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Graphics Processing Units (GPUs) are widely used as the accelerator of choice for applications with massively
data-parallel tasks. However, recent studies show that GPUs suffer heavily from resource under-utilization,
which, combined with their large static power consumption, imposes a significant power overhead. One of the
most power-hungry components of a GPU, the execution units, frequently experience idleness when (1) an
under-utilized warp is issued to the execution units, leading to partial lane idleness, and (2) there is no active
warp to be issued for the execution due to warp stalls (e.g., waiting for memory access and synchronization).
While large in total, the idle time of execution units actually comes from short but frequent stalls, leaving
little potential for common power saving techniques, such as power-gating.

In this paper, we propose a novel technique, called Idle-Time-Aware Power Management (ITAP), which aims
to effectively reduce the static energy consumption of GPU execution units. By taking advantage of different
power management techniques (i.e., power-gating and different levels of voltage scaling), ITAP employs
three static power reduction modes with different overheads and capabilities of static power reduction. ITAP
estimates the idle period length of execution units using prediction and peek-ahead techniques in a synergistic
way and then, applies the most appropriate static power reduction mode based on the estimated idle period
length. We design ITAP to be power-aggressive or performance-aggressive, not both at the same time. Our
experimental results on several workloads show that the power-aggressive design of ITAP outperforms
the state-of-the-art solution by an average of 27.6% in terms of static energy savings, with less than 2.1%
performance overhead. On the other hand, the performance-aggressive design of ITAP improves the static
energy savings by an average of 16.9%, while keeping the GPU performance almost unaffected (i.e., up to 0.4%
performance overhead), compared to the state-of-the-art static energy savings mechanism.
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1 INTRODUCTION
Graphics Processing Units provide a very large number of processing resources capable of running

thousands of concurrent threads. The Single-Instruction-Multiple-Thread (SIMT) execution model
employed by the GPUs allows simpler control logic and enables the concurrent execution of
thousands of threads performing the same instruction over different data elements.

Due to their significant parallelism capabilities, ease of programming, and high performance-per-
watt, GPUs have become a viable option for executing general-purpose applications. However, as
previous work also shows, general-purpose applications often lack the proper parallelism that GPUs
were designed for, leading to a large amount of resource under-utilization [11, 39, 40, 100, 101].
Resource under-utilization in GPUs negatively affects power efficiency, which is an increasingly
serious concern [1, 2, 28-30, 36, 60, 105].

One of the main GPU resources that is frequently under-utilized is the execution units. Idle
execution units consume significant static power, which increases the total GPU power consump-
tion [2, 3, 46, 105]. Reducing the static power of the GPU execution units is a major challenge
for two reasons. First, a considerable part of the GPU die area is dedicated to the execution units,
making them one of the main power-consuming resources in a GPU. As an example, previous work
finds that the execution units of NVIDIA GTX 480 GPUs [74, 78] are the most power-consuming
components of the architecture, contributing to 20% of the total GPU power [60]. Second, about
50% of the power consumption in the execution units is due to the static power [2, 3, 60, 105].

The execution units in a GPU consists of several Single-Instruction-Multiple-Data (SIMD) lanes,
each of which executing a single thread instruction (i.e., single-instruction-single-data execution).
When GPUs execute code, it is possible that some or all lanes of the execution units become idle,
referred to as partial or full-lane idleness. Partial-lane idleness happens when the threads inside a
warp, a fixed size group of threads executed in lock step, follow different execution paths due to
executing a conditional branch instruction, known as Branch Divergence. Branch divergence leads
to the serial execution of the two control flow paths after a branch. The threads contributing to
the path are only active while the threads of the other path remain idle, resulting in partial-lane
idleness. Full-lane idleness, on the other hand, occurs when there are no active warps to be scheduled
for execution. Warp deactivation can occur as a result of long memory access latency, inter-warp
synchronization, and resource contention [2, 11, 60].

To alleviate the static power overheads of partial- and full-lane idleness, previous proposals
employ power-gating, which cuts off power to the idle execution units [1-3, 105]. Power-gating
techniques intrinsically impose power and performance overheads, making them beneficial only
when the idle periods are large enough (larger than the cost/benefit break-even point of power-
gating; see Section 2.2). Previous studies [2, 3, 105] show that the idle time of GPU execution units is
fragmented into short but frequent periods, seriously limiting the potential of power-gating. Blindly
applying power-gating introduces more overhead than improvement, and defeats the purpose of
power efficiency [2, 105]. Accordingly, previous proposals attempt to improve the opportunity
of power-gating by defragmenting idle periods of the execution units [2, 3, 105]. For example,
pattern-aware scheduling [105] proposes a warp scheduler to enlarge the length of the idle periods,
which result from partial-lane idleness, in order to increase the opportunity of power-gating.
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In this work, we show that there are two major limitations of techniques that use power-gating
to reduce the static power of the idle execution units. First, the idle time of the execution units
remains smaller than the power-gating break-even point, on average, for 85% of cases, even after
using a state-of-the-art idle-time defragmentation technique [105]. Therefore, there is little or no
chance to power-gate most of the idle periods. Second, for idle periods that are not significantly
larger than the power-gating break-even point, voltage-scaling [1, 24, 88] can achieve a higher
power efficiency than power gating.

To efficiently address the limitations of the previous proposals, we propose ITAP, a novel approach
to reduce the static power of GPU execution units. ITAP predicts the length of the idle period
and automatically applies appropriate power reduction mechanisms, such as power-gating and
multiple levels of voltage-scaling. To achieve this goal, we first conduct a thorough analysis with
respect to design space, overheads, and gains of different idle power reduction mechanisms in
GPUs. Based on the analysis, we design ITAP to judiciously use three power management modes
that are designed to cover all variations in idle period length: 1) voltage-scaling to 0.5 V for short
idle periods, 2) voltage scaling to 0.3V for medium idle periods, and 3) power-gating for large
idle periods. Compared to idle-time defragmentation schemes, ITAP increases the opportunity of
power reduction from an average of 4% up to 100%. To precisely estimate the length of the idle
period, we use a peek-ahead window that predicts the exact time to enable each power saving mode.
ITAP combines the idle length prediction and a peek-ahead window to effectively reduce the static
energy of the execution units in GPUs with negligible performance overhead.

Through our extensive simulation experiments, we show that the power-aggressive and
performance-aggressive variants of ITAP reduce the static energy consumption by 37.9% and 28.6%,
on average, respectively, while the conventional and state-of-the-art power-gating techniques
reduce the static energy by 2.5% and 14.2%, respectively. We show that ITAP incurs a small per-
formance overhead of 1.2% on average in the power-aggressive mode, and a negligible average
0.2% overhead in the performance-aggressive mode. We also show that ITAP can be combined with
previously proposed idleness defragmentation techniques, such as pattern-aware scheduling [105],
which further improves the static energy savings of ITAP by 9.1%, on average.

We make the following contributions:
o We explore the design space of various idle power management modes to determine the most

suitable ones based on the length of idle period in GPU execution units. As a consequence,
we judiciously employ three static power reduction modes for GPU execution units to cover

all idle periods with the lowest performance overhead.
e We devise a prediction scheme in combination with a peek-ahead approach to provide a

highly accurate estimation of each idle period’s length.
e We propose ITAP, a novel idle-time-aware power management technique for GPU execution

units. The key idea is to leverage the estimated length of each idle period to apply the most

effective power management mode.
e We show that ITAP significantly reduces static energy compared to the state-of-the-art

approach, while incurring a negligible performance overhead.
2 BACKGROUND

The focus of this work is to provide an effective power management technique for GPU execution
units. Therefore, we provide a description of basic GPU micro-architecture design (Section 2.1),
and briefly explain common power reduction techniques (Section 2.2).

