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ABSTRACT 

Computing is bottlenecked by data. Large amounts of 
application data overwhelm storage capability, communication 
capability, and computation capability of the modern machines 
we design today. As a result, many key applications' 
performance, efficiency and scalability are bottlenecked by 
data movement. In this invited special session talk, we 
describe three major shortcomings of modern architectures in 
terms of 1) dealing with data, 2) taking advantage of the vast 
amounts of data, and 3) exploiting different semantic 
properties of application data. We argue that an intelligent 
architecture should be designed to handle data well. We show 
that handling data well requires designing architectures based 
on three key principles: 1) data-centric, 2) data-driven, 3) data-
aware. We give several examples for how to exploit each of 
these principles to design a much more efficient and high 
performance computing system. We especially discuss recent 
research that aims to fundamentally reduce memory latency 
and energy, and practically enable computation close to data, 
with at least two promising novel directions: 1) processing 
using memory, which exploits analog operational properties of 
memory chips to perform massively-parallel operations in 
memory, with low-cost changes, 2) processing near memory, 
which integrates sophisticated additional processing capability 
in memory controllers, the logic layer of 3D-stacked memory 
technologies, or memory chips to enable high memory 
bandwidth and low memory latency to near-memory logic. We 
discuss how to enable adoption of such fundamentally more 
intelligent architectures, which we believe are key to 
efficiency, performance, and sustainability. We conclude with 
some guiding principles for future computing architecture and 
system designs. This accompanying short paper provides a 
summary of the invited talk and points the reader to further 
work that may be beneficial to examine.  
 

I. INTRODUCTION 

Existing computing systems process increasingly large 
amounts of data. Data is key for many modern (and likely even 
more future) workloads and systems. Important workloads 
(e.g., machine learning, artificial intelligence, genome 
analysis, graph analytics, databases, video analytics, online 
collaboration), whether they execute on cloud servers or 
mobile systems are all data intensive; they require efficient 
processing of large amounts of data. Today, we can generate 
more data than we can process, as exemplified by the rapid 
increase in the data obtained in astronomy observations and 
genome sequencing [1].  

Unfortunately, the way they are designed, modern 
computers are not efficient at dealing with large amounts of 
data: large amounts of application data greatly overwhelm the 
storage capability, the communication capability, and the 
computation capability of the modern machines we design 
today. As such, data becomes a large performance and energy 
bottleneck, and it greatly impacts system robustness and 
security as well. As a prime example, we provide evidence that 

the potential for new genome sequencing technologies, such as 
nanopore sequencing [2, 113], is greatly limited by how fast 
and how efficiently we can process the huge amounts of 
genomic data the underlying technology can provide us with 
[3, 83, 113, 119, 143].  A similar observation can also be made 
for video analytics [163, 7] and machine learning [198-199, 7]. 

The processor-centric design paradigm (and the resulting 
processor-centric execution model) of modern computing 
systems is one prime cause of why data overwhelms modern 
machines [4, 5, 120]. With this paradigm, there is a clear 
dichotomy between processing and memory/storage: data has 
to be brought from storage and memory units to computation 
units (e.g., general-purpose processors or special-purpose 
accelerators), which are far away from the memory/storage 
units, before any processing can be done on the data. The 
dichotomy exists at the macro-scale (e.g., across the internet) 
as well as the micro-scale (e.g., within a single compute node, 
or even within a single CPU processing core). This processor-
memory dichotomy leads to large amounts of data movement 
across the entire computing system, degrading performance 
and expending large amounts of energy. For example, a recent 
work [7] shows that more than 60% of the entire mobile 
system energy is spent on data movement across the memory 
hierarchy when executing four major commonly-used 
consumer workloads, including machine learning inference, 
video processing and playback, and web browsing. Similarly, 
due to the current processor-centric design paradigm, a large 
fraction of the system resources is dedicated to units that store 
and move data (i.e., to serve the computation units), and actual 
computation units constitute only ~5% of an entire processing 
node [8] – yet, even then, data access is still a major bottleneck 
due to the large latency and energy costs of accessing large 
amounts of data.  

