
Flexible Reference-Counting-Based
Hardware Acceleration for
Garbage Collection

José A. Joao*

Onur Mutlu‡

Yale N. Patt*

* HPS Research Group

University of Texas at Austin

‡ Computer Architecture Laboratory

Carnegie Mellon University

Motivation: Garbage Collection

2

 Garbage Collection (GC) is a key feature of Managed Languages

 Automatically frees memory blocks that are not used anymore

 Eliminates bugs and improves security

 GC identifies dead (unreachable) objects,

and makes their blocks available to the memory allocator

 Significant overheads

 Processor cycles

 Cache pollution

 Pauses/delays on the application

Software Garbage Collectors

3

 Tracing collectors

 Recursively follow every pointer starting with global, stack and

register variables, scanning each object for pointers

 Explicit collections that visit all live objects

 Reference counting

 Tracks the number of references to each object

 Immediate reclamation

 Expensive and cannot collect cyclic data structures

 State-of-the-art: generational collectors

 Young objects are more likely to die than old objects

 Generations: nursery (new) and mature (older) regions

Overhead of Garbage Collection

4

Hardware Garbage Collectors

5

 Hardware GC in general-purpose processors?

 Ties one GC algorithm into the ISA and the microarchitecture

 High cost due to major changes to processor and/or memory system

 Miss opportunities at the software level, e.g. locality improvement

 Rigid trade-off: reduced flexibility for higher performance

on specific applications

 Transistors are available

 Build accelerators for commonly used functionality

 How much hardware and how much software for GC?

Our Goal

6

 Architectural and hardware acceleration support for GC

 Reduce the overhead of software GC

 Keep the flexibility of software GC

 Work with any existing software GC algorithm

Basic Idea

7

 Simple but incomplete hardware garbage collection

until the heap is full

 Software GC runs and collects

the remaining dead objects

 Overhead of GC is reduced

Hardware-assisted Automatic
Memory Management (HAMM)

8

 Hardware-software cooperative acceleration for GC

 Reference count tracking

 To find dead objects without software GC

 Memory block reuse handling

 To provide available blocks to the software allocator

 Reduce frequency and overhead of software GC

 Key characteristics

 Software memory allocator is in control

 Software GC still runs and makes high-level decisions

 HAMM can simplify: does not have to track all objects

ISA Extensions for HAMM

9

 Memory allocation

 REALLOCMEM, ALLOCMEM

 Pointer tracking (store pointer)

 MOVPTR, MOVPTROVR

 PUSHPTR, POPPTR, POPPTROVR

 Garbage collection

Overview of HAMM

10

LD/ST
Unit

L1 RCCB
RC updates

Core 0
L1 ABT

Block address

Core 1 Core N…

L2 RCCBL2 ABT

CPU Chip 0

CPU Chip 1

CPU Chip M

…

Main memory

RC

RC

RC

Live objectsAvailable Block Table

(ABT)

Reusable blocks

addr ← REALLOCMEM size

if (addr == 0) then

// ABT does not have a free block → regular software allocator

addr ← bump_pointer

bump_pointer ← bump_pointer + size

…

else

// use address provided by ABT

end if

// Initialize block starting at addr

ALLOCMEM object_addr, size

Modified Allocator

11

A

Example of HAMM

12

LD/ST
Unit

L1 Reference Count Coalescing Buffer (RCCB)

RC updates

Core
L1 ABT

Block address

L2 RCCBL2 ABT

CPU Chip

Main memory

RC

RC

Available Block Table

(ABT)

Reusable blocks

0

ALLOCMEM A, size

incRC A

A: 1

incRC AincRC A

A

A

Example of HAMM

13

LD/ST
Unit

L1 Reference Count Coalescing Buffer (RCCB)

RC updates

Core
L1 ABT

Block address

L2 RCCBL2 ABT

CPU Chip

Main memory

RC

RC

Available Block Table

(ABT)

Reusable blocks

010A dead

A

Example of HAMM

14

LD/ST
Unit

L1 Reference Count Coalescing Buffer (RCCB)

RC updates

Core
L1 ABT

Block address

L2 RCCBL2 ABT

CPU Chip

Main memory

RC

RC

Available Block Table

(ABT)

Reusable blocks

010

AA

A

prefetch

prefetch

dead

ISA Extensions for HAMM

15

 Memory allocation

 REALLOCMEM, ALLOCMEM

 Pointer tracking (store pointer)

 MOVPTR, MOVPTROVR

 PUSHPTR, POPPTR, POPPTROVR

 Garbage collection

 FLUSHRC

Methodology

 Benchmarks: DaCapo suite on Jikes Research Virtual Machine
with its best GC, GenMS

 Simics + cycle-accurate x86 simulator

 64 KB, 2-way, 2-cycle I-cache

 16 KB perceptron predictor

 Minimum 20-cycle branch misprediction penalty

 4-wide, 128-entry instruction window

 64 KB, 4-way, 2-cycle, 64B-line, L1 D-cache

 4 MB, 8-way, 16-cycle, 64B-line, unified L2 cache

 150-cycle minimum memory latency

 Different methodologies for two components:

 GC time estimated based on actual garbage collection work
over the whole benchmark

 Application: cycle-accurate simulation with microarchitectural
modifications on 200M-instruction slices

16

GC Time Reduction

17

Application Performance

18

Since GC time is reduced by 29%,
HAMM is a win

Why does HAMM work?

19

 HAMM reduces GC time because

 Eliminates collections: 52%/50% of nursery/full-heap

 Enables memory block reuse for 69% of all new objects in
nursery and 38% of allocations into older generation

 Reduces GC work: 21%/49% for nursery/full-heap

 HAMM does not slow down the application significantly

 Maximum L1 cache miss increase: 4%
Maximum L2 cache miss increase: 3.5%

 HAMM itself is responsible for only 1.4% of all L2 misses

Conclusion

20

 Garbage collection is very useful,
but it is also a significant source of overhead

 Improvements on pure software GC or hardware GC are limited

 We propose HAMM, a cooperative hardware-software technique

 Simplified hardware-assisted reference counting and block reuse

 Reduces GC time by 29%

 Does not significantly affect application performance

 Reasonable cost (67KB on a 4-core chip)
for an architectural accelerator of an important functionality

 HAMM can be an enabler encouraging developers
to use managed languages

Thank You!

Questions?

