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ABSTRACT

Computing is bottlenecked by data. Large amounts of application
data overwhelm storage capability, communication capability, and
computation capability of the modern machines we design today. As
a result, many key applications' performance, efficiency and
scalability are bottlenecked by data movement. In this keynote talk,
we describe three major shortcomings of modern architectures in
terms of 1) dealing with data, 2) taking advantage of the vast
amounts of data, and 3) exploiting different semantic properties of
application data. We argue that an intelligent architecture should be
designed to handle data well. We show that handling data well
requires designing architectures based on three key principles: 1)
data-centric, 2) data-driven, 3) data-aware. We give several examples
for how to exploit each of these principles to design a much more
efficient and high performance computing system. We especially
discuss recent research that aims to fundamentally reduce memory
latency and energy, and practically enable computation close to data,
with at least two promising novel directions: 1) performing
massively-parallel bulk operations in memory by exploiting the
analog operational properties of memory, with low-cost changes, 2)
exploiting the logic layer in 3D-stacked memory technology in
various ways to accelerate important data-intensive applications. We
discuss how to enable adoption of such fundamentally more
intelligent architectures, which we believe are key to efficiency,
performance, and sustainability. We conclude with some guiding
principles for future computing architecture and system designs.

INTRODUCTION

Existing computing systems process increasingly large amounts
of data. Data is key for many modern (and likely even more future)
workloads and systems. Important workloads (e.g., machine learning,
artificial intelligence, genome analysis, graph analytics, databases,
video analytics), whether they execute on cloud servers or mobile
systems are all data intensive; they require efficient processing of
large amounts of data. Today, we can generate more data than we
can process, as exemplified by the rapid increase in the data obtained
in astronomy observations and genome sequencing [1].

Unfortunately, the way they are designed, modern computers are
not efficient at dealing with large amounts of data: large amounts of
application data greatly overwhelm the storage capability, the
communication capability, and the computation capability of the
modern machines we design today. As such, data becomes a large
performance and energy bottleneck, and it greatly impacts system
robustness and security as well. As a prime example, we provide
evidence that the potential for new genome sequencing technologies,
such as nanopore sequencing [2], is greatly limited by how fast and
how efficiently we can process the huge amounts of genomic data the
underlying technology can provide us with [3, 83].

The processor-centric design paradigm (and the ensuing
processor-centric execution model) of modern computing systems is
one prime cause of why data overwhelms modern machines [4, 5].
With this paradigm, there is a dichotomy between processing and
memory/storage: data has to be brought from storage and memory
units to compute units, which are far away from the memory/storage

units. The dichotomy exists at the macro-scale (across the internet)
and the micro-scale (within a single compute node). This processor-
memory dichotomy leads to large amounts of data movement across
the entire system, degrading performance and expending large
amounts of energy. For example, a recent work [7] shows that more
than 60% of the entire mobile system energy is spent on data
movement across the memory hierarchy when executing four major
commonly-used consumer workloads, including machine learning
inference, video processing and playback, and web browsing.
Similarly, due to the current design paradigm, a large fraction of the
system resources is dedicated to units that store and move data, and
actual computation units constitute only 5-20% of an entire chip [8] —
yet, even then, data access is still a major bottleneck due to the large
latency and energy costs of accessing large amounts of data.

PRINCIPLES

Our starting axiom for an intelligent architecture is that it should
handle (i.e., store, access, and process) data well. But, what does it
mean for an architecture to handle data well? We posit (and later
demonstrate with examples) that the answer lies in satisfying three
major desirable properties (or principles): 1) data-centric, 2) data-
driven, and 3) data-aware.

First, the system should ensure that data does not overwhelm its
components. Doing so requires effort in intelligent algorithms,
intelligent architectures and intelligent whole system designs that co-
design across algorithms-architectures-devices, in a manner that puts
data and its processing at the center of the design, minimizing data
movement and maximizing the efficiency with which data is
handled, i.e., stored, accessed, and processed (e.g., as exemplified in
[4-38]). We call this first principle data-centric architectures.

Second, an intelligent architecture takes advantage of the vast
amounts of data and metadata to continuously improve its decision
making, by making both its policies and mechanisms better based on
online learning. In other words, the architecture should make data-
driven, self-optimizing decisions in its components (e.g., as
exemplified in [39-51]). We call this second principle data-driven
architectures.

Third, an intelligent architecture understands and exploits various
properties of each piece of data so that it can improve and adapt its
algorithms, mechanisms, and policies based on the characteristics of
data. In other words, the architecture should make data-
characteristics-aware decisions in its components and across the
entire system (as exemplified in [52-58, 107, 116, 11]). We call this
third principle data-aware architectures.

COMPUTING ARCHITECTURES TODAY

Based on our qualitative and quantitative analyses, we find that
existing computing architectures greatly fall short of handling data
well. In particular they violate all of the three major desirable
principles. We analyze each briefly next.

