Intelligent Architectures for Intelligent Machines

Onur Mutlu
ETH Zurich
omutlu@gmail.com

ABSTRACT

Computing is bottlenecked by data. Large amounts of application
data overwhelm storage capability, communication capability, and
computation capability of the modern machines we design today. As
a result, many key applications' performance, efficiency and
scalability are bottlenecked by data movement. In this keynote talk,
we describe three major shortcomings of modern architectures in
terms of 1) dealing with data, 2) taking advantage of the vast
amounts of data, and 3) exploiting different semantic properties of
application data. We argue that an intelligent architecture should be
designed to handle data well. We show that handling data well
requires designing architectures based on three key principles: 1)
data-centric, 2) data-driven, 3) data-aware. We give several examples
for how to exploit each of these principles to design a much more
efficient and high performance computing system. We especially
discuss recent research that aims to fundamentally reduce memory
latency and energy, and practically enable computation close to data,
with at least two promising novel directions: 1) performing
massively-parallel bulk operations in memory by exploiting the
analog operational properties of memory, with low-cost changes, 2)
exploiting the logic layer in 3D-stacked memory technology in
various ways to accelerate important data-intensive applications. We
discuss how to enable adoption of such fundamentally more
intelligent architectures, which we believe are key to efficiency,
performance, and sustainability. We conclude with some guiding
principles for future computing architecture and system designs.

INTRODUCTION

Existing computing systems process increasingly large amounts
of data. Data is key for many modern (and likely even more future)
workloads and systems. Important workloads (e.g., machine learning,
artificial intelligence, genome analysis, graph analytics, databases,
video analytics), whether they execute on cloud servers or mobile
systems are all data intensive; they require efficient processing of
large amounts of data. Today, we can generate more data than we
can process, as exemplified by the rapid increase in the data obtained
in astronomy observations and genome sequencing [1].

Unfortunately, the way they are designed, modern computers are
not efficient at dealing with large amounts of data: large amounts of
application data greatly overwhelm the storage capability, the
communication capability, and the computation capability of the
modern machines we design today. As such, data becomes a large
performance and energy bottleneck, and it greatly impacts system
robustness and security as well. As a prime example, we provide
evidence that the potential for new genome sequencing technologies,
such as nanopore sequencing [2], is greatly limited by how fast and
how efficiently we can process the huge amounts of genomic data the
underlying technology can provide us with [3, 83].

The processor-centric design paradigm (and the ensuing
processor-centric execution model) of modern computing systems is
one prime cause of why data overwhelms modern machines [4, 5].
With this paradigm, there is a dichotomy between processing and
memory/storage: data has to be brought from storage and memory
units to compute units, which are far away from the memory/storage

units. The dichotomy exists at the macro-scale (across the internet)
and the micro-scale (within a single compute node). This processor-
memory dichotomy leads to large amounts of data movement across
the entire system, degrading performance and expending large
amounts of energy. For example, a recent work [7] shows that more
than 60% of the entire mobile system energy is spent on data
movement across the memory hierarchy when executing four major
commonly-used consumer workloads, including machine learning
inference, video processing and playback, and web browsing.
Similarly, due to the current design paradigm, a large fraction of the
system resources is dedicated to units that store and move data, and
actual computation units constitute only 5-20% of an entire chip [8] —
yet, even then, data access is still a major bottleneck due to the large
latency and energy costs of accessing large amounts of data.

PRINCIPLES

Our starting axiom for an intelligent architecture is that it should
handle (i.e., store, access, and process) data well. But, what does it
mean for an architecture to handle data well? We posit (and later
demonstrate with examples) that the answer lies in satisfying three
major desirable properties (or principles): 1) data-centric, 2) data-
driven, and 3) data-aware.

First, the system should ensure that data does not overwhelm its
components. Doing so requires effort in intelligent algorithms,
intelligent architectures and intelligent whole system designs that co-
design across algorithms-architectures-devices, in a manner that puts
data and its processing at the center of the design, minimizing data
movement and maximizing the efficiency with which data is
handled, i.e., stored, accessed, and processed (e.g., as exemplified in
[4-38]). We call this first principle data-centric architectures.

