in two im-
portant and complicated applications, (2) pointer chasing operations
are bound by memory, and (3) executing pointer chasing code in a
modern general-purpose processor is very inefficient and thus can lead
to a large performance overhead. Other works made similar observa-
tions for different workloads [33, 61, 75].

Prior works (e.g., [14–16,18,36,37,43,45,55,58,59,61,75,76,83,92,
93, 95, 99]) proposed specialized prefetchers that predict and prefetch
the next node of a linked data structure to hide memory latency. While
prefetching can mitigate part of the memory latency problem, it has
three major shortcomings. First, the efficiency of prefetchers degrades
significantly when the traversal of linked data structures diverges into
multiple paths and the access order is irregular [45]. Second, prefetch-
ers can sometimes slow down the entire system due to contention
caused by inaccurate prefetch requests [18, 19, 43, 84]. Third, these
hardware prefetchers are usually designed for specific data structure
implementations, and tend to be very inefficient when dealing with
other data structures. It is difficult to design a prefetcher that is efficient
and effective for all types of linked data structures. Our goal in this
work is to improve the performance of pointer chasing applications
without relying on prefetchers, regardless of the types of linked data
structures used in an application.

2.2. Accelerating Pointer Chasing in 3D-Stacked Memory

We propose to improve the performance of pointer chasing by lever-
aging processing-in-memory (PIM) to alleviate the memory bottle-
neck. Instead of sequentially fetching each node from memory and
sending it to the CPU when an application is looking for a particular
node, PIM-based pointer chasing consists of (1) traversing the linked
data structures in memory, and (2) returning only the final node found
to the CPU.

Unlike prior works that proposed general architectural models for
in-memory computation by embedding logic in main memory [20, 30,
44, 48, 69, 70, 80, 85], we propose to design a specialized In-Memory
PoInter Chasing Accelerator (IMPICA) that exploits the logic layer
of 3D-stacked memory [38, 39, 41, 42, 50]. 3D die-stacked memory
achieves low latency (and high bandwidth) by stacking memory dies
on top of a logic die, and interconnecting the layers using through-
silicon vias (TSVs). Figure 2 shows a binary tree traversal using
IMPICA, compared to a traditional architecture where the CPU tra-
verses the binary tree. The traversal sequentially accesses the nodes
from the root to a particular node (e.g., H→E→A in Figure 2a).
In a traditional architecture (Figure 2b), these serialized accesses to
the nodes miss in the caches and three memory requests are sent to
memory serially across a high-latency off-chip channel. In contrast,
IMPICA traverses the tree inside the logic layer of 3D-stacked mem-
ory, and as Figure 2c shows, only the final node (A) is sent from
the memory to the host CPU in response to the traversal request.
Doing the traversal in memory minimizes both traversal latency (as
queuing delays in the on-chip interconnect and the CPU-to-memory
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Fig. 2. Pointer chasing (a) in a traditional architecture (b) and in IMPICA with
3D-stacked memory (c).

bus are eliminated) and off-chip bandwidth consumption, as shown in
Figure 2c.

Our accelerator architecture has three major advantages. First, it
improves performance and reduces bandwidth consumption by elim-
inating the round trips required for memory accesses over the CPU-
to-memory bus. Second, it frees the CPU to execute other work than
linked data structure traversal, increasing system throughput. Third, it
minimizes the cache contention caused by pointer chasing operations.

3. Design Challenges
We identify and describe two new challenges that are crucial to the

performance and functionality of our new pointer chasing accelerator
in memory: (1) the parallelism challenge, and (2) the address trans-
lation challenge. Section 4 describes our IMPICA architecture, which
centers around two key ideas that solve these two challenges.

3.1. Challenge 1: Parallelism in the Accelerator
A pointer chasing accelerator supporting a multicore system needs

to handle multiple link traversals (from different cores) in parallel at
low cost. A simple accelerator that can handle only one request at a
time (which we call a non-parallel accelerator) would serialize the
requests and could potentially be slower than using multiple CPU cores
to perform the multiple traversals. As depicted in Figure 3a, while
a non-parallel accelerator speeds up each individual pointer chasing
operation done by one of the CPU cores due to its shorter memory
latency, the accelerator is slower overall for two pointer chasing oper-
ations, as multiple cores can operate in parallel on independent pointer
chasing operations.
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Fig. 3. Execution time of two independent pointer chasing operations, broken
down into address computation time (Comp) and memory access time.