2.1 GPU Architecture

GPU kernels are composed of many Single-Program Multiple-Data (SPMD) threads grouped by
the programmer into several Thread Blocks or Cooperative Thread Arrays (CTAs). Each CTA is
assigned to a Streaming Multiprocessor (SM) upon thread launch. SMs are SIMD processing units
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with dedicated fast memory units. During execution, threads assigned to each SM are divided into
multiple fixed length (e.g., 32) groups. Each group of threads is called a warp (NVIDIA terminology)
or wavefront (AMD terminology).

Threads inside a warp are executed in parallel lock-step manner, where each thread executes
the same instruction. SIMD units are time-multiplexed between different warps. In each cycle, the
GPU selects one warp to be executed based on the GPU’s warp scheduling policy following the
SIMT model. In the SIMT model, all threads of a warp execute the same instruction on different
data, but threads of a warp may take different control flow paths, leading to idle SIMD lanes (called
branch divergence).

SMs are responsible for the execution of warps. Each SM is composed of several components,
including SIMD integer/floating-point units, load/store units, special function units, L1 data and
instruction caches, local shared memory, and a register file that is responsible for maintaining the
context of all threads inside the SM. Figure 1 shows the GPU architecture evaluated in our study,
modeled after the NVIDIA Pascal GPU architecture [76]. SMs are connected to memory nodes

(MNs) with an on-chip network. Each MN consists of a memory controller, which is connected to
the main memory (DRAM), and two Last Level Cache (LLC) banks.
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Fig. 1. Baseline GPU architecture.

2.2 Static Power Reduction Techniques
In the deep-sub-micron era, the contribution of the static power to total power consumption is sig-
nificantly increasing [49, 87]. Therefore, several techniques for reducing static power consumption
have been proposed over the past few years [1, 2, 7, 28, 33, 37, 41, 42, 46, 58, 60, 61, 73, 80, 91, 93,
95, 105, 107]. In this section, we briefly explain Power-Gating and Voltage-Scaling, two widely-used
techniques shown to be effective at reducing static power. Power-gating (PG) [34, 102-104] cuts
off the supply voltage entirely by use of a sleep transistor between the voltage supply line and the
pull-up network, or the ground and the pull-down network. Voltage-scaling (VS) [2, 24, 55] uses
voltage regulators to dynamically scale down the incoming supply voltage in order to reduce the
energy consumption. In this work, we refer to both PG and VS as sleep modes. A unit that is in
sleep mode does not function properly and needs to have its power supply switched back to full in
order to regain functionality. We refer to this process as the wake-up process. This wake-up process
demands both time (T qke_up) and energy (Eyyake_up), Which, if not handled timely at the right
voltage, imposes a significant overhead on performance and power [2, 34, 88, 103]. Peek-ahead
techniques have been proposed in the past to alleviate the performance overhead of sleep modes,
and issue the wake-up command of a unit in advance [2, 4]. Reducing the energy overhead depends
on the ability to keep the unit in sleep mode for a long enough time (Tpreqk even), SO that the

energy savings from the sleep mode can break even with the energy overhead of the wake-up
process [2, 4, 34].
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The PG technique is usually used for memory-less units as PG destroys the value stored in
memory cells. However, PG can be applied to memory units in some instances, such as virtual
channels in network-on-chip, caches, and register file, when the units do not store important values
or when the values can be recovered from other units [1, 4, 19, 20, 25, 34, 54, 66, 67, 79, 92, 102—
104, 106]. In contrast, the VS technique can be easily used for blocks with memory cells, as it does
not entirely cut off the supply voltage, and consequently the values on memory cells are not lost.
To reduce the static power consumption of the execution units in GPUs, both PG and VS techniques
are applicable. Based on our experiments and the literature [1, 2, 34, 102, 103, 105], Tpreak_even and
T\vake_up in PG are significantly larger than that of VS, which makes PG more suitable for long idle
periods. VS, on the other hand, is preferred for short idle periods as it has smaller Tp,eak_even and
T\ ake_up> allowing additional energy saving with negligible performance overhead.

3 MOTIVATION

Previous studies [60, 89, 98, 105] demonstrate that power consumption in GPUs cannot be traced
back to a single dominant component. GPUs contain many power-hungry elements, including
execution units, register file, caches, on-chip network, and off-chip memory, all of which can
be targeted separately to increase power efficiency [1-3, 12, 44, 50, 51, 56, 60, 68, 69, 81, 82, 83—
90, 98, 99, 105] The focus of this work is to 1) study the power efficiency challenges of one of those
components, execution units, one of the most power-hungry units inside the GPU [2, 3, 60, 105],
and 2) propose an idle-time-aware solution to alleviate their power consumption. In this section,
we first examine various sources behind execution unit idleness in Section 3.1. Then, we discuss
the inefficiency of previous proposals in reducing the static energy of execution units in Section
3.2. Based on our observations, we then lay out our goals in Section 3.3.

3.1 Execution Unit Idleness

We first provide a detailed analysis of GPU execution unit utilization and idleness patterns. Figure
2 shows the fraction of run-time during which SIMD lanes are inactive. This figure shows that, on
average, SIMD lanes are idle for over 53% of the entire run-time. In the subsections to come, we
elaborate upon the two prevailing sources of such under-utilization of GPU resources: partial-lane
idleness and full-lane idleness.
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Fig. 2. SIMD execution lane activity during runtime.

While methods such as reducing the SIMD lane size have been introduced to mitigate the SIMD
lane idleness [78, 97], reducing the number of SIMD lanes can lead to a significant performance loss.
Figure 3 shows that reducing the SIMD lane size causes a significant performance loss across a wide
range of applications. We conclude that reducing SIMD lane size cannot be used as a technique to
alleviate execution unit power consumption.

We find that there are two major sources of execution units idleness in GPUs:

3.1.1 Partial-Lane Idleness. This occurs as a result of branch divergence [1, 26, 27, 71, 85, 105].
Upon executing a conditional branch, the threads inside a warp might have to follow different
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Fig. 3. Effect of SIMD lane size on performance.

control-flow paths, based on their unique operands. Consequently, the executing warp is executed
using two separate warps, one for each path (taken and not taken). Each of these two warps have
partially active lanes, and the warps have to be executed one after another. Upon completion of the
execution of both paths, the warps rejoin to continue normal execution as a single warp [52, 53].

The activity of the execution units inside SIMD lanes is managed by keeping an active-mask for
every warp inside the SM. The active-mask is a binary array with the same size as the number of
threads in a warp. During the execution of a warp, this active-mask stores a value of 1 for every
active lane and a value of 0 for every inactive lane. For example, the active mask of 11001010 for a
warp size of eight shows that threads at lanes #7, #6, #3, and #1 are active, leading to 50% SIMD
utilization. By logging the active masks of executing warps during run-time, we can quantify the
idleness of execution units, and examine the role of branch divergence on idleness. Warps can
execute with the least number of SIMD active threads (1), or the most (8 in our example; 32 in our
evaluations; i.e., when all execution lanes are active).

Figure 4 shows the distribution of the fraction of active threads for multiple GPGPU applications
(See Section 5 for the description of our evaluated benchmarks). A warp consists of 32 threads.
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Fig. 4. Distribution of the number of active threads across all executed warps.