Second, an intelligent architecture takes advantage of the vast
amounts of data and metadata to continuously improve its decision
making, by making both its policies and mechanisms better based on
online learning. In other words, the architecture should make data-
driven, self-optimizing decisions in its components (e.g., as
exemplified in [39-51]). We call this second principle data-driven
architectures.

Third, an intelligent architecture understands and exploits various
properties of each piece of data so that it can improve and adapt its
algorithms, mechanisms, and policies based on the characteristics of
data. In other words, the architecture should make data-
characteristics-aware decisions in its components and across the
entire system (as exemplified in [52-58, 107, 116, 11]). We call this
third principle data-aware architectures.

COMPUTING ARCHITECTURES TODAY

Based on our qualitative and quantitative analyses, we find that
existing computing architectures greatly fall short of handling data
well. In particular they violate all of the three major desirable
principles. We analyze each briefly next.

First, modern architectures are poor at dealing with data: they are
designed to mainly store and move data, as opposed to actually

compute on the data. Most system resources serve the processor (and
accelerators) without being capable of processing data. As such,
existing architectures are processor-centric as opposed to data-
centric: they place the most value in the processor (not data) and
everything else in the system is viewed as secondary serving the
processor. We believe this is the wrong mindset and approach in
designing a balanced system that handles data well: such a system
should be data centric: i.e., data should be the prime thing that is
valued and everything else in the system should be designed to 1)
minimize data movement by enabling computation capability at and
close to where data resides and 2) maximize the value and efficiency
of processing data by enabling low-latency and low-energy access to
as well as low-energy and low-cost storage of vast amounts of data.

Second, modern architectures are poor at taking advantage of vast
amounts of data (and metadata) available to them during online
operation and over time. They are designed to make simple decisions
based on fixed policies, ignoring massive amounts of easily-available
data. This is because existing architectural policies make human-
driven decisions as opposed to data-driven decisions, and humans,
by nature, do not seem capable of designing policies and heuristics
that consider hundreds, if not thousands, of different variables that
may be useful to examine to dynamically adapt online policies. It is
instructive to notice that a memory controller, for example, keeps
executing exactly the same fixed policy (e.g., FR-FCFS [59, 60],
PAR-BS [61] or some other heuristic based policy [62-73, 117,
118]), during the entire lifetime of a system (for many many years!),
regardless of the positive or negative impact of the resulting
decisions on the system. The controller sees a vast amount of data
even in the timeframe of a single millisecond (let alone years), yet it
cannot learn from that data and adapt its policy because the policy is
rigid and hardcoded by a human. This is clearly not intelligent: for
example, as humans, we have the capability to learn from the past
and adapt our actions accordingly to not repeat the same mistakes as
in the past or to choose the best policy/actions that we believe will
provide the highest benefits in the future. Enabling similar
intelligence and far-sightedness in controller and system policies in
an architecture is necessary for obtaining good performance and
efficiency under a variety of system conditions and workloads.

Third, modern architectures are poor at knowing and exploiting
different properties of application data. They are designed to treat all
data as the same (except for a small set of specialized hints that
provide some opportunity to optimize based on data characteristics in
a limited manner that is very specific to the particular optimization).
As such, the decisions existing architectures make are component-
aware decisions as opposed to data-aware decisions: a component’s
(e.g., a cache’s or a memory controller’s) characteristics dominate
the policies designed to control that component and the accessed
data’s characteristics are rarely conveyed to the policy or even
known. If the characteristics of the data to be accessed or
manipulated were known, the decisions taken could be very
different: for example, if we knew the relative compressibility of
different types of data [74-81], different components in the entire
system could be designed in a manner that adaptively scales their
capability to match the compressibility of different data elements, in
order to maximize both performance and efficiency. Modifying the
architecture and its interface to become richer and more expressive,
and to include rich and accurate information on various properties of
data that is to be processed, is therefore critical to customizing the
architecture to the characteristics of the data and, thus, enabling
intelligent adaptation of system policies to data characteristics.