To overcome this deficiency, an in-memory accelerator needs to
exploit parallelism when it services requests. However, the accelerator
must do this at low cost, due to its placement within the logic layer
of 3D-stacked memory, where complex logic, such as out of order
execution circuitry, is not currently feasible. The straightforward so-
lution of adding multiple accelerators to service independent pointer
chasing operations (e.g., [47]) does not scale well, and also can lead to
excessive energy dissipation and die area usage in the logic layer.

A key observation we make is that pointer chasing operations are
bottlenecked by memory stalls, as shown in Figure 1. In our evalua-
tion, the memory access time is 10–15× the computation time. As a
result, the accelerator spends a significant amount of time waiting for
memory, causing its compute resources to sit idle. This makes typical
in-order or out-of-order execution engines inefficient for an in-memory
pointer-chasing accelerator. If we utilize the hardware resources in a
more efficient manner, we can enable parallelism by handling multiple
pointer chasing operations within a single accelerator.

3



Based on our observation, we decouple address generation from
memory accesses in IMPICA using two engines (address engine and
access engine), allowing the accelerator to generate addresses from
one pointer chasing operation while it concurrently performs memory
accesses for a different pointer chasing operation (as shown in Fig-
ure 3b). We describe the details of our decoupled accelerator design
in Section 4.
3.2. Challenge 2: Virtual Address Translation

A second challenge arises when pointer chasing is moved out of
the CPU cores, which are equipped with facilities for address trans-
lation. Within the program data structures, each pointer is stored as a
virtual address, and requires translation to a physical address before
its memory access can be performed. This is a challenging task for
an in-memory accelerator, which has no easy access to the virtual
address translation engine that sits in the CPU core. While sequential
array operations could potentially be constrained to work within page
boundaries or directly in physical memory, indirect memory accesses
that come with pointer-based data structures require some support for
virtual memory translation, as they might touch many parts of the
virtual address space.

There are two major issues when designing a virtual address trans-
lation mechanism for an in-memory accelerator. First, different pro-
cessor architectures have different page table implementations and
formats. This lack of compatibility makes it very expensive to simply
replicate the CPU page table walker in the in-memory accelerator as
this approach requires replicating TLBs and page walkers for many
architecture formats. Second, a page table walk tends to be a high-
latency operation involving multiple memory accesses due to the heav-
ily layered formats of a conventional page table. As a result, TLB
misses are a major performance bottleneck in data-intensive applica-
tions [8]. If the accelerator requires many page table walks that are
supported by the CPU’s address translation mechanisms, which require
high-latency off-chip accesses for the accelerator, its performance can
degrade greatly.

To address these issues, we completely decouple the page table of
IMPICA from that of the CPUs, obviating the need for compatibility
between the two tables. This presents us with an opportunity to de-
velop a new page table design that is much more efficient for our in-
memory accelerator. We make two key observations about the behavior
of a pointer chasing accelerator. First, the accelerator operates only
on certain data structures that can be mapped to contiguous regions
in the virtual address space, which we refer to as IMPICA regions.
As a result, it is possible to map contiguous IMPICA regions with a
smaller, region-based page table without needing to duplicate the page
table mappings for the entire address space. Second, we observe that if
we need to map only IMPICA regions, we can collapse the hierarchy
present in conventional page tables, allowing us to limit the overhead
of the IMPICA page table. We describe the IMPICA page table in
detail in Section 4.2.
4. IMPICA Architecture

We propose a new in-memory accelerator, IMPICA, that addresses
the two design challenges facing accelerators for pointer chasing. The
IMPICA architecture consists of a single specialized core designed to
decouple address generation from memory accesses. Our approach,
which we call address-access decoupling, allows us to efficiently over-
come the parallelism challenge (Section 4.1). The IMPICA core uses
a novel region-based page table design to perform efficient address
translation locally in the accelerator, allowing us to overcome the
address translation challenge (Section 4.2).
4.1. IMPICA Core Architecture

Our IMPICA core uses what we call address-access decoupling,
where we separate the core into two parts: (1) an address engine,
which generates the address specified by the pointer; and (2) an access
engine, which performs memory access operations using addresses
generated by the address engine. The key advantage of this design
is that the address engine supports fast context switching between
multiple pointer chasing operations, allowing it to utilize the idle
time during memory access(es) to compute addresses from a different
pointer chasing operation. As Figure 3b depicts, an IMPICA core can
process multiple pointer chasing operations faster than multiple cores
because it has the ability to overlap address generation with memory
accesses.