II. FUNDAMENTAL PRINCIPLES 

Our starting axiom for an intelligent architecture is that it 
should handle (i.e., store, access, and process) data well. But, 
what does it mean for an architecture to handle data well? We 
posit (and later demonstrate with examples) that the answer 
lies in satisfying three major desirable properties (or 
principles): 1) data-centric, 2) data-driven, and 3) data-aware.  

First, the system should ensure that data does not 
overwhelm its components. Doing so requires effort in 
intelligent algorithms, intelligent architectures and intelligent 
whole system designs that are co-optimized cross-layer (i.e., 
optimizations spanning across algorithms-architectures-
devices), in a manner that puts data and its processing at the 
center of the design, minimizing data movement and 
maximizing the efficiency with which data is handled, i.e., 
stored, accessed, and processed (e.g., as exemplified in [4-38, 
120]). We call this first principle data-centric architectures.  

Second, an intelligent architecture takes advantage of the 
vast amounts of data and metadata that flow through the 
system, to continuously improve its decision making, by 
bettering both its policies and mechanisms based on online 



learning and self-optimization. In other words, the architecture 
should make data-driven, self-optimizing decisions in its 
components (e.g., as exemplified in [39-51, 121]). We call this 
second principle data-driven architectures.  

Third, an intelligent architecture understands and exploits 
various properties of each piece of data so that it can improve 
and adapt its algorithms, mechanisms, and policies based on 
the characteristics of data. In other words, the architecture 
should make data-characteristics-aware decisions in its 
components and across the entire system (e.g., as exemplified 
in [52-58, 107, 116, 11, 149]). We call this third principle 
data-aware architectures. 

III. EXISTING COMPUTING ARCHITECTURES 

Based on our qualitative and quantitative analyses, we find 
that existing computing architectures greatly fall short of 
handling data well. In particular they violate all of the three 
major desirable principles. We analyze each briefly next. 

First, modern architectures are poor at dealing with data: 
they are designed to mainly store and move data, as opposed to 
actually compute on the data. Most system resources serve the 
processor (and accelerators) without being capable of 
processing data. As such, existing architectures are processor-
centric as opposed to data-centric: they place the most value 
in the processor (not data) and everything else in the system is 
viewed as secondary serving the processor. We believe this is 
the wrong mindset and approach in designing a balanced 
system that handles data well: such a system should be data 
centric: i.e., data should be the prime thing that is valued and 
everything else in the  system should be designed to 1) 
minimize data movement by enabling computation capability 
at and close to where data resides and 2) maximize the value 
and efficiency of processing data by enabling low-latency and 
low-energy access to as well as low-energy and low-cost 
storage of vast amounts of data. Doing so would eliminate the 
huge data access bottleneck of processor-centric systems, 
thereby improving performance, reducing  energy 
consumption, alleviating off-chip bandwidth requirements 
(and hence area and cost), likely reducing system and 
hardware design complexity, as well as opening up new 
opportunities for improving system security and reliability by 
handling data more locally in or near where it resides.  

Second, modern architectures are poor at taking advantage 
of vast amounts of data (and metadata) available to them 
during online operation and over time. They are designed to 
make simple decisions based on fixed policies, ignoring 
massive amounts of easily-available data. This is because 
existing architectural policies make human-driven decisions as 
opposed to data-driven decisions, and humans, by nature, do 
not seem capable of designing policies and heuristics that 
consider hundreds, if not thousands, of different state attributes 
that may be useful to examine in a control policy that makes 
dynamic decisions. It is instructive to notice that a modern 
memory controller, for example, keeps executing exactly the 
same fixed policy for scheduling or power management (e.g., 
FR-FCFS [59, 60], PAR-BS [61] or some other heuristic-based 
policy [62-73, 117-118, 122-133]), during the entire lifetime of 
a system (for many many years!), regardless of the positive or 
negative impact of the decisions resulting from the policy at 
any given point of time on the system. The same is true for a 
modern prefetch controller, a cache controller, a network 
controller, and for many other hardware controllers in a system 
(e.g., [150-162, 200-214]). Each controller sees a vast amount 