We observe that only four GPGPU applications: LIB, mri-q, sgemm, and kmeans achieve 100%
SIMD utilization for nearly all warps. In contrast, nw and NN rarely execute with 100% utilized
warps. NN and MUM spend a significant portion of their execution time, 93% and 64%, respectively,
executing warps with less than four active threads. On average, across all our workloads, 35% of
warps are under-utilized during their execution due to branch divergence. Previous approaches,
such as thread block compaction [26] or the large warp micro-architecture [71], attempt to address
this problem by using active threads of other warps to fill the idle lanes of an under-utilized warp.
The effectiveness of such methods, however, is limited for three main reasons: (1) active threads
selected for compaction should belong to the same CTA in order to meet the programming model
constraints [26], such as data sharing and synchronization capabilities in a CTA, (2) active threads
selected for compaction should have the same program counter value due to the SIMT execution
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model [26], and (3) active threads selected for compaction should not belong to the same SIMD lane;
otherwise, fine-grained relocation of threads execution lanes is required, which requires significant
hardware overhead [26, 27, 85]. Our experimental results attest to the limited potential of thread
block compaction [26], and show that its average improvement in SIMD utilization is around 9%.

3.1.2  Full-Lane Idleness. This happens when there is no active warp to be scheduled for exe-
cution, or to replace the currently stalled warp. Executing warps can get deactivated for several
reasons. Memory divergence [8-13, 72, 100], as one of the main causes, happens when warps exe-
cute a memory instruction. Since threads inside a warp could request to different blocks in memory,
each access can hit in a different level of the memory hierarchy, such as the L1 cache, the L2 cache,
or the off-chip memory, resulting in memory access latency variation inside a warp. Ultimately,
a warp is stalled until all of its requests, no matter how long each takes, are serviced [9-11, 38].
In addition to memory divergence, inter-warp synchronization and resource contention are two
other main causes of warp deactivation [39, 101]. Figure 5 shows the fraction of run-time in which
the entire set of execution units is inactive. As can be seen in this figure, GPU execution units
experience full-lane idleness for more than 42% of application run-time, on average.
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Fig. 5. Fraction of run-time with no active execution lane using different baselines.

Improving the TLP cannot completely eliminate the execution units’ stalls. This is due to the
fact that more TLP results in higher contention over different GPU resources, such as the data
cache (a.k.a., cache thrashing), on-chip network, and memory controllers, leading to increased
average memory access latency and warp stall time [9, 45, 47, 95]. To evaluate how increasing
the TLP affects this phenomena, we increase the register-file size, maximum allowed number of
CTAs per SM, and shared-memory size to enable the execution of the maximum number of threads
in an SM (i.e. 2048 threads in our baseline). We also enable the maximum size of register file
and shared memory required for our benchmark suites (2MB and 256KB, respectively), without
altering their access latencies. To eliminate any effect that CTA count might have on TLP, we also
increase the maximum number of allowed CTAs from 32 to 128 per SM. We then measure the
percentage of runtime in which all the execution lanes are idle, referred to as percentage of full-lane
idleness under six configurations: (1) baseline architecture, (2) criticality-aware warp scheduler
(CAWS) [59] that attempts to prioritize slower warps, (3) progress-aware warp scheduling (PRO) [5]
that prioritizes the warps based on their progress, (4) a baseline with maximum TLP (Max TLP), (5)
a baseline with maximum TLP that is equipped with a state-of-the-art throttling mechanism [45]
(Max TLP+Throttling) in order to mitigate the contention caused by higher TLP, and (6) a baseline
with maximum TLP in which we double the on/off-chip bandwidth (Max TLP+2x Bandwidth).
Figure 5 illustrates the results.

We make four key observations. First, we find that maximum TLP increases the percentage of
full-lane idleness in runtime since it causes the on/off-chip bandwidth to become saturated for
most of the workloads. Second, although the state-of-the-art TLP management technique [45] can
mitigate the side-effects of higher TLP, there is still over 35% full-lane idleness during runtime, on
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average. Third, there is still over 38% full-lane idleness during runtime, on average, using CAWS [59]
and PRO [5] techniques. Fourth, at the maximum TLP, we cannot fully eliminate full-lane idleness
during runtime even if we double on/off-chip bandwidth. We conclude that the issue of having no
active execution lane in runtime cannot be simply eliminated by allowing for more resources, and
demands a different approach.

3.2 Inefficiency of Previous Techniques

To evaluate the opportunity of power-gating (PG), we analyze the length of idle periods. We measure
the length of idle periods for each lane and report their distribution in Figure 6. As shown in this
figure, the length of idle periods in most of the workloads is shorter than Ty eqk _even of the PG
technique (i.e., 14 cycles in our experiments), except for gaussian and bf's where 70% and 25% of
idle periods are longer than Tp,eak cven, respectively.
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Fig. 6. Distribution of idle period lengths.

We conclude that although GPU execution units experience a significant amount of stalls during
runtime, the idle period lengths are usually shorter than Tpeak_even- Hence, PG on its own is not
effective in reducing static power consumption of execution units in GPUs. In the remainder of this
section, we explain different approaches for reducing the corresponding performance and power
overheads of PG.

Thread permutation has traditionally been used for improving the efficiency of techniques
tackling the branch divergence problem, such as thread block compaction or the large warp micro-
architecture [26, 27, 71, 85]. As another application, thread permutation can also be employed to
opportunistically keep the active mask similar across multiple warps. For example, the active masks
0f 11001010 and 00010111 can both be changed to 11110000 under ideal thread permutation. This
can potentially reduce the number of transitions between active and idle for each lane, decreasing
both power and performance overheads of PG. To measure the effectiveness of this approach, we
implement ideal fine-grained thread permutation. In ideal permutation, active masks with an equal
number of 1s are considered to be exactly the same. Note that we assume ideal permutation is
implemented with no overhead. Figure 7 compares the idle period distribution of GPU execution
units, averaged across several workloads, with and without the ideal fine-grained permutation
method in Figure 7. As can be seen in this figure, the portion of idle periods longer than Tp,eak cven
increases by a mere 1.04% with thread permutation. This small increase in idle period length using
ideal permutation is mainly due to the fact that consecutive active masks usually do not have an
equal number of active threads, as a warp executing a conditional branch instruction is usually
split into two warps with different numbers of active threads. Therefore, we conclude that ideal
permutation is not effective in mitigating PG overheads.

Warp scheduling is another solution that aims to modify the warp scheduler to give priority
to warps with active masks that are similar to the one that is currently in execution. This method
can potentially defragment the idle periods, and decrease the power and performance overheads of
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Fig. 7. Effect of ideal permutation and PATS [105] on the distribution of the idle period lengths.

PG. To this end, Pattern-Aware Two-level Scheduler (PATS) [105] proposes a novel scheduler to
select warps with similar branch divergence patterns. PATS assumes that there are five dominant
branch divergence patterns among different applications, which can be recognized during execution
and used to schedule warps with similar active masks. However, we observe that the assumption
does not hold for a broad range of GPGPU applications. Additionally, the active mask patterns
of workloads with data-dependent branch conditions such as bfs [18] are fundamentally hard to
predict. Figure 7 shows the average distribution of idle period lengths using the PATS technique [105].
PATS outperforms the ideal thread permutation with respect to defragmenting idle periods, but
still falls short of enabling long idle periods, with more than 86% of idle periods still smaller than
Tbreak_even~

We find that the main reason for sub-optimality in static power reduction of GPU execution
units in prior proposals [34, 105], is because each past proposal uses only one power management
technique, such as power-gating. Employing different static power reduction techniques based on
the idle period length can significantly lower static power consumption.

3.3 Goals and Summary

In this paper, we aim to improve static power consumption in GPU execution units by addressing
three key issues: First, GPU execution units experience a significant amount of idle time. Second,
the total idle time is fragmented into frequent but short periods. Third, even with the help of the
state-of-the-art idle period defragmentation technique [105], PG is still not effective for >85% of
idle periods.