Our address-access decoupling has similarities to, and is in fact in-
spired by, the decoupled access-execute (DAE) architecture [82], with
two key differences. First, the goal of DAE is to exploit instruction-
level parallelism (ILP) within a single thread, whereas our goal is to
exploit thread-level parallelism (TLP) across pointer chasing opera-
tions from multiple threads. Second, unlike DAE, the decoupling in
IMPICA does not require any programmer or compiler effort. Our
approach is much simpler than both general-purpose DAE and out-
of-order execution, as it can switch between different independent
execution streams, without the need for dependency checking [35].

Figure 4 shows the architecture of the IMPICA core. The host CPU
initializes a pointer chasing operation by moving its code to main
memory, and then enqueuing the request in the request queue (¬ in
Figure 4). Section 5.1 describes the details of the CPU interface.
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The address engine services the enqueued request by loading the
pointer chasing code into its instruction RAM (­). This engine con-
tains all of IMPICA’s functional units, and executes the code in its
instruction RAM while using its data RAM (®) as a stack. All instruc-
tions that do not involve memory accesses, such as ALU operations
and control flow, are performed by the address engine. The number of
pointer chasing operations that can be processed in parallel is limited
by the size of the stack in the data RAM [35].

When the address engine encounters a memory instruction, it en-
queues the address (along with the data RAM stack pointer) into the
access queue (¯), and then performs a context switch to an indepen-
dent stream. For the switch, the engine pushes the hardware context
(i.e., architectural registers and the program counter) into the data
RAM stack. When this is done, the address engine can work on a
different pointer chasing operation.

The access engine services requests waiting in the access queue.
This engine translates the enqueued address from a virtual address to
a physical address, using the IMPICA page table (see Section 4.2).
It then sends the physical address to the memory controller, which
performs the memory access. Since the memory controller handles
data retrieval, the access engine can issue multiple requests to the
controller without waiting on the data, just as the CPU does today, thus
quickly servicing queued requests [35]. Note that the access engine
does not contain any functional units.

When the access engine receives data back from the memory con-
troller, it stores this data in the IMPICA cache (°), a small cache that
contains data destined for the address engine. The access queue entry
corresponding to the returned data is moved from the access queue to
the response queue (±).

The address engine monitors the response queue. When a response
queue entry is ready, the address engine reads it, and uses the stack
pointer to access and reload the registers and PC that were pushed onto
the data RAM stack. It then resumes execution for the pointer chasing
operation, continuing until it encounters the next memory instruction.
4.2. IMPICA Page Table

IMPICA uses a region-based page table (RPT) design optimized
for in-memory pointer chasing, leveraging the continuous ranges of
accesses (IMPICA regions) discussed in Section 3.2. Figure 5 shows
the structure of the RPT in IMPICA. The RPT is split into three
levels: (1) a first-level region table, which needs to map only a small
number of the contiguously-allocated IMPICA regions; (2) a second-
level flat page table for each region with a larger (e.g., 2MB) page
size; and (3) third-level small page tables that use conventional small
(e.g., 4KB) pages. In the example in Figure 5, when a 48-bit virtual
memory address arrives for translation, bits 47–41 of the address are
used to index the region table (¬ in Figure 5) to find the corresponding
flat page table. Bits 40–21 are used to index the flat page table (­),
providing the location of the small page table, which is indexed using
bits 20–12 (®). The entry in the small page table provides the physical
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page number of the page, and bits 11–0 specify the offset within the
physical page (¯).