of data and makes a vast number of decisions even in the 
timeframe of a single millisecond (let alone years), yet it is 
incapable of learning from that data and changing its policy to 
another dynamically-determined better policy because the 
policy it follows is rigid and hardcoded by a human. This is 
clearly not intelligent: for example, as humans, we have the 
capability to learn from the past and adapt our actions 
accordingly to not repeat the same mistakes as in the past or to 
choose the best policy/actions that we believe will provide the 
highest benefits in the future. Enabling similar intelligence and 
far-sightedness in controller and system policies in an 
architecture is necessary for obtaining good performance and 
efficiency (as well as better reliability, security and perhaps 
other metrics) under a variety of system conditions and 
workloads.  

Third, modern architectures are poor at knowing and 
exploiting different properties of application and system data. 
They are designed to treat all data as the same (except for a 
small set of specialized hints that provide some opportunity to 
optimize based on data characteristics in a limited manner that 
is very specific to the particular optimization). As such, the 
decisions existing architectures make are component-aware 
decisions as opposed to data-aware decisions: a component’s 
(e.g., a cache’s or a memory controller’s) structural and 
performance characteristics dominate the policies designed to 
control that component and the accessed/manipulated data’s 
characteristics are rarely conveyed to the policies or even 
known. If the characteristics of the data to be accessed or 
manipulated were known, the decisions taken could be very 
different: for example, if we knew the relative compressibility 
of different types of data, e.g., different data types or different 
objects [55, 74-81, 135-138], different components in the 
entire system could be designed in a manner that adaptively 
scales their capability to match the compressibility of different 
data elements, in order to maximize both performance and 
efficiency.   Modifying the architecture and its interface to 
become richer and more expressive, and to include rich and 
accurate information on various properties of data that is to be 
processed, is therefore critical to customizing the architecture 
to the characteristics of the data and, thus, enabling intelligent 
adaptation of system policies to data characteristics.  

IV. INTELLIGENT COMPUTING ARCHITECTURES 

A major chunk of our invited talk describes in detail the 
characteristics of an intelligent computing architecture, by 
concrete examples and their empirical evaluation. This short 
paper does not go into detail, but provides a brief overview 
with references to other works that exemplify such 
architectures. Multiple detailed versions of this talk can be 
found online [82, 139-142]. We also refer the reader to recent 
detailed survey and overview papers we have written on the 
topic [120, 4]. 

Data-Centric 
A data-centric architecture has at least four major 

characteristics. First, it enables processing capability in or near 
where data resides (i.e., in or near memory structures), as 
described in detail in [4-6, 8, 38, 120] and exemplified by [7-
12, 14, 19, 20, 24, 27, 30, 34, 84, 108-113, 144-147]. Second, 
it provides low-latency and low-energy access to data, as 
exemplified by [11-13, 15-18, 21, 23, 31-33, 84-86]. Third, it 
enables low-cost data storage and processing (i.e., high 
capacity memory at low cost, via techniques like new memory 



technologies, hybrid memory systems and/or compressed 
memory systems), as exemplified by [22, 87-96, 74, 76, 78, 
107, 116]. Fourth, it provides mechanisms for intelligent data 
management (with intelligent controllers handling robustness, 
security, cost, etc.), as described in detail in [97-103, 116, 120] 
and exemplified by, e.g., [104-106, 116, 120, 179-190].  

Our talk provides significant detail on providing processing 
capability in or near where data resides, focusing on 
processing in memory (PIM). There is a pressing need for 
enabling PIM in modern systems due to 1) a bottom-up push, 
i.e., circuit- and device-level memory technology scaling 
issues requiring intelligent main memory controllers to solve 
low-level scaling and reliability challenges, such as 
RowHammer [104-106, 99, 102], data retention [21, 167-170, 
97, 191-193], energy consumption [171-172, 127, 132], 
enabling scalable emerging technologies [22, 87-93, 172-174] 
and 2) a top-down pull, i.e., systems and applications requiring 
near-data processing capability with minimal data movement 
to reduce the data access bottleneck and its large negative 
effect on performance [154-155, 164-165], energy [7, 166], 
and sustainability.  