INTELLIGENT COMPUTING ARCHITECTURES

A major chunk of our talk describes in detail the characteristics of
an intelligent computing architecture, by concrete examples and their

empirical evaluation. This paper does not go into detail, but provides
a brief overview with references to other works that exemplify such
architectures. A detailed version of this talk can be found in [82].

Data-Centric

A data-centric architecture has at least four major characteristics.
First, it enables processing capability in or near where data resides
(i.e., in or near memory structures), as described in detail in [4-6, 8,
38] and exemplified by [7-12, 14, 19, 20, 24, 27, 30, 34, 84, 108-
113]. Second, it provides low-latency and low-energy access to data,
as exemplified by [11-13, 15-18, 21, 23, 31-33, 84-86]. Third, it
enables low-cost data storage and processing (i.e., high capacity
memory at low cost, via techniques like new memory technologies,
hybrid memory systems and/or compressed memory systems), as
exemplified by [22, 87-96, 74, 76, 78, 107, 116]. Fourth, it provides
mechanisms for intelligent data management (with intelligent
controllers handling robustness, security, cost, etc.), as described in
detail in [97-103, 116] and exemplified by, e.g., [104-106, 116].

Data-Driven

A data-driven architecture enables the machine itself to learn the
best policies for managing itself and executing programs. Controllers
in such an architecture, when needed, are data-driven autonomous
agents that automatically learn far-sighted policies. A prime example
of such a controller is the reinforcement learning based self-
optimizing memory controllers [39]. Such controllers can not only
improve performance and efficiency under a wide variety of
conditions and workloads but also reduce the hardware and system
designer’s burden in designing sophisticated controllers [39].

Data-Aware

A data-aware architecture understands what it can do with and to
each piece of data, and uses this information about data
characteristics to maximize system efficiency and performance. In
other words, it customizes itself (i.e., its policies and mechanisms) to
the characteristics of the data it is dealing with. Such an architecture
requires knowledge of various characteristics of different data
elements and structures. Many semantic or other characteristics of
data (e.g., compressibility, approximability, sparsity, criticality,
access and security semantics, locality, latency vs. bandwidth
sensitivity) are invisible or unknown to modern hardware and thus
need to be communicated or discovered. We believe efficient and
expressive software/hardware interfaces and mechanisms, as
exemplified by X-Mem [52, 53] and the Virtual Block Interface [56]
as well as other works [54, 55, 57, 58, 107, 116, 11], are promising
approaches to creating general-purpose data-aware architectures.

REFERENCES

[1]1 Z. D. Stevens et al., “Big data: astronomical or genomical?”,
PLoS Biology, 2015.

[2] D. Senol Cali et al., “Nanopore Sequencing Technology and Tools
for Genome Assembly: Computational Analysis of the Current
State, Bottlenecks and Future Directions” BIB 2019.

[3] O. Mutlu, “Accelerating Genome Analysis: A Primer on an
Ongoing Journey”, Keynote Talk at HICOMB-17, 2018.

[4] S. Ghose et al.,, “Processing-in-Memory: A Workload-Driven
Perspective”, IBM JRD 2019.

[5] O.Mutlu et al., “Processing Data Where It Makes Sense: Enabling
In-Memory Computation”, MICPRO, 2019.

[6] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution
Engine”, Advances in Computers, 2020.

[71 A. Boroumand et al., “Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks”, ASPLOS 2018.

(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

[31]
[32]

[33]

O. Mutlu, “Enabling Computation with Minimal Data Movement:
Changing the Computing Paradigm for High Efficiency", Design
Automation ~ Summer School Lecture, DAC 2019.
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-DASS-
EnablingInMemoryComputation-June-2-2019.pptx

J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”, ISCA 2015.

V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk
Bitwise Operations Using Commodity DRAM Technology”,
MICRO 2017.

H. Luo et al., “CLR-DRAM: A Low-Cost DRAM Architecture
Enabling Dynamic Capacity-Latency Trade-Oft”, ISCA 2020.

K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM”, HPCA
2016.

D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case”, HPCA 2015.