The RPT is optimized to take advantage of the properties of pointer
chasing. The region table is almost always cached in the IMPICA
cache, as the total number of IMPICA regions is small, requiring small
storage (e.g., a 4-entry region table needs only 68B of cache space). We
employ a flat table with large (e.g., 2MB) pages at the second level in
order to reduce the number of page misses, though this requires more
memory capacity than the conventional 4-level page table structure.
As the number of regions touched by the accelerator is limited, this
additional capacity overhead remains constrained. Our page table can
optionally use traditional smaller page sizes to maximize memory
management flexibility. The OS can freely choose large (2MB) pages
or small (4KB) pages at the last level. Thanks to this design, a page
walk in the RPT usually results in only two misses, one for the flat page
table and another for the last-level small page table. This represents a
2× improvement over a conventional four-level page table, while our
flattened page table still provides coverage for a 2TB memory range.
The size of the IMPICA region is configurable and can be increased to
cover more virtual address space [35]. We believe that our RPT design
is general enough for use in a variety of in-memory accelerators that
operate on a specific range of memory regions.

We discuss how the OS manages the IMPICA RPT in Section 5.2.
5. Interface and Design Considerations

In this section, we discuss how we expose IMPICA to the CPU and
the OS. Section 5.1 describes the communication interface between
the CPU and IMPICA. Section 5.2 discusses how the OS manages
the page tables in IMPICA. In Section 5.3, we discuss how cache
coherence is maintained between the CPU and IMPICA caches.
5.1. CPU Interface and Programming Model

We use a packet-based interface between the CPU and IMPICA. In-
stead of communicating individual operations or operands, the packet-
based interface buffers requests and sends them in a burst to mini-
mize the communication overhead. Executing a function in IMPICA
consists of four steps on the interface. (1) The CPU sends to mem-
ory a packet comprising the function call and parameters. (2) This
packet is written to a specific location in memory, which is memory-
mapped to the data RAM in IMPICA and triggers IMPICA execution.
(3) IMPICA loads the specific function into the inst RAM with ap-
propriate parameters, by reading the values from predefined memory
locations. (4) Once IMPICA finishes the function execution, it writes
the return value back to the memory-mapped locations in the data
RAM. The CPU periodically polls these locations and receives the
IMPICA output. Note that the IMPICA interface is similar to the
interface proposed for the Hybrid Memory Cube (HMC) [38, 39].

The programming model for IMPICA is similar to the CPU pro-
gramming model. An IMPICA program can be written as a function in
the application code with a compiler directive. The compiler compiles
these functions into IMPICA instructions and wraps the function calls
with communication codes that utilize the CPU–IMPICA interface.
5.2. Page Table Management

In order for the RPT to identify IMPICA regions, the regions must
be tagged by the application. For this, the application uses a spe-
cial API to allocate pointer-based data structures. This API allocates
memory to a contiguous virtual address space. To ensure that all API
allocations are contiguous, the OS reserves a portion of the unused
virtual address space for IMPICA, and always allocates memory for
IMPICA regions from this portion. The use of such a special API

requires minimal changes to applications, and it allows the system
to provide more efficient virtual address translation. This also allows
us to ensure that when multiple memory stacks are present within
the system, the OS can allocate all IMPICA regions belonging to a
single application (along with the associated IMPICA page table) into
one memory stack, thereby avoiding the need for the accelerator to
communicate with a remote memory stack.

The OS maintains coherence between the IMPICA RPT and the
CPU page table. When memory is allocated in the IMPICA region,
the OS allocates the IMPICA page table. The OS also shoots down
TLB entries in IMPICA if the CPU performs any updates to IMPICA
regions. While this makes the OS page fault handler more complex, the
additional complexity does not cause a noticeable performance impact,
as page faults occur rarely and take a long time to service in the CPU.
5.3. Cache Coherence

Coherence must be maintained between the CPU and IMPICA
caches, and with memory, to avoid using stale data and thus ensure
correct execution. We maintain coherence by executing every function
that operates on the IMPICA regions in the accelerator. This solution
guarantees that no data is shared between the CPU and IMPICA, and
that IMPICA always works on up-to-date data. Other PIM coherence
solutions (e.g., [2,10,26]) can also be used to allow CPU to update the
linked data structures, but we choose not to employ these solutions in
our evaluation, as our workloads do not perform any such updates.

6. Methodology
We use the gem5 [9] full-system simulator with DRAMSim2 [74]

to evaluate our proposed design. We choose the 64-bit ARMv8 archi-
tecture, the accuracy of which has been validated against real hard-
ware [32]. We model the internal memory bandwidth of the memory
stack to be 4× that of the external bandwidth, similar to the config-
uration used in prior works [22, 96]. Our simulation parameters are
summarized in Table 1. Our technical report [35] provides more detail
on the IMPICA configuration.