First, modern architectures are poor at dealing with data: they are
designed to mainly store and move data, as opposed to actually



compute on the data. Most system resources serve the processor (and
accelerators) without being capable of processing data. As such,
existing architectures are processor-centric as opposed to data-
centric: they place the most value in the processor (not data) and
everything else in the system is viewed as secondary serving the
processor. We believe this is the wrong mindset and approach in
designing a balanced system that handles data well: such a system
should be data centric: i.e., data should be the prime thing that is
valued and everything else in the system should be designed to 1)
minimize data movement by enabling computation capability at and
close to where data resides and 2) maximize the value and efficiency
of processing data by enabling low-latency and low-energy access to
as well as low-energy and low-cost storage of vast amounts of data.

Second, modern architectures are poor at taking advantage of vast
amounts of data (and metadata) available to them during online
operation and over time. They are designed to make simple decisions
based on fixed policies, ignoring massive amounts of easily-available
data. This is because existing architectural policies make human-
driven decisions as opposed to data-driven decisions, and humans,
by nature, do not seem capable of designing policies and heuristics
that consider hundreds, if not thousands, of different variables that
may be useful to examine to dynamically adapt online policies. It is
instructive to notice that a memory controller, for example, keeps
executing exactly the same fixed policy (e.g., FR-FCFS [59, 60],
PAR-BS [61] or some other heuristic based policy [62-73, 117,
118]), during the entire lifetime of a system (for many many years!),
regardless of the positive or negative impact of the resulting
decisions on the system. The controller sees a vast amount of data
even in the timeframe of a single millisecond (let alone years), yet it
cannot learn from that data and adapt its policy because the policy is
rigid and hardcoded by a human. This is clearly not intelligent: for
example, as humans, we have the capability to learn from the past
and adapt our actions accordingly to not repeat the same mistakes as
in the past or to choose the best policy/actions that we believe will
provide the highest benefits in the future. Enabling similar
intelligence and far-sightedness in controller and system policies in
an architecture is necessary for obtaining good performance and
efficiency under a variety of system conditions and workloads.

Third, modern architectures are poor at knowing and exploiting
different properties of application data. They are designed to treat all
data as the same (except for a small set of specialized hints that
provide some opportunity to optimize based on data characteristics in
a limited manner that is very specific to the particular optimization).
As such, the decisions existing architectures make are component-
aware decisions as opposed to data-aware decisions: a component’s
(e.g., a cache’s or a memory controller’s) characteristics dominate
the policies designed to control that component and the accessed
data’s characteristics are rarely conveyed to the policy or even
known. If the characteristics of the data to be accessed or
manipulated were known, the decisions taken could be very
different: for example, if we knew the relative compressibility of
different types of data [74-81], different components in the entire
system could be designed in a manner that adaptively scales their
capability to match the compressibility of different data elements, in
order to maximize both performance and efficiency. Modifying the
architecture and its interface to become richer and more expressive,
and to include rich and accurate information on various properties of
data that is to be processed, is therefore critical to customizing the
architecture to the characteristics of the data and, thus, enabling
intelligent adaptation of system policies to data characteristics.

INTELLIGENT COMPUTING ARCHITECTURES

A major chunk of our talk describes in detail the characteristics of
an intelligent computing architecture, by concrete examples and their

empirical evaluation. This paper does not go into detail, but provides
a brief overview with references to other works that exemplify such
architectures. A detailed version of this talk can be found in [82].

Data-Centric

A data-centric architecture has at least four major characteristics.
First, it enables processing capability in or near where data resides
(i.e., in or near memory structures), as described in detail in [4-6, 8,
38] and exemplified by [7-12, 14, 19, 20, 24, 27, 30, 34, 84, 108-
113]. Second, it provides low-latency and low-energy access to data,
as exemplified by [11-13, 15-18, 21, 23, 31-33, 84-86]. Third, it
enables low-cost data storage and processing (i.e., high capacity
memory at low cost, via techniques like new memory technologies,
hybrid memory systems and/or compressed memory systems), as
exemplified by [22, 87-96, 74, 76, 78, 107, 116]. Fourth, it provides
mechanisms for intelligent data management (with intelligent
controllers handling robustness, security, cost, etc.), as described in
detail in [97-103, 116] and exemplified by, e.g., [104-106, 116].

Data-Driven

A data-driven architecture enables the machine itself to learn the
best policies for managing itself and executing programs. Controllers
in such an architecture, when needed, are data-driven autonomous
agents that automatically learn far-sighted policies. A prime example
of such a controller is the reinforcement learning based self-
optimizing memory controllers [39]. Such controllers can not only
improve performance and efficiency under a wide variety of
conditions and workloads but also reduce the hardware and system
designer’s burden in designing sophisticated controllers [39].

Data-Aware

A data-aware architecture understands what it can do with and to
each piece of data, and uses this information about data
characteristics to maximize system efficiency and performance. In
other words, it customizes itself (i.e., its policies and mechanisms) to
the characteristics of the data it is dealing with. Such an architecture
requires knowledge of various characteristics of different data
elements and structures. Many semantic or other characteristics of
data (e.g., compressibility, approximability, sparsity, criticality,
access and security semantics, locality, latency vs. bandwidth
sensitivity) are invisible or unknown to modern hardware and thus
need to be communicated or discovered. We believe efficient and
expressive software/hardware interfaces and mechanisms, as
exemplified by X-Mem [52, 53] and the Virtual Block Interface [56]
as well as other works [54, 55, 57, 58, 107, 116, 11], are promising
approaches to creating general-purpose data-aware architectures.
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