To this end, we propose ITAP, a novel approach to reduce the static power consumption of
GPU execution units. ITAP combines several levels of VS as well as PG in order to cover 100% of
idle periods. ITAP can dynamically switch between different power reduction modes, based on its
estimation of idle period length, and with careful attention to the varying overheads and savings of
each mode.

4 IDLE-TIME-AWARE POWER MANAGEMENT

ITAP is designed based on two key contributions. First, we analyze the efficiency of different static
power reduction techniques for various lengths of idle periods. We use this analysis to select the
static power reduction modes employed in ITAP. Second, we estimate the idle period length using
our prediction and peek-ahead techniques. Based on these estimations, we apply the most suitable
power management mode according to the runtime behavior of applications. We first provide
an analysis of the opportunities for different power management policies (Section 4.1). We then
describe the mechanism to determine the length of idle period in execution units (Section 4.2). We
next discuss how ITAP can be used for different goals (Section 4.3). Finally, we explain how ITAP
can be implemented at different granularities (Section 4.4).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 1. Publication date: December 2018.



1:10 M. Sadrosadati et al.

4.1 Multi-Mode Power Management

ITAP benefits from multiple power management techniques, including VS with various scaled
voltages and PG, in order to cover 100% of idle period lengths in an efficient way. We estimate the
static energy consumed when an execution unit is in power reduction mode with the following
equation:

E = Cycles;qie X Powerssaric + Ewake—up (1)
where Cycles;qje, Powersiazic, and Ey,gke—yp denote the idle period length, the normalized static
power consumption in the power reduction mode, and the energy consumed in order to return
to the fully-functional mode, respectively. To measure Powers;qric and Eyygke—up for VS and PG
techniques, we apply the VS and PG techniques to 1) different cells of the NanGate 45nm Open Cell
Library [57], 2) a fanout-of-4 (FO4) inverter,! and 3) several important digital circuits (e.g., carry
look-ahead adder, ripple-carry adder, array multiplier, multiplexer, and decoder) built using the
NanGate 45nm Open Cell Library. This setup allows us to observe the trends in energy savings by
applying VS and PG techniques to real cores [31]. We simulate the SPICE netlist using HSPICE. VDD
is set to 1v in this study. As the input data can affect the static power consumption of each logic
structure significantly, we calculate the static energy consumption using up to 1024 random input
data vectors for each logic structure.? Figure 8 compares the reduction in static energy consumption
averaged among NanGate cells, a chain of FO4 inverters, and important digital circuits in different
static power reduction modes, while varying the idle period length. The results are normalized to
the average static energy consumption without a power management technique.

100 --0.7v. =0.5v -+0.3v 0.lv. -=+PG -=-Maximum
1 1
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60 ! o e— T
+- o
1

1
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Static Energy Savings (%)
o

Number of Idle Cycles
Fig. 8. Normalized energy consumption based on the power reduction mode and the idle period length.

We make five observations based on data in Figure 8. First, VSg 5 and VS 7 modes (i.e., VDD is
set to 0.5v and 0.7v, respectively) are useful for all range of idle period lengths because Tpreak cven
for VSo5 and VSg 7 modes are only one clock cycle. However, to reduce the complexity of our
design, ITAP does not employ VSg 7 and only employs a more effective VSg 5 for idle periods smaller
than four clock cycles, which we refer to as the short idle periods. Second, when the idle period
length is between 4 and 44 cycles, which we refer to as the medium idle period, VSg 3 (i.e., VDD is
set to 0.3v) is effective at further reducing the energy consumption. Third, we observe that VS 1
(i.e., VDD is set to 0.1v) is inefficient compared to VSg 3 for any idle period length for two reasons:
the execution units in the VS¢ ; mode consume more static power compared to the VSg 3 mode
(as leakage current increases exponentially [32, 43, 48]) and the E,erpeqq for the VSg.1 mode is
larger than that of the VS 3 mode. Fourth, PG is the best choice when the idle period length is
greater than 44 cycles, i.e., for long idle periods. Finally, although the Tp ek even of the PG mode
is approximately 14 cycles, PG mode starts to outperform the VS5 and VS 3 modes only when
1A FO4 inverter is an inverter that drives 4 similar inverters.
2The number of random input data vectors is the same as the circuit’s input data vectors for circuits with less than 1024

input vectors. For example, a 4-input AND cell has 16 different input vectors. In such cases, we evaluate all the input vectors
using 16 input data vectors of the circuit.
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the idle period length is about 1.8x and 3.1x of PG’s Tpreqak_cven, respectively. Altogether, ITAP
benefits from three static power reduction modes including VS 5, VS 3, and PG for short, medium,
and long idle periods, respectively.

4.2 Estimating the Idle Period Length

Because predicting the exact value for idle period length is not only difficult, but also expensive,
ITAP relies on a coarser grain classification of idle periods into three categories: short, medium and
long. To this end, ITAP employs a prediction method in order to estimate the idle period type. We
use a parameter, called Activity.,,, that shows whether or not an execution lane is currently active.
When an execution lane becomes idle (i.e., mActivityc,,), ITAP predicts a short idle period and
immediately applies VS5 mode to the idle lane. We use a parameter, called Length;;, that shows
idle time of a lane in terms of number of cycles. If the lane remains idle for four clock cycles (i.e.,
Length;q;. == 4), ITAP decides whether to keep VSg 5 mode or change it to either VSg 5 or PG mode.
It is only beneficial to change the state only if the lane will remain idle for at least four more clock
cycles. Otherwise, ITAP should keep the current mode. To decide between keeping and changing
the static power reduction mode, ITAP employs a mode-change saturating counter (Counter,oqe).
If the value of Counter,, 4. is larger than a defined threshold (Thrsiscn), ITAP switches the mode
to either VSg 3 or PG mode. ITAP updates Counter,,,4. when the lane becomes active again, in
order to maintain the history of the correct/incorrect decisions. We increment Counter 4. if the
lane remains idle for at least 8 (i.e., 4+4) cycles to improve the chance of selecting either VSg 35 or
PG mode. On the other hand, we decrement Countery, 4. if the idle time of the lane is less than 8
cycles, to improve the likelihood of choosing the VSg 5 mode. The next design challenge is how to
select the power reduction mode between VS 3 and PG modes when ITAP decides to change the
power reduction mode from VSg 5.

ITAP employs a confidence saturating counter (Counteroyr) to differentiate between medium
and long idle periods. If the value of Counter ons is lower than a defined threshold (Thrjong), ITAP
applies the VS¢.3 mode to the idle execution lane. If the value of Counterc,ny is greater than a
defined threshold (Thryong), ITAP applies the PG mode to the idle execution lane. ITAP decrements
Countercony if the idle time is less than 48 (i.e., 4+44) cycles, to improve the chance of selecting
the V8g 3 mode. On the other hand, ITAP increments Counteroyy if the idle time is larger than 48
cycles, to increase the chance of using the PG mode. Figure 9 depicts the states and transitions
used in ITAP’s finite state machine (FSM). Table 1 (the second column) describes the detail of
each transition. For ITAP without peek-ahead, the state transition is triggered by changes in four
parameters: Activitycy,, Length;gie, Counteryoq., and Counterconf-
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Fig. 9. ITAP algorithm FSM.
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Table 1. Detail of each transition in ITAP with and without peek-ahead.