Table 1. Major simulation parameters.
Processor

ISA ARMv8 (64-bits)
Core Configuration 4 OoO cores, 2 GHz, 8 wide, 128-entry ROB
Operating System 64-bit Linux from Linaro [54]

L1 I/D Cache 32KB/2-way each, 2-cycle
L2 Cache 1MB/8-way, shared, 20-cycle

DRAM Parameters
Memory Configuration DDR3-1600, 8 banks/device, FR-FCFS scheduler
DRAM Bus Bandwidth 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

IMPICA Configuration
Accelerator Core 500 MHz, 16 entries for each queue

Cache 32KB2/ 2-way
Address Translator 32 TLB entries with region-based page table

RAM 16KB Data RAM and 16KB Inst RAM

6.1. Workloads
We use three data-intensive microbenchmarks, which are essential

building blocks in a wide range of workloads, to evaluate the native
performance of performance chasing operations: linked lists, hash
tables, and B-trees. We also evaluate the performance improvement
in a real data-intensive workload, measuring the transaction latency
and throughout of DBx1000 [94], an in-memory OLTP database. We
modify all four workloads to offload each pointer chasing request to
IMPICA. To minimize communication overhead, we map the IMPICA
registers to user mode address space, thereby avoiding the need for
costly kernel code intervention.

Linked list. We use the linked list traversal microbenchmark [98]
derived from the health workload in the Olden benchmark suite [73].
The parameters are configured to approximate the performance of
the health workload. We measure the performance of the linked list
traversal after 30,000 iterations.

Hash table. We create a microbenchmark from the hash table
implementation of Memcached [25]. The hash table in Memcached
resolves hash collisions using chaining via linked lists. When there are
more than 1.5n items in a table of n buckets, it doubles the number of

2We sweep the size of the IMPICA cache from 32KB to 128KB, and find that
it has negligible effect on our results [35].
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buckets. We follow this rule by inserting 1.5 × 220 random keys into
a hash table with 220 buckets. We run evaluations for 100,000 random
key look-ups.

B-tree. We use the B-tree implementation of DBx1000 for our B-
tree microbenchmark. It is a 16-way B-tree that uses a 64-bit integer as
the key of each node. We randomly generate 3,000,000 keys and insert
them into the B-tree. After the insertions, we measure the performance
of the B-tree traversal with 100,000 random keys. This is the most time
consuming operation in the database index lookup.

DBx1000. We run DBx1000 [94] with the TPC-C benchmark [87].
We set up the TPC-C tables with 2,000 customers and 100,000 items.
For each run, we spawn 4 threads and bind them to 4 different CPUs
to achieve maximum throughput. We run each thread for a warm-
up period for the duration of 2,000 transactions, and then record the
software and hardware statistics for the next 5,000 transactions per
thread,3 which takes 300–500 million CPU cycles.

6.2. Die Area and Energy Estimation
We estimate the die area of the IMPICA processing logic at the

40nm process node based on recently-published work [57]. We include
the most important components: processor cores, L1/L2 caches, and
the memory controller. We use the area of ARM Cortex-A57 [4, 24],
a small embedded processor, for the main CPU. We conservatively
estimate the die area of IMPICA using the area of the Cortex-R4 [5],
an 8-stage dual issue RISC processor with 32 KB I/D caches. Table 2
lists the area estimate of each component.

Table 2. Die area estimates using a 40nm process.
Baseline CPU (Cortex-A57) 5.85 mm2 per core

L2 Cache 5 mm2 per MB
Memory Controller 10 mm2

IMPICA Core (including 32 KB I/D caches) 0.45 mm2

IMPICA comprises only 7.6% the area of a single baseline CPU
core, or only 1.2% the total area of the baseline chip (which includes
four CPU cores, 1MB L2 cache, and one memory controller). Note
that we conservatively model IMPICA as a RISC core. A much more
specialized engine can be designed for IMPICA to solely execute
pointer chasing code. Doing so would reduce the area and energy
overheads of IMPICA greatly, but can reduce the generality of the
pointer chasing access patterns that IMPICA can accelerate. We leave
this for future work.