K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked
Memory: Challenges, Mechanisms, Evaluation”, ICCD 2016.

K. Chang et al., “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and
Optimization”, SIGMETRICS 2016.

K. Chang et al., “Understanding Reduced-Voltage Operation in
Modern DRAM Devices: Experimental Characterization,
Analysis, and Mechanisms", SIGMETRICS 2017.

D. Lee et al., “Design-Induced Latency Variation in Modern
DRAM Chips: Characterization, Analysis, and Latency Reduction
Mechanisms”, SIGMETRICS 2017.

S. Ghose et al., “What Your DRAM Power Models Are Not
Telling You: Lessons from a Detailed Experimental Study”,
SIGMETRICS 2018.

K. Hsieh et al., “Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU
Systems”, ISCA 2016.

J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”, ISCA
2015.

J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh”, ISCA 2012.
B. C. Lee et al., “Architecting Phase Change Memory as a Scalable
DRAM Alternative”, ISCA 2009.

D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU
and IO Traffic by Leveraging a Dual-Data-Port DRAM”, PACT
2015.

V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address
Translation to Improve the Spatial Locality of Non-unit Strided
Accesses”, MICRO 2015.

D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost”, TACO 2016.

H. Hassan et al., “ChargeCache: Reducing DRAM Latency by
Exploiting Row Access Locality”, HPCA 2016.

M. Hashemi et al., “Accelerating Dependent Cache Misses with an
Enhanced Memory Controller”, ISCA 2016.

M. Patel et al,, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions”, ISCA 2017.

S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM
Failures by Exploiting Current Memory Content”, MICRO 2017.
J. S. Kim et al. “GRIM-Filter: Fast Seed Location Filtering in DNA
Read Mapping Using Processing-in-Memory Technologies”,
BMC Genomics 2018.

A. Das et al., “VRL-DRAM: Improving DRAM Performance via
Variable Refresh Latency”, DAC 2018.

J. S. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines”, ICCD 2018.

Y. Wang et al., “Reducing DRAM Latency via Charge-Level-
Aware Look-Ahead Partial Restoration”, MICRO 2018.

[34]

[35]

[36]
[37]
[38]
[39]
[40]
[41]

(42]
[43]

[44]
[45]

[46]
[47]

(48]

(49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

J. S. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to
Generate True Random Numbers with Low Latency and High
Throughput”, HPCA 2019.
H. Hassan et al., “CROW: A Low-Cost Substrate for Improving
DRAM Performance, Energy Efficiency, and Reliability”, ISCA
2019.
S. Song et al., “Improving Phase Change Memory Performance
with Data Content Aware Access”, ISMM 2020.
G. Singh et al., “NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning”, DAC 2019.

O. Mutlu et al., “Enabling Practical Processing in and near
Memory for Data-Intensive Computing”, DAC 2019.

E. Ipek et al. “Self Optimizing Memory Controllers: A
Reinforcement Learning Approach”, ISCA 2008.
D. A. Jimenez and C. Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.
D. A. Jimenez, “Fast Path-Based Neural Branch Prediction”,
MICRO 2003.
D. A. Jimenez, “Piecewise Linear Branch Prediction”, ISCA 2005.

D. A. Jimenez, “An optimized scaled neural branch predictor”,
ICCD 2011.

E. Teran et al., “Perceptron learning for reuse prediction”, MICRO
2016.

E. Garza et al., “Bit-level perceptron prediction for indirect
branches”, ISCA 2019.

E. Bhatia et al., “Perceptron-based prefetch filtering”, ISCA 2019.
L. Peled et al., “A Neural Network Prefetcher for Arbitrary
Memory Access Patterns”, TACO 2020.

L. Peled et al., “Semantic locality and context-based prefetching
using reinforcement learning,” ISCA 2015.

R. Bitirgen et al., “Coordinated management of multiple interacting
resources in chip multiprocessors: A machine learning approach”,
MICRO 2008.