There are at least two new approaches to enabling 
processing-in-memory in modern systems. The first approach, 
processing using memory (PUM), exploits the existing 
memory architecture and the operational principles of the 
memory circuitry to enable operations inside memory 
structures with minimal changes. PUM makes use of intrinsic 
properties and operational principles of the memory cells and 
cell arrays, by inducing interactions between cells such that the 
cells and/or cell arrays can perform useful computation. PUM 
architectures enable a wide range of different functions, such 
as data copy/initialization, bitwise operations, and simple 
arithmetic operations. We focus on how to minimally and 
practically change DRAM chips to perform fast and energy-
efficient bulk data copy and initialization [84, 12, 147, 175] as 
well as bulk bitwise operations [6, 10, 109, 175]. Similar 
approaches are also applicable to SRAM, MRAM, RRAM and 
other NVM technologies [176-178]. 

The second approach, processing near memory (PNM), 
involves adding or integrating computation units (e.g., 
accelerators, simple processing cores, reconfigurable logic) 
close to or inside the memory. Computation units can be 
placed in the logic layer of 3D-stacked memories, in the 
memory controller, or even inside memory chips. Recent 
advances in silicon interposers (in-package wires that connect 
directly to the through-silicon vias in a 3D-stacked chip) also 
allow for separate logic chips to be placed in the same die 
package as a 3D-stacked memory while still taking advantage 
of the TSV bandwidth.  

Both PUM and PNM approaches can greatly accelerate real 
applications, including database systems, graph analytics, 
machine learning, genome analysis, GPU workloads, pointer-
chasing-intensive workloads, data analytics, climate modeling, 
etc. Recent results show up to approximately two orders of 
magnitude improvement in energy and performance over 
conventional processor-centric systems. More functionality 
can be potentially integrated into a memory chip using PNM 
than using PUM, but both approaches can be combined to get 
even higher benefit from PIM. For both approaches, we 
describe and tackle relevant cross-layer research, design, and 
practical adoption challenges in devices, architecture, systems, 
and programming models in our talk. Our recent PIM 

overview work comprehensively analyzes modern PIM 
systems and issues [120, 4]. 
 
Data-Driven 

A data-driven architecture enables the machine itself to 
learn the best policies for managing itself and executing 
programs. Controllers in such an architecture, when needed, 
are data-driven autonomous agents that automatically learn 
far-sighted policies. A prime example of such a controller is 
the reinforcement learning based self-optimizing memory 
controllers [39]. Such controllers can not only improve 
performance and efficiency under a wide variety of conditions 
and workloads but also reduce the hardware and system 
designer’s burden in designing sophisticated controllers [39]. 
We believe an intelligent architecture will consist of a 
collection of such intelligent controllers that perform 
automatic data-driven online policy learning, including 
learning of how to best coordinate with each other to make 
decisions that benefit the overall system. Such machines learn 
the best policies over time and thus become better as they 
learn, adapting, evolving, and executing far-sighted policies. 
To enable such a machine, we need to revisit the design of all 
controllers (e.g., caching, prefetching, storage, memory, 
interconnect) and turn them into data-driven agents. 

Data-Aware 
A data-aware architecture understands what it can do with 

and to each piece of data (and associated computations on 
data), and uses this information about data characteristics to 
maximize system efficiency and performance.  In other words, 
it customizes itself (i.e., its policies and mechanisms) to the 
characteristics of the data and computations it is dealing with. 
Such an architecture requires knowledge of various 
characteristics of different data elements and structures as well 
as computations. Many semantic or other characteristics of 
data (e.g., compressibility, approximability, sparsity, 
criticality, access and security semantics, locality, latency vs. 
bandwidth sensitivity, privacy requirements, data types, error 
vulnerability) are invisible or unknown to modern hardware 
and thus need to be communicated or discovered. We believe 
efficient and expressive software/hardware interfaces and 
resulting cross-layer mechanisms, as exemplified by X-Mem 
(Expressive Memory) [52, 53] and the Virtual Block Interface 
[56] as well as other works [54, 55, 57, 58, 107, 116, 11], are 
promising and critically-needed approaches to creating 
general-purpose data-aware architectures.  
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