We use McPAT [52] to estimate the energy consumption of the CPU,
caches, memory controllers, and IMPICA. We conservatively use the
configuration of the Cortex-R4 to estimate the energy consumed by
IMPICA. We use DRAMSim2 [74] to analyze DRAM energy.

7. Evaluation
We first evaluate the effect of IMPICA on system performance,

using both our microbenchmarks (Section 7.1) and the DBx1000
database (Section 7.2). We investigate the impact of different IMPICA
page table designs in Section 7.3, and examine system energy con-
sumption in Section 7.4. We compare a system containing IMPICA
to an accelerator-free baseline that includes an additional 128KB of
L2 cache (which is equivalent to the area of IMPICA) to ensure area-
equivalence across evaluated systems.

7.1. Microbenchmark Performance
Figure 6 shows the speedup of IMPICA and the baseline with ex-

tra 128KB of L2 cache over the baseline for each microbenchmark.
IMPICA achieves significant speedups across all three data structures
— 1.92× for the linked list, 1.29× for the hash table, and 1.18× for the
B-tree. In contrast, the extra 128KB of L2 cache provides very small
speedup (1.03×, 1.01×, and 1.02×, respectively). We conclude that
IMPICA is much more effective than the area-equivalent additional L2
cache for pointer chasing operations.

To provide insight into why IMPICA improves performance, we
present total (CPU and IMPICA) TLB misses per kilo instructions
(MPKI), cache miss latency, and total memory bandwidth usage for
these microbenchmarks in Figure 7. We make three observations.

3Based on our experiments on a real Intel Xeon machine, we find that this
is large enough to satisfactorily represent the behavior of 1,000,000 transac-
tions [35].
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Fig. 6. Microbenchmark performance with IMPICA.

First, a major factor contributing to the performance improvement
is the reduction in TLB misses. The TLB MPKI in Figure 7a depicts
the total (i.e., combined CPU and IMPICA) TLB misses in both the
baseline system and IMPICA. The pointer chasing operations have
low locality and pollute the CPU TLB. This leads to a higher overall
TLB miss rate in the application. With IMPICA, the pointer chasing
operations are offloaded to the accelerator. This reduces the pollution
and contention at the CPU TLB, reducing the overall number of TLB
misses. The linked list has a significantly higher TLB MPKI than the
other data structures because linked list traversal requires far fewer
instructions in an iteration. It simply accesses the next pointer, while
a hash table or a B-tree traversal needs to compare the keys in the node
to determine the next step.
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Fig. 7. Key architectural statistics for the microbenchmarks.

Second, we observe a significant reduction in cache miss latency
with IMPICA. Figure 7b compares the average cache miss latency be-
tween the baseline last-level cache and the IMPICA cache. On average,
the cache miss latency of IMPICA is only 60–70% of the baseline
cache miss latency. This is because IMPICA leverages the faster and
wider TSVs in 3D-stacked memory as opposed to the high latency and
narrow DRAM interface used by the CPU.

Third, as Figure 7c shows, IMPICA effectively utilizes the in-
ternal memory bandwidth in 3D-stacked memory, which is cheap
and abundant. There are two reasons for high bandwidth utilization:
(1) IMPICA runs much faster than the baseline so it generates more
traffic within the same amount time; and (2) IMPICA always accesses
memory at a larger granularity, retrieving each full node in a linked
data structure with a single memory request, while a CPU issues multi-
ple requests for each node as it can fetch only one cache line at a time.
The CPU can avoid using some of its limited memory bandwidth by
skipping some fields in the data structure that are not needed for the
current loop iteration. For example, some keys and pointers in a B-tree
node can be skipped whenever a match is found. In contrast, IMPICA
utilizes the wide internal bandwidth of 3D-stacked memory to retrieve
a full node on each access (more detail is in our tech report [35]).