Transition ” ITAP without peek-ahead [ ITAP with peek-ahead

T1 Activitycur Activitycur

T2 ~Activitycur ~Activitycur

T3 Activitycur Activitygpeaalll

T4 ~Activitycyr ~Activitygheaqll] & Activitygpeqql2or3]

& [(Length;g1e <4)|(Counteryode < Thrgiwiren) |

T5 ~Activitycur & (Length;gre > 4) & (Counterp,oqe > Thrsyiren) | ~Activitygpeqqll]l & ~Activitygpeqql20r3]
& (Counterconf < Thriong) & (Countercons < Thriong

T6 ~Activitycur & (Length;gre > 4) & (Counterpoqe > Thrsyiren) | ~Activitygpeqqll]l & ~Activitygpeqql20r3]
& (Countercont > Thriong) & (Counterconf > Thriong

T7 Activitycur Activitygpheaallor?]

T8 ~Activitycur ~Activitygpeqql2ori]

T9 Activitycur Activitygpeqqllor2or3]

T10 ~Activitycyr ~Activity,peadllor2or3]

In the aforementioned mechanism, ITAP updates the mode-change and confidence counters using
simple increment/decrement operations. However, there are other possibilities to update these
counters when the correct idle time is known. For example, as the overhead of PG mode is much
larger than the overhead of VSg 3 mode, it may make sense to reset the confidence counter to zero
when PG prediction is incorrect. We analyze the impact of the size of mode-change and confidence
counters, Thrsyisch, Thriong, and two other counter update approaches on the prediction accuracy
of the prediction unit in Section 6.4.1.

Peek-Ahead Window. the aforementioned prediction mechanism has two main issues. First, if
the idle period length is larger than four clock cycles, it first selects the VS 5 mode and then may
change the mode to either VS¢.3 or PG mode based on the value of mode-change and confidence
counters after four clock cycles elapse. However, when the idle period is longer than four clock
cycles, ITAP needs to apply either VS¢.3 or PG mode as soon as possible. Second, ITAP cannot
figure out when an execution lane should be woken up ahead of time, and hence, ITAP imposes
performance overhead due to the T,,4ke_up of static power reduction mode. To efficiently address
these issues, ITAP combines our prediction technique with a peek-ahead technique.

Our peek-ahead technique employs a short peek-ahead window in order to figure out the state of
the execution lane activity in the near future. Because this peek-ahead window requires additional
overhead, we limit the peek-ahead window to the next three cycles in order to compensate for
the maximum wake-up latency of three cycles required by ITAP. We implement the peek-ahead
technique by modifying the round-robin warp scheduler employed for scheduling warps to the
execution units. The baseline warp scheduler selects a warp from a warp pool that has ready
operands in the operand collectors to be issued for the execution in a round-robin manner. In order
to detect the lane idleness behavior that occurs three cycles later, we modify the baseline warp
scheduler such that it determines two future warps to schedule in addition to the currently-selected
warp. As a result, our peek-ahead technique can potentially detect the active masks within three
cycles. ITAP with peek-ahead employs states and transitions that are the same as those of ITAP
without peek-ahead, as shown in Figure 9. However, state transition conditions and actions are
different for ITAP with peek-ahead, as shown in the third column of Table 1. ITAP with peek-
ahead adds an additional parameter compared to ITAP without peek-ahead, Activity,peqq, to the
condition for state transition. Activityspeqq is @ 3-entry array used for each execution lane, where
Activitygpeaq|i] shows whether or not the lane is active i cycle(s) later.

There are some situations in which peek-ahead technique fails. For example, when there is no
active warp to schedule, the peek-ahead technique in ITAP cannot specify the activity of the next
three cycles. Another example is that when there is only one active warp with a memory/branch
instruction, predicting the state of the execution unit after executing this warp instruction is
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difficult. Therefore, ITAP uses the peek-ahead technique only when the peek-ahead provides valid
information. Otherwise, ITAP makes a decision based on only its simple prediction logic.

We implement both algorithms (ITAP with and without the peek-ahead technique) using finite
state machines. We synthesize the hardware-description language (HDL) model of both finite state
machines for 45nm NanGate open cell library using the Synopsys Design Compiler. We observe that
both finite state machines can operate properly at 2.5 GHz clock frequency. Therefore, selecting a
power reduction mode among VSq 5, VSg.3, or PG, which is translated to update the current state
in the finite state machine, can be performed in one GPU clock cycle (i.e., 1.4 GHz).

4.3 Different Optimization Goals

ITAP allows the GPU to optimize for two different optimization goals: performance-aggressive
and power-aggressive. When the goal is to be performance-aggressive, ITAP should not impose
performance overhead to the system. We make two decisions for the performance-aggressive use
of ITAP. First, ITAP attempts to issue the wake-up command earlier based on T,,4ke_up of the
current power-management mode. As an example, if the idle lane is in VS¢ 3 mode, ITAP issues the
wake-up command two cycles earlier using the peek-ahead technique. Second, ITAP significantly
reduces the likelihood of using the PG mode by resetting the confidence counter to zero when the
PG mode is wrongly used. For power-aggressive optimization, on the other hand, the main goal
is to aggressively reduce the power consumption at the expense of incurring some performance
overhead. For this goal, we switch off early wake-up in ITAP in order to keep the idle lanes in
the power-reduction mode as much as possible. Moreover, we update the confidence counters via
simple increment/decrement operations, to increase the likelihood of the PG mode. We compare
these two design approaches in terms of static energy savings and performance in Section 6.3.

4.4 ITAP Granularities

ITAP can be implemented in different granularities. The most fine-grained implementation is to
apply a power reduction mode for each lane individually based on the lane’s idle period length.
As a result, it is possible to have some lanes active, some lanes in V8¢5, some lanes in VS 3,
and some lanes in PG modes. This implementation maximizes the opportunity for static power
reduction at the price of higher design cost due to the fine-grained on-chip power management
circuits, such as on-chip voltage regulators and PG sleep transistors. The most coarse-grained
implementation, on the other hand, is to apply the same power reduction mode for all of idle lanes.
In this implementation, ITAP first selects the best power reduction mode for each idle lane based
on the aforementioned mechanism. ITAP then unites the power reduction mode for all idle lanes
based on their individual modes, as described in Table 2.

Table 2. ITAP power management mode selection policy in its most coarse-grained design.

| Condition Power Mode Selection
Any idle execution lane is selected to be in VSg 5 mode VSo.5
No idle execution lane in VSg 5 & at least one idle execution lane in VSg 3 | VSq.3
All idle execution lanes are selected to be in PG mode PG

The policy provided in Table 2 ensures that the power reduction mode does not impose perfor-
mance and energy overheads in the coarse-grained implementation. The coarse-grained imple-
mentation reduces the hardware cost at the price of decreasing the opportunity of static power
reduction. Other granularities between the most fine-grained and course-grained implementations
are also possible in ITAP. For example, ITAP can cluster four lanes and apply the same power
reduction mode for each cluster. We analyze the effect of implementation granularity of ITAP on
the static energy savings and performance in Section 6.4.2.
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5 EVALUATION METHODOLOGY

We describe the methodology used for our experimental evaluation and analysis.

Simulator. We evaluate the performance of ITAP using GPGPU-Sim 3.2.2 [14]. We evaluate the
power consumption of ITAP using GPU-Wattch [60]. Table 3 shows the simulation parameters
modeling the NVIDIA Pascal architecture [76], which are consistent with prior work [1-3, 24, 105].
We use HSPICE to measure the amount of static power reduction (Ps;q¢ic-reduction), Tpreak evens
and Ty, qke_up for each static power reduction mode. We report these numbers in Table 4.