J. Mukundan and J. F. Martinez, “MORSE: Multi-objective
reconfigurable self-optimizing memory scheduler”, HPCA 2012.

J. F. Martinez and E. Ipek, “Dynamic Multicore Resource
Management: A Machine Learning Approach”, IEEE Micro 2009.

N. Vijaykumar et al., “A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with Expressive Memory", ISCA
2018.

N. Vijaykumar et al., “The Locality Descriptor: A Holistic Cross-
Layer Abstraction to Express Data Locality in GPUs”, ISCA
2018.

S. Koppula et al., “EDEN: Enabling Energy-Efficient, High-
Performance Deep Neural Network Inference Using Approximate
DRAM?”, MICRO 2019.

K. Kanellopoulos et al., “SMASH: Co-designing Software
Compression and Hardware-Accelerated Indexing for Efficient
Sparse Matrix Operations", MICRO 2019.
N. Hajinazar et al, “The Virtual Block Interface: A Flexible
Alternative to the Conventional Virtual Memory Framework”,
ISCA 2020.
Z. Yu et al., “Labeled RISC-V: A New Perspective on Software-
Defined Architecture”, CARRV 2017.
J. Ma et al., “Supporting Differentiated Services in Computers via
Programmable Architecture for Resourcing-on-Demand (PARD)”,
ASPLOS 2015.
S. Rixner et al., “Memory access scheduling”, ISCA 2000.
W. K. Zuravleff and T. Robinson, “Controller for a synchronous
DRAM that maximizes throughput by allowing memory requests
and commands to be issued out of order”, U.S. Patent Number
5,630,096, May 1997.

[61] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:

Enhancing both Performance and Fairness of Shared DRAM
Systems", ISCA 2008.

[62]

[63]

[64]

[65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]
[78]

[79]

(80]
(81]

(82]

(83]
(84]
(85]
(86]
(87]
(88]

(89]

H. Usui et al., “DASH: Deadline-Aware High-Performance
Memory Scheduler for Heterogeneous Systems with Hardware
Accelerators”, TACO 2016.
O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors”, MICRO 2007.
Y. Kim et al., “ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers”, HPCA
2010.
Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior”, MICRO 2010.
I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers”,
MICRO 2004.
I.. Hur and C. Lin, “Memory
microprocessors”, ACM TOCS 2007.
C. Natarajan et al., “A study of performance impact of memory
controller features in multi-processor server environment”, WMPI
2004.

S. Rixner, “Memory controller optimizations for web servers”,
MICRO 2004.

L. Subramanian et al., “BLISS: Balancing Performance, Fairness
and Complexity in Memory Access Scheduling”, IEEE TPDS
2016.

L. Subramanian et al.,, “The Blacklisting Memory Scheduler:
Achieving High Performance and Fairness at Low Cost”, ICCD
2014.

R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving
High Performance and Scalability in Heterogeneous Systems”,
ISCA 2012.

K. J. Nesbit et al., “Fair Queuing Memory Systems”, MICRO
2006.

G. Pekhimenko et al.,, “Base-Delta-Immediate Compression:
Practical Data Compression for On-Chip Caches”, PACT 2012.

N. Vijaykumar et al., “A Case for Core-Assisted Bottleneck
Acceleration in GPUs: Enabling Flexible Data Compression with
Assist Warps”, ISCA 2015.

G. Pekhimenko et al., “Linearly Compressed Pages: A Low-
Complexity, Low-Latency Main Memory Compression
Framework”, MICRO 2013.
G. Pekhimenko et al., “A Case for Toggle-Aware Compression for
GPU Systems”, HPCA 2016.

M. Ekman and P. Stenstrom, “A Robust Main-Memory
Compression Scheme”, ISCA 2005.

A. Arelakis et al., “HyComp: a hybrid cache compression method
for selection of data-type-specific compression methods”, MICRO
2015.