We conclude that IMPICA is effective at significantly improving the
performance of important linked data structures.
7.2. Real Database Throughput and Latency

Figure 8 presents two key performance metrics for our evaluation
of DBx1000: database throughput and database latency. Database
throughput represents how many transactions are completed within a
certain period, while database latency is the average time to complete
a transaction. We normalize the results of three configurations to the
baseline. As mentioned earlier, the die area increase of IMPICA is
similar to a 128KB cache. To understand the effect of additional LLC
space better, we also show the results of adding 1MB of cache, which
takes about 8× the area of IMPICA, to the baseline. We make two
observations from our analysis of DBx1000.
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First, IMPICA improves the overall database throughput by 16%
and reduces the average database transaction latency by 13%. The
performance improvement is due to three reasons: (1) database index-
ing becomes faster with IMPICA, (2) offloading database indexing to
IMPICA reduces the TLB and cache contention due to pointer chasing
in the CPU, and (3) the CPU can do other useful tasks in parallel while
waiting for IMPICA. Note that our profiling results in Figure 1 show
that DBx1000 spends 19% of its time on pointer chasing. Therefore,
a 16% overall improvement is very close to the upper bound that any
pointer chasing accelerator can achieve for this database.

Second, IMPICA yields much higher database throughput than
simply providing additional cache capacity. IMPICA improves the
database throughput by 16%, while an extra 128KB of cache (with a
similar area overhead as IMPICA) does so by only 2%, and an extra
1MB of cache (8× the area of IMPICA) by only 5%.

We conclude that by accelerating the fundamental pointer chasing
operation, IMPICA can efficiently improve the performance of a so-
phisticated real workload.

7.3. Sensitivity to the IMPICA TLB Size & Page Table Design
To understand the effect of different TLB sizes and page table de-

signs in IMPICA, we evaluate the speedup in the amount of time spent
on address translation for IMPICA when different IMPICA TLB sizes
(32 and 64 entries) and accelerator page table structures (the baseline
4-level page table; and the region-based page table, or RPT) are used
inside the accelerator. Figure 9 shows the speedup in address transla-
tion time relative to IMPICA with a 32-entry TLB and the conventional
4-level page table. Two observations are in order.
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Fig. 9. Speedup of address translation with different designs.

First, the performance of IMPICA is largely unaffected by increas-
ing the IMPICA TLB size. Doubling the IMPICA TLB entries from 32
to 64 barely improves the address translation time. This observation re-
flects the irregular nature of pointer chasing. Second, the benefit of the
RPT is much more significant in a sophisticated workload (DBx1000)
than in microbenchmarks. This is because the working set size of the
microbenchmarks is much smaller than that of the database system.
When the working set is small, the operating system needs only a
small number of page table entries in the first and second levels of a
traditional page table. These entries are used frequently, so they stay
in the IMPICA cache much longer, reducing the address translation
overhead. This caching benefit goes away with a larger working set,
which would require a significantly larger TLB and IMPICA cache to
reap locality benefits. The benefit of RPT is more significant in such a
case because RPT does not rely on this caching effect. Its region table
is always small irrespective of the workload size and it has fewer page
table levels.

7.4. Energy Efficiency
Figure 10 shows the system energy consumption for the mi-

crobenchmarks and DBx1000. We observe that the overall system
power increases by 5.6% on average (not shown), due to the addi-
tion of IMPICA and higher utilization of internal memory bandwidth.
However, as IMPICA significantly reduces the execution time of the
evaluated workloads, the overall system energy consumption reduces
by 41%, 24%, and 10% for the microbenchmarks, and by 6% for
DBx1000. We conclude that IMPICA is an energy-efficient accelerator
for pointer chasing.
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Fig. 10. Effect of IMPICA on energy consumption.

8. Related Work
To our knowledge, this is the first work to (1) leverage the logic

layer in 3D-stacked memory to accelerate pointer chasing in linked
data structures, (2) propose an address-access decoupled architecture
to tackle the parallelism challenge for in-memory accelerators, and
(3) propose a general and efficient page table mechanism to tackle the
address translation challenge for in-memory accelerators.

Many prior works investigate the pointer chasing problem and pro-
pose solutions using software or hardware prefetching mechanisms
(e.g., [14–16,18,36,37,43,45,55,58,59,61,75,76,83,92,93,95,99]).
The effectiveness of this approach is fundamentally dependent on the
accuracy and generality of address prediction. In this work, we im-
prove the performance of pointer chasing operation with an in-memory
accelerator, inspired by the concept of processing-in-memory (PIM)
(e.g., [20, 30, 44, 48, 69, 70, 80, 85]). There are many recent proposals
that aim to improve the performance of data intensive workloads using
accelerators in CPUs or in memory (e.g., [1–3,6,7,11–13,22,27,31,34,
46, 47, 51, 53, 72, 77–79, 90, 91, 96, 97]). Here, we briefly discuss these
related works. None of these works provide an accelerator for pointer
chasing in memory.