Table 3. Baseline simulated GPU configuration.

l Parameters [ Value

SMs 16, 1400MHz, SIMT Width = 32

Resources per SM | max 2048 Threads, 65536 Registers, max 32 CTAs, 64KB Shared Memory

Warp Schedulers | 2 per SM, two-level round-robin [71]

Cache 32KB/SM 4-way L1 cache, 256KB/Memory Channel 8-way L2 cache

Memory Model GDDR5 1674 MHz [94], 8 channels, 8 banks per rank, 1 rank, FR-FCFS scheduler [86, 108]

GDDRS5 Timing tcr=12, trp=12, trc=40, trAs=28, trcp=12, tRrp=6 [14]

Table 4. Parameters of the ITAP power reduction modes.

l Mode [ Specifications

VSo05 | Threak even =1 cycle, Idle length=1-3 cycles

Twake:upzl cycle, Eyyake_up=40%, Pstatic-reduction=50%
VS03 | Threak even =2 cycles, Idle length=4-43 cycles

Twake:upzz cycles, Ewake_up=120%, Pstaric-reduction=73%
PG Tpreak even =14 cycles, Idle length >=44 cycles

Twake__up=3 cycles, Eyyqke_up=1300%, Pstqtric-reduction=100%

Workloads. We evaluate the effectiveness of ITAP on Rodinia [18], Parboil [96], and ISPASS [14]
benchmark suites. Each workload is either simulated entirely, or until it reaches 2 billion executed
instructions, whichever comes first.

Comparison Points. We compare the most coarse-grained implementation of ITAP to conven-
tional PG (CPG) and a state-of-the-art scheduler-aware PG technique [105] (PATS). CPG power-gates
lanes that are idle for more than T;gje gerect (€.8., 5 cycles). PATS attempts to defragment idle peri-
ods in order to improve the likelihood and opportunity of using the PG technique. In addition, we
evaluate the combination of ITAP and PATS (ITAP+PATS) with other techniques, to quantitatively
show how much the efficiency of ITAP is improved when it is combined with a state-of-the-art idle
period defragmentation technique. We also implement the ideal version of ITAP, called ITAP-ideal,
to evaluate the accuracy of ITAP decisions. To this end, we record a trace of all the warps’ active
masks along with their issue cycles. We use this trace to analyze the future lane activity at each
decision point for changing power modes, and deciding the best mode based on the future informa-
tion in the trace. Moreover, in order to quantitatively show the effect of the peek-ahead technique
on the efficiency of ITAP, we implement ITAP without the peek-ahead technique (called ITAP-WO-
PeekAhead), in our simulation environment. Finally, ITAP can target two different optimization
goals, power-aggressive and performance-aggressive. We implement both ITAP,,,, and ITAP.,f
for power-aggressive and performance-aggressive goals, respectively.

ITAP Parameters. We empirically set the size of mode-change and confidence counters to 8 bits
(see Section 6.4.1 for more details). We set Thrs,,;scp and Thrjgng at 50% of the maximum values of
the corresponding counters, to simplify our design.®

3We observe that the threshold values have negligible effect on prediction accuracy in Section 6.4.1.
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Hardware Overhead. There are six components that contribute to the hardware overhead of
ITAP. First, ITAP employs two 8-bit counters for mode-change and confidence counters for each
execution lane. Second, ITAP needs to maintain the current idle period length for each execution
lane in order to improve the accuracy of the prediction unit. A 6-bit saturating counter is large
enough to maintain the idle period length for each execution lane. Third, we need to evaluate
the idle period length to update the mode-change and confidence counters. To this end, we use a
6-bit comparator for each execution lane. Fourth, we check the threshold values by evaluating the
most-significant-bit of each counter. Fifth, we use 2-bit register for each execution lane to track the
lane’s current power mode. Sixth, we modify the two-level round-robin warp scheduler [71] and
add a buffer with three 32-bit slots to implement the peek-ahead technique.

To measure the area and power overheads of ITAP, we implement the HDL model of
prediction/peek-ahead techniques and synthesize them for the 45nm NanGate open cell library
[57] using Synopsys Design Compiler [21]. Our hardware implementation of VS and PG techniques
follows the optimizations in previous work [1-3, 6, 19, 88, 105], minimizing the hardware overhead.
To implement PG, we add a sleep transistor to each execution lane. To implement VS, we use
on-chip voltage regulators to generate 0.5v and 0.3v input voltages. Depending on the granularity
of our design, one voltage regulator is added to each SM (most coarse-grained), or each execution
lane (most fine-grained).

As a result, the granularity of ITAP presents a trade-off between static energy savings and
hardware implementation overheads. While the most fine-grained approach may yield higher static
energy savings, it also leads to larger power and area overheads, i.e., one voltage regulator for each
execution lane. Implementing ITAP in its most coarse-grained form allows us to minimize such
overheads by amortizing the cost of voltage regulators and sleep transistors across the entire set of
SIMD lanes. We estimate the overhead of PG (i.e., adding sleep transistors) and VS (i.e., voltage
regulators) techniques using prior work [6, 66, 70].

Table 5 shows the summary of required resources and power/area overheads for different ITAP
designs. We make two key observations. First, the coarse-grained design has significantly lower
power and area overheads compared to the fine-grained design. This is mainly due to the fact
that adding a voltage regulator per execution lane leads to a significant overhead, which is not
scalable with current technologies [6]. Nevertheless, we implement the most fine-grained approach
to measure the impact of granularity on our method, and the energy efficiency gap between the
coarse-grained and fine-grained approaches.* Second, adding the peek-ahead technique on top of
both ITAP designs (i.e., coarse-grained and fine-grained designs) has negligible area and power
overheads.

6 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the effectiveness of ITAP. Section 6.1 evaluates the
energy consumption of ITAP relative to other state-of-the-art baselines. Section 6.2 shows that ITAP
has minimal effect on GPU performance. Section 6.3 shows the power and performance tradeoff
between our power-aggressive and our performance-aggressive designs. Section 6.4 provides the
sensitivity analysis to the design parameters of ITAP.

4Note that we use the power overhead of the most coarse-grained design in our energy analysis. However, for the most
fine-grained design, we assume that the power overhead is equal to that of the most coarse-grained design, in order to
solely evaluate the effect of granularity in ITAP without penalizing the fine-grained design for power consumption.
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Table 5. Summary of required resources and the overall area and power overheads for different ITAP designs.

[ Resource H coarse-grained [ coarse-grained+peek-ahead [ fine-grained [ fine-grained+peek-ahead l
Mode-change lane-size X 8-bit counters
Confidence lane-size X 8-bit counters
Idle cycles lane-size X 6-bit counters
Comparing #idle-cycles lane-size X 6-bit comparators
Current mode lane-size X 2-bit registers
Modified warp scheduler No Yes (3 x 32-bit registers) No Yes (3 x 32-bit registers)
Global decision maker Yes Yes No No
PG switch 1 1 lane-size lane-size
VS regulator 1 1 lane-size lane-size
Overall power overhead 2.208% 2.21% 70.408% 70.41%
(lane-size = 32)
Overall area overhead 0.325% 0.33% 9.725% 9.73%
(lane-size = 32)

6.1 Energy Analysis

To show the efficiency of ITAP, we measure the static energy savings of execution units us-
ing different techniques. Figure 10 shows the static energy savings of execution units using
CPG [34], PATS [105], ITAP,ow-WO-PeekAhead (i.e., power-aggressive ITAP w/o peek-ahead),
ITAP,ow, ITAPpow-ideal (i.e., power-aggressive ITAP that uses perfect, i.e., 100%-accurate, idle time
prediction), and ITAP},q,+PATS techniques. Note that we compare different design approaches of
ITAP, ITAP}ow and ITAPpey, in Section 6.3.