A. Arelakis and P. Stenstrom, “SC?: A statistical compression
cache scheme”, ISCA 2014.

G. Pekhimenko et al., “Exploiting Compressed Block Size as an
Indicator of Future Reuse”, HPCA 2015.

O. Mutlu, “Intelligent Architectures for Intelligent Machines",
Keynote Talk at 17% ChinaSys Workshop, December 2019.
https://www.youtube.com/watch?v=n8Aj AOWSg8

M. Alser et al., “Shouji: A Fast and Efficient Pre-Alignment Filter
for Sequence Alignment”, Bioinformatics 2019.

V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-
DRAM Bulk Data Copy and Initialization”, MICRO 2013.
D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture”, HPCA 2013.
Y. Kim et al,, “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM”, ISCA 2012.
B. C Lee et al., “Phase Change Technology and the Future of Main
Memory”, IEEE Micro 2010.

Y. Li et al, “Utility-Based Hybrid Memory Management”,
CLUSTER 2017.

H. Yoon et al., “Row Buffer Locality Aware Caching Policies for
Hybrid Memories”, ICCD 2012.

scheduling for modern

[90] C. Wang et al., “Panthera: Holistic Memory Management for Big
Data Processing over Hybrid Memories”, PLDI 2019.
J. Meza et al., “Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”, IEEE CAL
2012.
M. K. Qureshi et al., “Scalable high performance main memory
system using phase-change memory technology”, ISCA 2009.
M. K. Qureshi et al., “Morphable memory system: a robust
architecture for exploiting multi-level phase change memories”,
ISCA 2010.
C-C. Chou et al., “CAMEO: A Two-Level Memory Organization
with Capacity of Main Memory and Flexibility of Hardware-
Managed Cache”, MICRO 2014.
V. Young et al., “Enabling Transparent Memory-Compression for
Commodity Memory Systems”, HPCA 2014.
X. Yu et al., “Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation", MICRO 2017.
O. Mutlu, “Memory Scaling: A Systems Architecture Perspective”,
IMW 2013.
O. Mutlu and L. Subramanian, “Research Problems and
Opportunities in Memory Systems”, SUPERFRI 2015.
O. Mutlu and J. Kim, “RowHammer: A Retrospective", IEEE
TCAD 2019.
Y. Cai et al., “Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives”, Proc. IEEE 2017.
Y. Cai et al., “Errors in Flash-Memory-Based Solid-State Drives:
Analysis, Mitigation, and Recovery”, Inside Solid-State Drives,
2018.
O. Mutlu, “The RowHammer Problem and Other Issues We May
Face as Memory Becomes Denser”, DATE 2017.
O. Mutlu et al., “Recent Advances in DRAM and Flash Memory
Architectures”, IPSI TIR, July 2018.
Y. Kim et al., “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors”,
ISCA 2014.
J. S. Kim et al.,, “Revisiting RowHammer: An Experimental
Analysis of Modern Devices and Mitigation Techniques”, ISCA
2020.
P. Frigo et al., “TRRespass: Exploiting the Many Sides of Target
Row Refresh”, S&P 2020.
Y. Luo et al, “Characterizing Application Memory Error
Vulnerability to Optimize Data Center Cost via Heterogeneous-
Reliability Memory”, DSN 2014.
A. Boroumand et al., “CoNDA: Efficient Cache Coherence
Support for Near-Data Accelerators", ISCA 2019.
[109] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM",
IEEE CAL 2015.
[110] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence
Mechanism for Processing-in-Memory”, IEEE CAL 2016.
[111] M. Hashemi et al., “Continuous Runahead: Transparent Hardware
Acceleration for Memory Intensive Workloads”, MICRO 2016.
[112] A Pattnaik et al., “ Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities”, PACT 2016.
[113] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence
Mechanism for Processing-in-Memory", IEEE CAL 2016.
[114] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source
Infrastructure for Enabling Experimental DRAM Studies”, HPCA
2017.
[115] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM
Simulator”, IEEE CAL 2015.
[116] J. Meza et al, “A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory”, WEED 2013.
[117] L. Subramanian et al., “MISE: Providing Performance
Predictability and Improving Fairness in Shared Main Memory
Systems”, HPCA 2013.
[118] C. J. Lee et al., “Prefetch-Aware DRAM Controllers”, MICRO
2008.

[o1]

[92]

[93]

[94]

[95]
[96]
(971
(98]
[99]
[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