Prefetching for Linked Data Structures. Many works propose
mechanisms to prefetch data in linked data structures to hide memory
latency. These proposals are hardware-based (e.g., [14,16,36,37,43,61,
76,95]), software-based (e.g., [55,59,75,92,93]), pre-execution-based
(e.g., [15, 58, 83, 99]), or software/hardware-cooperative (e.g., [18,
63, 76]) mechanisms. These approaches have two major drawbacks.
First, they rely on predictable traversal sequences to prefetch accu-
rately. These mechanisms can become very inefficient if the linked data
structure is complex or when access patterns are less regular. Second,
the pointer chasing is performed at the CPU cores or at the memory
controller, which likely leads to pollution of the CPU caches and TLBs
by these irregular memory accesses.

Processing-in-Memory (PIM). The idea of PIM can be traced
back to 1970 [85]. A number of works have attempted to realize the
idea of placing a general-purpose processor in memory with different
approaches since the 1980s (e.g., [20,30,44,48,69,70,80]). Our work is
inspired by the PIM concept, but our focus is on the design challenges
of an in-memory pointer chasing accelerator (and not on the design of
a general-purpose processor in memory).

Accelerators in 3D-Stacked Memory. The rapid advances in
3D-stacked memory technology have revived the idea of PIM. There
are several in-memory accelerator proposals that leverage 3D-stacked
memory designs for data-intensive applications. These include accel-
erators for MapReduce [72], matrix multiplication [97], data reorgani-
zation [3], graph processing [1], databases [7], data-intensive process-
ing [31], and machine learning workloads [12, 46, 51]. Some works
propose more generic architectures by adding PIM-enabled instruc-
tions [2], GPGPUs [34, 71, 96], or reconfigurable hardware [22, 27]
to memory. Our proposal has three major contributions over these
works. First, none of these works focus on pointer chasing, a key
operation in many important workloads. Second, we expose two new
design challenges for in-memory accelerators (parallelism and address
translation). Third, we propose an efficient hardware architecture and
page table structure to tackle these two challenges, which we believe
can also be employed in other in-memory accelerators.

Accelerators in CPUs. There have been various CPU-side acceler-
ator proposals for database systems (e.g., [13,47,90,91]) and key-value
stores [53]. Among them, Widx [47], a database indexing accelerator,
is the closest to our work. Widx is a set of custom RISC cores in the
CPU to accelerate hash index lookups. While a hash table is one of our
data structures of interest, IMPICA differs from Widx in three ways.
First, it is an in-memory (as opposed to CPU-side) accelerator, which
poses very different design challenges. Second, we solve the address
translation challenge for in-memory accelerators, while Widx uses
the CPU address translation structures. Third, we enable parallelism
within a single accelerator core, while Widx achieves parallelism by
replicating several RISC cores.

9. Conclusion
We introduce the design and evaluation of an in-memory acceler-

ator, called IMPICA, for performing pointer chasing operations in
3D-stacked memory. We identify two major challenges in the design
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of such an in-memory accelerator: (1) the parallelism challenge and
(2) the address translation challenge. We provide new solutions to
these two challenges: (1) address-access decoupling solves the paral-
lelism challenge by decoupling the address generation from memory
accesses in pointer chasing operations and exploiting the idle time
during memory accesses to execute multiple pointer chasing opera-
tions in parallel, and (2) the region-based page table in 3D-stacked
memory solves the address translation challenge by tracking only those
limited set of virtual memory regions that are accessed by pointer
chasing operations. Our evaluations show that for both commonly-
used linked data structures and a real database application, IMPICA
significantly improves both performance and energy efficiency. We
conclude that IMPICA is an efficient and effective accelerator design
for pointer chasing. We also believe that the two challenges we identify
(parallelism and address translation) exist in various forms in other in-
memory accelerators (e.g., for graph processing), and, therefore, our
solutions to these challenges can be adapted for use by a broad class of
(in-memory) accelerators.
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