HCPG ® PATS @ ITAPpow-WO-PeekAhead = ITAPpow B ITAPpow+ldeal W ITAPpow+PATS
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Fig. 10. Static energy savings using different power reduction techniques.

We make four key observations. First, ITAP,. outperforms CPG and PATS in terms of static
energy savings by an average of 36.3% and 27.6%, respectively. Second, the contribution of the
peek-ahead technique on the efficiency of ITAP is significant. Comparing the static energy savings
of ITAPpoy with and without the peek-ahead technique shows that peek-ahead improves the static
energy savings by 24.3%, on average. Second, implementing ITAP on top of a state-of-the-art
idle period defragmentation technique, PATS, improves the static energy saving by an average of
9.1%. This is due to the fact that PATS defragments the idle periods and improves the opportunity
of applying more powerful static power reduction modes in ITAP. Finally, the improvement of
ITAP,o+ideal (i.e., power-aggressive ITAP that uses a 100%-accurate idle time prediction) over
ITAP,oy is less than 8%, which clearly shows the high accuracy of our technique in estimating idle
period length. We conclude that ITAP is a highly effective approach to reducing the static energy
consumption in GPU execution units.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 1. Publication date: December 2018.



ITAP 1:17

6.2 Performance Analysis

We measure performance on a broad set of workloads using various power management techniques.
Figure 11 shows the Instructions per Cycle (IPC) for CPG, PATS, ITAPy,,,~-WO-PeekAhead, ITAPp,,,,
ITAP),-ideal, and ITAP,,,,+PATS normalized to the baseline architecture with no static power
reduction technique. We make four key observations. First, ITAP,,, has smaller performance
overhead compared to CPG and PATS. ITAP,, reduces performance by up to 2% while CPG and
PATS reduce performance by up to 41% and 12%, respectively. Second, our peek-ahead technique in
ITAP,,,, improves performance by 17%, on average, compared to ITAP,,,,-WO-PeekAhead. Third,
although combining ITAP and PATS effectively reduces the static energy (see Figure 10), it has almost
no negative effect on performance. Finally, the ideal implementation of ITAP reduces performance
by about 0.5%, on average. We conclude that the negative effect of ITAP on GPU performance is
small or negligible.
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Fig. 11. Normalized IPC using different power reduction techniques.

6.3 ITAPpoy, vs. ITAP pert

In this section, we evaluate the performance-aggressive and power-aggressive designs of ITAP. To
show the difference between ITAP,,,, and ITAP,,,rin applying the static reduction modes, we report
the breakdown of the usage of different power reduction modes, averaged across various workloads
in Figure 12.
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Fig. 12. Power reduction mode usage of ITAPpow & ITAP,.r.

As Figure 12 shows, ITAP,,, employs PG and VS 3 power reduction modes about 2.1x and
2.3x more frequently than ITAP,,,, respectively. These results clearly show that ITAP,,,, attempts
to reduce the static power consumption aggressively by applying modes with more static power
reduction capability more often.

Figure 13a reports the static energy savings of ITAP,,, and ITAP,,s techniques for different
workloads. We see that ITAP,,,, improves the static energy savings by 13%, on average, compared
to ITAP,,r. However, ITAP,,is useful when the performance overhead needs to be minimal. To
compare the performance overhead of these two techniques, Figure 13b reports GPU throughput
(measured using IPC) of ITAP),,, and ITAP,,r normalized to the baseline GPU with no power
reduction technique. The performance overhead of ITAP,is up to 0.4% (0.2%, on average), which
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clearly shows that ITAP,,ris effective at reducing static energy with minimal performance overhead
in every application examined. We conclude that ITAP,,,, is more effective than ITAP,,at reducing
the static energy of the execution units. However, ITAP,y is able to reduce the static energy with
almost no performance overhead.

B ITAPperf ITAPpow

Static Energy
Saving (%)

Normalized
IPC (%)

Fig. 13. (a) Static energy saving and (b) Normalized IPC using ITAPpow and ITAPpe s

6.4 Sensitivity Analysis

We provide the sensitivity analysis of prediction parameters, ITAP granularity, SIMD lane size, and
PG/VS parameters to ITAP.

6.4.1  Effect of prediction parameters. Figure 14 shows the effect of different parameters of mode-
change and confidence counters on idle time prediction accuracy, averaged across all workloads. We
vary the size (4, 16, 64 and 256) as well as the threshold values (25%, 50% and 75% of the maximum
value) of each counter. We also consider three update mechanisms for the counters: (1) the simple
update mechanism we explained in Section 4.2, (2) the same update mechanism with one difference:
after two continuous incorrect predictions on the values above the threshold, the counter is reset
to zero, and (3) using the simple update mechanism only for counter values below the threshold;
otherwise resetting the counter to zero after each wrong prediction.
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Fig. 14. Effect of counter size (C), threshold value (T), and update policy on prediction accuracy.

We make two key observations from Figure 14. First, using an 8-bit counter size with the threshold
value of 50% of the maximum value of the counter represents a good trade-off between prediction
accuracy and complexity (i.e., comparing the counter value to the threshold only requires checking
the most significant bit of the counter value). Second, the third update policy slightly outperforms
the other two for an 8-bit counter size. However, considering the negligible difference between all
policies, we can use any one of them effectively.
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6.4.2 Effect of ITAP granularity. We implement ITAP under different granularities (See Sec-
tion 4.4) to show their effect on GPU performance and static energy. Figure 15 compares the average
static energy savings and the average IPC normalized to the baseline GPU with no power reduction
technique, for various ITAP granularities. The x-axis of Figure 15 shows different implementation
granularities where "1” and "32’ show the most fine-grained and coarse-grained implementations,
respectively.
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Fig. 15. Effect of ITAP granularity on static energy and performance.

We make two observations. First, the effect of ITAP’s granularity is negligible on GPU perfor-
mance. Second, finer granularity ITAP designs lead to higher static energy savings because the
accuracy of selecting the most proper static power reduction mode increases in fine-grained designs.
However, our main evaluation in Sections 6.1 and 6.2 uses the most coarse-grained design because
the overhead of required circuits for implementing ITAP, such as the PG sleep transistors and
on-chip voltage regulators, is significantly lower in the most coarse-grained ITAP implementation.

6.4.3  Effect of SIMD lane size. While our main experiment enables all 32 SIMD lanes in the GPU
core, it is important to analyze the sensitivity of ITAP to different lane sizes in order to evaluate
the applicability of ITAP to various GPU architectures. SIMD lane size has two main effects on the
efficiency of ITAP. First, decreasing the lane size increases the accuracy of the peek-ahead window
because an instruction is executed over several cycles when the lane size is reduced. Hence, fewer
SIMD lanes improve the efficiency of ITAP. Second, reducing the lane size has both positive and
negative effects on the lane idle period lengths based on patterns of the active masks. To elaborate,
assume that a warp with an active mask of 0X0000FFFF is issued for execution. A lane of size 32
causes one-cycle idleness for the lanes numbered 16 to 31. However, there is no idleness for the
same group of threads on a 4-lane SIMD GPU because the GPU would execute four fully-active
cycles for the active threads and then skip the remaining non-active threads. On the other hand,
assume that the active mask is 0X88888888. In this example, the warp has only eight active threads.
A lane size of 32 causes one-cycle idleness for 24 lanes. However, a lane size of four results in
eight-cycle idleness for three lanes (i.e., eight active threads in the warp will be executed in eight
consequent cycles in a lane size of 4), greatly improving the opportunity of more powerful static
power reduction techniques.

Figure 16 compares the average static energy savings and average IPC normalized to the baseline
GPU with no power reduction technique for various lane sizes (4, 8, 16, and 32 lanes), in order to
quantitatively evaluate the effect of lane size on the accuracy of our peek-ahead technique and
positive/negative changes in idle period lengths caused by reducing the lane size.
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Fig. 16. Effect of SIMD lane size on static energy savings and performance.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 1. Publication date: December 2018.



1:20 M. Sadrosadati et al.

We make two key observations. First, reducing the lane size greatly reduces the performance
overhead by enabling a more accurate and powerful peek-ahead technique. For the smallest lane
size, the performance overhead is less than 1%. Second, ITAP on a lane size of four has the highest
static energy savings, on average, for our workloads. We conclude that ITAP is applicable for
different SIMD lane sizes and the efficiency of ITAP increases as the lane size reduces.

6.44  Effect of Tyreak_even and Tyake up- Because Tpreak_cven and Tyyake up vary for different
GPU architectures, we analyze the sensitivity of ITAP to Tpreak_cven and Toyake_up- Figure 17(a)
compares the average static energy savings of ITAP, PATS, and ITAP+PATS over multiple Tpreak even
values with up to a 200% increase in the default Tp,eak_even Value (ie., 14 cycles in our experiments).
We make three key observations. First, the static energy savings decreases for all techniques by
increasing Tpreqk_even- This is expected since, by increasing Tp eqk_even, the opportunity of reduc-
ing the static energy consumption using PG and VS decreases. Second, the improvement of ITAP
over PATS increases for larger Tpreak even Values, as ITAP benefits from two extra power reduction
modes in addition to the PG technique. Third, the static energy savings of ITAP+PATS slightly
decreases by increasing Tpreqk _even because the defragmentation technique in PATS enlarges the
idle period lengths and thus compensates for the overhead of larger Tpreak cven Values.

W PATS ITAPpow O ITAPpow+PATS

Static Energy
Savings (%)
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Fig. 17. (a) Effect of Ty, eqk_even ON static energy savings; (b) Effect of Ty, gxe_up on performance.

Figure 17(b) compares the average normalized IPC for ITAP, PATS, and ITAP+PATS with various
Tyake_up values. We increase T,y ake up Of all power reduction modes by up to 200% over the
default values (which are 1, 2, and 3 cycles for the VS, the VS 3, and the PG, respectively, in
our experiments). We make three observations. First, the performance overhead of all techniques
increases with increasing Ty, ake_up- However, ITAP provides better performance compared to PATS
as it uses two other static power reduction techniques with lower performance overhead in addition
to the PG technique. Second, the peek-ahead technique embedded in ITAP keeps performance
almost unchanged until up to a 50% increase in Ty, ake_up, but becomes less efficient as Ty ake_up
increases further, due to the limited peek-ahead window. Third, ITAP+PATS outperforms ITAP as
T\ ake_up increases because defragmenting idle periods reduces the frequency of waking up from
the static power reduction modes.

7 RELATED WORK

To our knowledge, this is the first paper to propose a multi-mode static power reduction technique
in order to cover 100% of idle periods in execution units, and thus efficiently reduce the static
energy of GPU execution units, based on the idle period length. In the previous section, we
provided a thorough comparison of our technique, ITAP, to PATS [105], a state-of-the-art idle
period defragmentation technique. In this section, we describe other related works that leverage
power-gating and voltage/frequency scaling to reduce the static energy consumption.
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GPU power-gating. Several works attempt to power-gate idle execution lanes [7, 33, 41, 42, 46].
Warped Gates [2] aims to improve the energy efficiency of GPUs by leveraging the fact that integer
and floating-point instructions cannot be executed simultaneously. Therefore, executing one type
results in the idleness of the functional units of the other type. Warped Gates modifies the warp
scheduler to schedule warps with instructions of the same type as much as possible in order to
defragment the idle periods of integer and floating-point units. Aghilinasab et al. [3] propose static
instruction reordering to improve the idleness opportunity of the Warped Gates scheduler. ITAP is
orthogonal to these power-gating techniques as it targets the idleness of every component within a
SIMD lane rather than focusing on functional units within the lane.

Several works show that there are some GPU applications with considerable scalar execution, in
which, the same instruction is executed on the same operands, or almost the same operands [84],
among threads in a warp [30, 63, 83, 84]. Based on this observation, these works modify the
GPU execution pipeline to support scalar execution. Hence, other inactive lanes can be power-
gated/clock-gated during scalar execution. However, scalar execution is not common enough among
different GPU applications and thus the benefit of such techniques is limited to workloads with
significant scalar execution. ITAP targets two main sources of execution unit idleness, partial- and
full-lane idleness, which happen frequently across a wide variety of GPU workloads.

Kayiran et al. [46] propose puC-States, a power management method that applies power-
gating/clock-gating techniques to different GPU datapath components. uC-States targets big-cores
in modern GPUs with several SIMD pipelines in each SM. In particular, based on their utilization
rate, pC-States power-gates some of the SIMD pipelines to improve the energy efficiency of modern
GPUs with big cores. However, in the energy-efficient state, there is at least one functional SIMD
pipeline to guarantee progress of application. In comparison to pC-States, ITAP is more general as
it can be employed for static power reduction for SMs with any number of SIMD pipelines.

GPU voltage/frequency scaling. Commercial GPUs provide control to dynamically change
the voltage and the frequency of SMs [73, 75, 77]. They scale frequency and voltage based on the
total power budget and temperature restrictions of the chip [73, 75, 77]. ITAP has the ability to
improve power efficiency in a more fine-grained manner, targeting execution units inside SIMD
lanes. Additionally, ITAP can be more effective when SMs run under hard power constraints, as it
can capture idle periods and further improve power efficiency of the hardware.

Several proposals scale voltage/frequency at different granularities in order to decrease consumed
power [15, 37, 58, 60, 61, 73, 80, 95]. All of these works scale the supply voltage and the working
frequency [37, 58, 60, 73] at the same time or scale only the working frequency [61, 80, 95] in order
to keep the units in the functional state. ITAP, on the other hand, employs voltage-scaling for idle
periods of execution lanes. Hence, there is no need to scale the working frequency to keep the lanes
in their functional state. Moreover, ITAP benefits from power-gating in addition to voltage-scaling
for large idle periods.

CPU and DRAM power management. Several works apply power-gating and volt-
age/frequency scaling in the context of CPUs [17, 22, 24, 31, 34, 35, 62-65, 79] and DRAM [16, 22, 23].
Power management techniques in such other contexts cannot be simply applied to GPUs. To have
an efficient power management technique for GPUs, it is essential to optimize the power reduction
techniques by thoroughly considering the GPU context, such as micro-architecture, execution
model, and the characteristics of idle periods.

8 CONCLUSION

We propose ITAP (Idle-Time-Aware Power Management) to efficiently reduce the static power
consumption of GPU execution units, by exploiting their idleness. ITAP employs three static power
reduction modes, each with different static power reduction abilities and overheads to reduce power
consumption of idle periods in an efficient manner. ITAP estimates the idle period length using

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 1. Publication date: December 2018.



1:22 M. Sadrosadati et al.

prediction and peek-ahead techniques, and applies the most suitable power reduction mode to
each idle execution lane. Our experimental results show that the power-aggressive design of ITAP
outperforms the state-of-the-art solution by an average of 27.6% in terms of static energy savings,
with up to 2.1% performance overhead (1.2%, on average). On the other hand, the performance-
aggressive design of ITAP improves the static energy savings by an average of 16.9%, while having
negligible impact on GPU performance (i.e., up to 0.4% performance overhead), compared to the
state-of-the-art static energy savings mechanism. We conclude that ITAP provides an effective
framework for reducing static power consumption in modern GPUs.
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